Skip to content

Commit 392595c

Browse files
committed
Add pool_size to default cfgs for new models to prevent tests from failing. Add explicit 200D_320 model entrypoint for next benchmark run.
1 parent 7a75b8d commit 392595c

File tree

1 file changed

+16
-4
lines changed

1 file changed

+16
-4
lines changed

timm/models/resnet.py

Lines changed: 16 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -58,15 +58,18 @@ def _cfg(url='', **kwargs):
5858
'resnet101': _cfg(url='', interpolation='bicubic'),
5959
'resnet101d': _cfg(
6060
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth',
61-
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94),
61+
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)),
6262
'resnet152': _cfg(url='', interpolation='bicubic'),
6363
'resnet152d': _cfg(
6464
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet152d_ra2-5cac0439.pth',
65-
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94),
65+
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)),
6666
'resnet200': _cfg(url='', interpolation='bicubic'),
6767
'resnet200d': _cfg(
6868
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth',
69-
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94),
69+
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)),
70+
'resnet200d_320': _cfg(
71+
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth',
72+
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 320, 320), crop_pct=1.0, pool_size=(10, 10)),
7073
'tv_resnet34': _cfg(url='https://download.pytorch.org/models/resnet34-333f7ec4.pth'),
7174
'tv_resnet50': _cfg(url='https://download.pytorch.org/models/resnet50-19c8e357.pth'),
7275
'tv_resnet101': _cfg(url='https://download.pytorch.org/models/resnet101-5d3b4d8f.pth'),
@@ -149,7 +152,7 @@ def _cfg(url='', **kwargs):
149152
interpolation='bicubic'),
150153
'seresnet152d': _cfg(
151154
url='',
152-
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94),
155+
interpolation='bicubic', first_conv='conv1.0', input_size=(3, 256, 256), crop_pct=0.94, pool_size=(8, 8)),
153156

154157
# Squeeze-Excitation ResNeXts, to eventually replace the models in senet.py
155158
'seresnext26_32x4d': _cfg(
@@ -741,6 +744,15 @@ def resnet200d(pretrained=False, **kwargs):
741744
return _create_resnet('resnet200d', pretrained, **model_args)
742745

743746

747+
@register_model
748+
def resnet200d_320(pretrained=False, **kwargs):
749+
"""Constructs a ResNet-200-D model. NOTE: Duplicate of 200D above w/ diff default cfg for 320x320.
750+
"""
751+
model_args = dict(
752+
block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', avg_down=True, **kwargs)
753+
return _create_resnet('resnet200d_320', pretrained, **model_args)
754+
755+
744756
@register_model
745757
def tv_resnet34(pretrained=False, **kwargs):
746758
"""Constructs a ResNet-34 model with original Torchvision weights.

0 commit comments

Comments
 (0)