From 21a03f93ef0fbfa5f7a7d97708f75149b1d1b3b0 Mon Sep 17 00:00:00 2001 From: Dhruv Nair Date: Mon, 10 Nov 2025 08:07:26 +0100 Subject: [PATCH 1/2] update --- examples/community/lpw_stable_diffusion_xl.py | 16 +- .../masked_stable_diffusion_xl_img2img.py | 2 +- examples/community/mixture_tiling_sdxl.py | 2455 ++++++++--------- .../community/mod_controlnet_tile_sr_sdxl.py | 23 +- .../pipeline_controlnet_xl_kolors.py | 22 +- .../pipeline_controlnet_xl_kolors_img2img.py | 22 +- .../pipeline_controlnet_xl_kolors_inpaint.py | 22 +- .../community/pipeline_demofusion_sdxl.py | 19 +- .../pipeline_faithdiff_stable_diffusion_xl.py | 30 +- .../pipeline_kolors_differential_img2img.py | 22 +- .../community/pipeline_kolors_inpainting.py | 26 +- .../community/pipeline_sdxl_style_aligned.py | 21 +- ...pipeline_stable_diffusion_upscale_ldm3d.py | 2 +- ...ne_stable_diffusion_xl_attentive_eraser.py | 26 +- ..._stable_diffusion_xl_controlnet_adapter.py | 17 +- ...diffusion_xl_controlnet_adapter_inpaint.py | 17 +- ...table_diffusion_xl_differential_img2img.py | 22 +- ...e_stable_diffusion_xl_instandid_img2img.py | 2 +- .../pipeline_stable_diffusion_xl_instantid.py | 2 +- .../pipeline_stable_diffusion_xl_ipex.py | 24 +- ...table_diffusion_xl_controlnet_reference.py | 4 +- .../stable_diffusion_xl_reference.py | 4 +- .../animatediff/pipeline_animatediff_sdxl.py | 25 +- .../pipelines/aura_flow/pipeline_aura_flow.py | 21 +- .../pipeline_controlnet_inpaint_sd_xl.py | 22 +- .../controlnet/pipeline_controlnet_sd_xl.py | 22 +- .../pipeline_controlnet_sd_xl_img2img.py | 22 +- ...pipeline_controlnet_union_inpaint_sd_xl.py | 22 +- .../pipeline_controlnet_union_sd_xl.py | 23 +- ...pipeline_controlnet_union_sd_xl_img2img.py | 22 +- .../pipeline_controlnet_xs_sd_xl.py | 25 +- .../pipelines/kolors/pipeline_kolors.py | 22 +- .../kolors/pipeline_kolors_img2img.py | 22 +- .../pipeline_leditspp_stable_diffusion_xl.py | 24 +- .../pag/pipeline_pag_controlnet_sd_xl.py | 23 +- .../pipeline_pag_controlnet_sd_xl_img2img.py | 23 +- .../pipelines/pag/pipeline_pag_kolors.py | 22 +- .../pipelines/pag/pipeline_pag_sd_xl.py | 25 +- .../pag/pipeline_pag_sd_xl_img2img.py | 23 +- .../pag/pipeline_pag_sd_xl_inpaint.py | 23 +- .../pipeline_stable_diffusion_upscale.py | 22 +- ...ipeline_stable_diffusion_xl_k_diffusion.py | 25 +- .../pipeline_stable_diffusion_xl.py | 24 +- .../pipeline_stable_diffusion_xl_img2img.py | 22 +- .../pipeline_stable_diffusion_xl_inpaint.py | 22 +- ...ne_stable_diffusion_xl_instruct_pix2pix.py | 26 +- .../pipeline_stable_diffusion_xl_adapter.py | 23 +- .../pipeline_text_to_video_zero_sdxl.py | 25 +- 48 files changed, 1335 insertions(+), 2065 deletions(-) diff --git a/examples/community/lpw_stable_diffusion_xl.py b/examples/community/lpw_stable_diffusion_xl.py index 95d3405df50d..35157492508a 100644 --- a/examples/community/lpw_stable_diffusion_xl.py +++ b/examples/community/lpw_stable_diffusion_xl.py @@ -29,7 +29,6 @@ TextualInversionLoaderMixin, ) from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel -from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.pipelines.pipeline_utils import StableDiffusionMixin from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput @@ -1328,18 +1327,7 @@ def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, d # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - (AttnProcessor2_0, XFormersAttnProcessor), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): @@ -1921,7 +1909,7 @@ def denoising_value_valid(dnv): needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) # unscale/denormalize the latents diff --git a/examples/community/masked_stable_diffusion_xl_img2img.py b/examples/community/masked_stable_diffusion_xl_img2img.py index 14d8c7c2da78..5a5024064d6c 100644 --- a/examples/community/masked_stable_diffusion_xl_img2img.py +++ b/examples/community/masked_stable_diffusion_xl_img2img.py @@ -481,7 +481,7 @@ def denoising_value_valid(dnv): needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 diff --git a/examples/community/mixture_tiling_sdxl.py b/examples/community/mixture_tiling_sdxl.py index 66c338b5b2a2..98fbbc246476 100644 --- a/examples/community/mixture_tiling_sdxl.py +++ b/examples/community/mixture_tiling_sdxl.py @@ -1,1237 +1,1218 @@ -# Copyright 2025 The DEVAIEXP Team and The HuggingFace Team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import inspect -from enum import Enum -from typing import Any, Dict, List, Optional, Tuple, Union - -import torch -from transformers import ( - CLIPTextModel, - CLIPTextModelWithProjection, - CLIPTokenizer, -) - -from diffusers.image_processor import VaeImageProcessor -from diffusers.loaders import ( - FromSingleFileMixin, - StableDiffusionXLLoraLoaderMixin, - TextualInversionLoaderMixin, -) -from diffusers.models import AutoencoderKL, UNet2DConditionModel -from diffusers.models.attention_processor import ( - AttnProcessor2_0, - FusedAttnProcessor2_0, - XFormersAttnProcessor, -) -from diffusers.models.lora import adjust_lora_scale_text_encoder -from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin -from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput -from diffusers.schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler -from diffusers.utils import ( - USE_PEFT_BACKEND, - is_invisible_watermark_available, - is_torch_xla_available, - logging, - replace_example_docstring, - scale_lora_layers, - unscale_lora_layers, -) -from diffusers.utils.torch_utils import randn_tensor - - -try: - from ligo.segments import segment -except ImportError: - raise ImportError("Please install transformers and ligo-segments to use the mixture pipeline") - -if is_invisible_watermark_available(): - from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker - -if is_torch_xla_available(): - import torch_xla.core.xla_model as xm - - XLA_AVAILABLE = True -else: - XLA_AVAILABLE = False - - -logger = logging.get_logger(__name__) # pylint: disable=invalid-name - -EXAMPLE_DOC_STRING = """ - Examples: - ```py - >>> import torch - >>> from diffusers import StableDiffusionXLPipeline - - >>> pipe = StableDiffusionXLPipeline.from_pretrained( - ... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 - ... ) - >>> pipe = pipe.to("cuda") - - >>> prompt = "a photo of an astronaut riding a horse on mars" - >>> image = pipe(prompt).images[0] - ``` -""" - - -def _tile2pixel_indices(tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap): - """Given a tile row and column numbers returns the range of pixels affected by that tiles in the overall image - - Returns a tuple with: - - Starting coordinates of rows in pixel space - - Ending coordinates of rows in pixel space - - Starting coordinates of columns in pixel space - - Ending coordinates of columns in pixel space - """ - px_row_init = 0 if tile_row == 0 else tile_row * (tile_height - tile_row_overlap) - px_row_end = px_row_init + tile_height - px_col_init = 0 if tile_col == 0 else tile_col * (tile_width - tile_col_overlap) - px_col_end = px_col_init + tile_width - return px_row_init, px_row_end, px_col_init, px_col_end - - -def _pixel2latent_indices(px_row_init, px_row_end, px_col_init, px_col_end): - """Translates coordinates in pixel space to coordinates in latent space""" - return px_row_init // 8, px_row_end // 8, px_col_init // 8, px_col_end // 8 - - -def _tile2latent_indices(tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap): - """Given a tile row and column numbers returns the range of latents affected by that tiles in the overall image - - Returns a tuple with: - - Starting coordinates of rows in latent space - - Ending coordinates of rows in latent space - - Starting coordinates of columns in latent space - - Ending coordinates of columns in latent space - """ - px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices( - tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap - ) - return _pixel2latent_indices(px_row_init, px_row_end, px_col_init, px_col_end) - - -def _tile2latent_exclusive_indices( - tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, rows, columns -): - """Given a tile row and column numbers returns the range of latents affected only by that tile in the overall image - - Returns a tuple with: - - Starting coordinates of rows in latent space - - Ending coordinates of rows in latent space - - Starting coordinates of columns in latent space - - Ending coordinates of columns in latent space - """ - row_init, row_end, col_init, col_end = _tile2latent_indices( - tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap - ) - row_segment = segment(row_init, row_end) - col_segment = segment(col_init, col_end) - # Iterate over the rest of tiles, clipping the region for the current tile - for row in range(rows): - for column in range(columns): - if row != tile_row and column != tile_col: - clip_row_init, clip_row_end, clip_col_init, clip_col_end = _tile2latent_indices( - row, column, tile_width, tile_height, tile_row_overlap, tile_col_overlap - ) - row_segment = row_segment - segment(clip_row_init, clip_row_end) - col_segment = col_segment - segment(clip_col_init, clip_col_end) - # return row_init, row_end, col_init, col_end - return row_segment[0], row_segment[1], col_segment[0], col_segment[1] - - -def _get_crops_coords_list(num_rows, num_cols, output_width): - """ - Generates a list of lists of `crops_coords_top_left` tuples for focusing on - different horizontal parts of an image, and repeats this list for the specified - number of rows in the output structure. - - This function calculates `crops_coords_top_left` tuples to create horizontal - focus variations (like left, center, right focus) based on `output_width` - and `num_cols` (which represents the number of horizontal focus points/columns). - It then repeats the *list* of these horizontal focus tuples `num_rows` times to - create the final list of lists output structure. - - Args: - num_rows (int): The desired number of rows in the output list of lists. - This determines how many times the list of horizontal - focus variations will be repeated. - num_cols (int): The number of horizontal focus points (columns) to generate. - This determines how many horizontal focus variations are - created based on dividing the `output_width`. - output_width (int): The desired width of the output image. - - Returns: - list[list[tuple[int, int]]]: A list of lists of tuples. Each inner list - contains `num_cols` tuples of `(ctop, cleft)`, - representing horizontal focus points. The outer list - contains `num_rows` such inner lists. - """ - crops_coords_list = [] - if num_cols <= 0: - crops_coords_list = [] - elif num_cols == 1: - crops_coords_list = [(0, 0)] - else: - section_width = output_width / num_cols - for i in range(num_cols): - cleft = int(round(i * section_width)) - crops_coords_list.append((0, cleft)) - - result_list = [] - for _ in range(num_rows): - result_list.append(list(crops_coords_list)) - - return result_list - - -# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg -def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): - r""" - Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on - Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are - Flawed](https://huggingface.co/papers/2305.08891). - - Args: - noise_cfg (`torch.Tensor`): - The predicted noise tensor for the guided diffusion process. - noise_pred_text (`torch.Tensor`): - The predicted noise tensor for the text-guided diffusion process. - guidance_rescale (`float`, *optional*, defaults to 0.0): - A rescale factor applied to the noise predictions. - - Returns: - noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor. - """ - std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) - std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) - # rescale the results from guidance (fixes overexposure) - noise_pred_rescaled = noise_cfg * (std_text / std_cfg) - # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images - noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg - return noise_cfg - - -# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps -def retrieve_timesteps( - scheduler, - num_inference_steps: Optional[int] = None, - device: Optional[Union[str, torch.device]] = None, - timesteps: Optional[List[int]] = None, - sigmas: Optional[List[float]] = None, - **kwargs, -): - r""" - Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles - custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. - - Args: - scheduler (`SchedulerMixin`): - The scheduler to get timesteps from. - num_inference_steps (`int`): - The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` - must be `None`. - device (`str` or `torch.device`, *optional*): - The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. - timesteps (`List[int]`, *optional*): - Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, - `num_inference_steps` and `sigmas` must be `None`. - sigmas (`List[float]`, *optional*): - Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, - `num_inference_steps` and `timesteps` must be `None`. - - Returns: - `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the - second element is the number of inference steps. - """ - - if timesteps is not None and sigmas is not None: - raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") - if timesteps is not None: - accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) - if not accepts_timesteps: - raise ValueError( - f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" - f" timestep schedules. Please check whether you are using the correct scheduler." - ) - scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) - timesteps = scheduler.timesteps - num_inference_steps = len(timesteps) - elif sigmas is not None: - accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) - if not accept_sigmas: - raise ValueError( - f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" - f" sigmas schedules. Please check whether you are using the correct scheduler." - ) - scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) - timesteps = scheduler.timesteps - num_inference_steps = len(timesteps) - else: - scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) - timesteps = scheduler.timesteps - return timesteps, num_inference_steps - - -class StableDiffusionXLTilingPipeline( - DiffusionPipeline, - StableDiffusionMixin, - FromSingleFileMixin, - StableDiffusionXLLoraLoaderMixin, - TextualInversionLoaderMixin, -): - r""" - Pipeline for text-to-image generation using Stable Diffusion XL. - - This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the - library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) - - The pipeline also inherits the following loading methods: - - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files - - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights - - Args: - vae ([`AutoencoderKL`]): - Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. - text_encoder ([`CLIPTextModel`]): - Frozen text-encoder. Stable Diffusion XL uses the text portion of - [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically - the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. - text_encoder_2 ([` CLIPTextModelWithProjection`]): - Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of - [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), - specifically the - [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) - variant. - tokenizer (`CLIPTokenizer`): - Tokenizer of class - [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). - tokenizer_2 (`CLIPTokenizer`): - Second Tokenizer of class - [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). - unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. - scheduler ([`SchedulerMixin`]): - A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of - [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. - force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): - Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of - `stabilityai/stable-diffusion-xl-base-1-0`. - add_watermarker (`bool`, *optional*): - Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to - watermark output images. If not defined, it will default to True if the package is installed, otherwise no - watermarker will be used. - """ - - model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae" - _optional_components = [ - "tokenizer", - "tokenizer_2", - "text_encoder", - "text_encoder_2", - ] - - def __init__( - self, - vae: AutoencoderKL, - text_encoder: CLIPTextModel, - text_encoder_2: CLIPTextModelWithProjection, - tokenizer: CLIPTokenizer, - tokenizer_2: CLIPTokenizer, - unet: UNet2DConditionModel, - scheduler: KarrasDiffusionSchedulers, - force_zeros_for_empty_prompt: bool = True, - add_watermarker: Optional[bool] = None, - ): - super().__init__() - - self.register_modules( - vae=vae, - text_encoder=text_encoder, - text_encoder_2=text_encoder_2, - tokenizer=tokenizer, - tokenizer_2=tokenizer_2, - unet=unet, - scheduler=scheduler, - ) - self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) - self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 - self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) - - self.default_sample_size = ( - self.unet.config.sample_size - if hasattr(self, "unet") and self.unet is not None and hasattr(self.unet.config, "sample_size") - else 128 - ) - - add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() - - if add_watermarker: - self.watermark = StableDiffusionXLWatermarker() - else: - self.watermark = None - - class SeedTilesMode(Enum): - """Modes in which the latents of a particular tile can be re-seeded""" - - FULL = "full" - EXCLUSIVE = "exclusive" - - def encode_prompt( - self, - prompt: str, - prompt_2: Optional[str] = None, - device: Optional[torch.device] = None, - num_images_per_prompt: int = 1, - do_classifier_free_guidance: bool = True, - negative_prompt: Optional[str] = None, - negative_prompt_2: Optional[str] = None, - prompt_embeds: Optional[torch.Tensor] = None, - negative_prompt_embeds: Optional[torch.Tensor] = None, - pooled_prompt_embeds: Optional[torch.Tensor] = None, - negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, - lora_scale: Optional[float] = None, - clip_skip: Optional[int] = None, - ): - r""" - Encodes the prompt into text encoder hidden states. - - Args: - prompt (`str` or `List[str]`, *optional*): - prompt to be encoded - prompt_2 (`str` or `List[str]`, *optional*): - The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is - used in both text-encoders - device: (`torch.device`): - torch device - num_images_per_prompt (`int`): - number of images that should be generated per prompt - do_classifier_free_guidance (`bool`): - whether to use classifier free guidance or not - negative_prompt (`str` or `List[str]`, *optional*): - The prompt or prompts not to guide the image generation. If not defined, one has to pass - `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is - less than `1`). - negative_prompt_2 (`str` or `List[str]`, *optional*): - The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and - `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders - prompt_embeds (`torch.Tensor`, *optional*): - Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not - provided, text embeddings will be generated from `prompt` input argument. - negative_prompt_embeds (`torch.Tensor`, *optional*): - Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt - weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input - argument. - pooled_prompt_embeds (`torch.Tensor`, *optional*): - Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. - If not provided, pooled text embeddings will be generated from `prompt` input argument. - negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): - Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt - weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` - input argument. - lora_scale (`float`, *optional*): - A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. - clip_skip (`int`, *optional*): - Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that - the output of the pre-final layer will be used for computing the prompt embeddings. - """ - device = device or self._execution_device - - # set lora scale so that monkey patched LoRA - # function of text encoder can correctly access it - if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): - self._lora_scale = lora_scale - - # dynamically adjust the LoRA scale - if self.text_encoder is not None: - if not USE_PEFT_BACKEND: - adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) - else: - scale_lora_layers(self.text_encoder, lora_scale) - - if self.text_encoder_2 is not None: - if not USE_PEFT_BACKEND: - adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) - else: - scale_lora_layers(self.text_encoder_2, lora_scale) - - prompt = [prompt] if isinstance(prompt, str) else prompt - - if prompt is not None: - batch_size = len(prompt) - else: - batch_size = prompt_embeds.shape[0] - - # Define tokenizers and text encoders - tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] - text_encoders = ( - [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] - ) - - if prompt_embeds is None: - prompt_2 = prompt_2 or prompt - prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 - - # textual inversion: process multi-vector tokens if necessary - prompt_embeds_list = [] - prompts = [prompt, prompt_2] - for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): - if isinstance(self, TextualInversionLoaderMixin): - prompt = self.maybe_convert_prompt(prompt, tokenizer) - - text_inputs = tokenizer( - prompt, - padding="max_length", - max_length=tokenizer.model_max_length, - truncation=True, - return_tensors="pt", - ) - - text_input_ids = text_inputs.input_ids - untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids - - if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( - text_input_ids, untruncated_ids - ): - removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) - logger.warning( - "The following part of your input was truncated because CLIP can only handle sequences up to" - f" {tokenizer.model_max_length} tokens: {removed_text}" - ) - - prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) - - # We are only ALWAYS interested in the pooled output of the final text encoder - if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2: - pooled_prompt_embeds = prompt_embeds[0] - - if clip_skip is None: - prompt_embeds = prompt_embeds.hidden_states[-2] - else: - # "2" because SDXL always indexes from the penultimate layer. - prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] - - prompt_embeds_list.append(prompt_embeds) - - prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) - - # get unconditional embeddings for classifier free guidance - zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt - if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: - negative_prompt_embeds = torch.zeros_like(prompt_embeds) - negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) - elif do_classifier_free_guidance and negative_prompt_embeds is None: - negative_prompt = negative_prompt or "" - negative_prompt_2 = negative_prompt_2 or negative_prompt - - # normalize str to list - negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt - negative_prompt_2 = ( - batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 - ) - - uncond_tokens: List[str] - if prompt is not None and type(prompt) is not type(negative_prompt): - raise TypeError( - f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" - f" {type(prompt)}." - ) - elif batch_size != len(negative_prompt): - raise ValueError( - f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" - f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" - " the batch size of `prompt`." - ) - else: - uncond_tokens = [negative_prompt, negative_prompt_2] - - negative_prompt_embeds_list = [] - for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): - if isinstance(self, TextualInversionLoaderMixin): - negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) - - max_length = prompt_embeds.shape[1] - uncond_input = tokenizer( - negative_prompt, - padding="max_length", - max_length=max_length, - truncation=True, - return_tensors="pt", - ) - - negative_prompt_embeds = text_encoder( - uncond_input.input_ids.to(device), - output_hidden_states=True, - ) - - # We are only ALWAYS interested in the pooled output of the final text encoder - if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2: - negative_pooled_prompt_embeds = negative_prompt_embeds[0] - negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] - - negative_prompt_embeds_list.append(negative_prompt_embeds) - - negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) - - if self.text_encoder_2 is not None: - prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) - else: - prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) - - bs_embed, seq_len, _ = prompt_embeds.shape - # duplicate text embeddings for each generation per prompt, using mps friendly method - prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) - prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) - - if do_classifier_free_guidance: - # duplicate unconditional embeddings for each generation per prompt, using mps friendly method - seq_len = negative_prompt_embeds.shape[1] - - if self.text_encoder_2 is not None: - negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) - else: - negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) - - negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) - negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) - - pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( - bs_embed * num_images_per_prompt, -1 - ) - if do_classifier_free_guidance: - negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( - bs_embed * num_images_per_prompt, -1 - ) - - if self.text_encoder is not None: - if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: - # Retrieve the original scale by scaling back the LoRA layers - unscale_lora_layers(self.text_encoder, lora_scale) - - if self.text_encoder_2 is not None: - if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: - # Retrieve the original scale by scaling back the LoRA layers - unscale_lora_layers(self.text_encoder_2, lora_scale) - - return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds - - # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs - def prepare_extra_step_kwargs(self, generator, eta): - # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature - # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. - # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502 - # and should be between [0, 1] - - accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) - extra_step_kwargs = {} - if accepts_eta: - extra_step_kwargs["eta"] = eta - - # check if the scheduler accepts generator - accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) - if accepts_generator: - extra_step_kwargs["generator"] = generator - return extra_step_kwargs - - def check_inputs(self, prompt, height, width, grid_cols, seed_tiles_mode, tiles_mode): - if height % 8 != 0 or width % 8 != 0: - raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") - - if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): - raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") - - if not isinstance(prompt, list) or not all(isinstance(row, list) for row in prompt): - raise ValueError(f"`prompt` has to be a list of lists but is {type(prompt)}") - - if not all(len(row) == grid_cols for row in prompt): - raise ValueError("All prompt rows must have the same number of prompt columns") - - if not isinstance(seed_tiles_mode, str) and ( - not isinstance(seed_tiles_mode, list) or not all(isinstance(row, list) for row in seed_tiles_mode) - ): - raise ValueError(f"`seed_tiles_mode` has to be a string or list of lists but is {type(prompt)}") - - if any(mode not in tiles_mode for row in seed_tiles_mode for mode in row): - raise ValueError(f"Seed tiles mode must be one of {tiles_mode}") - - def _get_add_time_ids( - self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None - ): - add_time_ids = list(original_size + crops_coords_top_left + target_size) - - passed_add_embed_dim = ( - self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim - ) - expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features - - if expected_add_embed_dim != passed_add_embed_dim: - raise ValueError( - f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." - ) - - add_time_ids = torch.tensor([add_time_ids], dtype=dtype) - return add_time_ids - - def _gaussian_weights(self, tile_width, tile_height, nbatches, device, dtype): - """Generates a gaussian mask of weights for tile contributions""" - import numpy as np - from numpy import exp, pi, sqrt - - latent_width = tile_width // 8 - latent_height = tile_height // 8 - - var = 0.01 - midpoint = (latent_width - 1) / 2 # -1 because index goes from 0 to latent_width - 1 - x_probs = [ - exp(-(x - midpoint) * (x - midpoint) / (latent_width * latent_width) / (2 * var)) / sqrt(2 * pi * var) - for x in range(latent_width) - ] - midpoint = latent_height / 2 - y_probs = [ - exp(-(y - midpoint) * (y - midpoint) / (latent_height * latent_height) / (2 * var)) / sqrt(2 * pi * var) - for y in range(latent_height) - ] - - weights_np = np.outer(y_probs, x_probs) - weights_torch = torch.tensor(weights_np, device=device) - weights_torch = weights_torch.to(dtype) - return torch.tile(weights_torch, (nbatches, self.unet.config.in_channels, 1, 1)) - - def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - FusedAttnProcessor2_0, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) - - # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding - def get_guidance_scale_embedding( - self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 - ) -> torch.Tensor: - """ - See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 - - Args: - w (`torch.Tensor`): - Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. - embedding_dim (`int`, *optional*, defaults to 512): - Dimension of the embeddings to generate. - dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): - Data type of the generated embeddings. - - Returns: - `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. - """ - assert len(w.shape) == 1 - w = w * 1000.0 - - half_dim = embedding_dim // 2 - emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) - emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) - emb = w.to(dtype)[:, None] * emb[None, :] - emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) - if embedding_dim % 2 == 1: # zero pad - emb = torch.nn.functional.pad(emb, (0, 1)) - assert emb.shape == (w.shape[0], embedding_dim) - return emb - - @property - def guidance_scale(self): - return self._guidance_scale - - @property - def clip_skip(self): - return self._clip_skip - - # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) - # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1` - # corresponds to doing no classifier free guidance. - @property - def do_classifier_free_guidance(self): - return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None - - @property - def cross_attention_kwargs(self): - return self._cross_attention_kwargs - - @property - def num_timesteps(self): - return self._num_timesteps - - @property - def interrupt(self): - return self._interrupt - - @torch.no_grad() - @replace_example_docstring(EXAMPLE_DOC_STRING) - def __call__( - self, - prompt: Union[str, List[str]] = None, - height: Optional[int] = None, - width: Optional[int] = None, - num_inference_steps: int = 50, - guidance_scale: float = 5.0, - negative_prompt: Optional[Union[str, List[str]]] = None, - num_images_per_prompt: Optional[int] = 1, - eta: float = 0.0, - generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, - output_type: Optional[str] = "pil", - return_dict: bool = True, - cross_attention_kwargs: Optional[Dict[str, Any]] = None, - original_size: Optional[Tuple[int, int]] = None, - crops_coords_top_left: Optional[List[List[Tuple[int, int]]]] = None, - target_size: Optional[Tuple[int, int]] = None, - negative_original_size: Optional[Tuple[int, int]] = None, - negative_crops_coords_top_left: Optional[List[List[Tuple[int, int]]]] = None, - negative_target_size: Optional[Tuple[int, int]] = None, - clip_skip: Optional[int] = None, - tile_height: Optional[int] = 1024, - tile_width: Optional[int] = 1024, - tile_row_overlap: Optional[int] = 128, - tile_col_overlap: Optional[int] = 128, - guidance_scale_tiles: Optional[List[List[float]]] = None, - seed_tiles: Optional[List[List[int]]] = None, - seed_tiles_mode: Optional[Union[str, List[List[str]]]] = "full", - seed_reroll_regions: Optional[List[Tuple[int, int, int, int, int]]] = None, - **kwargs, - ): - r""" - Function invoked when calling the pipeline for generation. - - Args: - prompt (`str` or `List[str]`, *optional*): - The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. - instead. - height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): - The height in pixels of the generated image. This is set to 1024 by default for the best results. - Anything below 512 pixels won't work well for - [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) - and checkpoints that are not specifically fine-tuned on low resolutions. - width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): - The width in pixels of the generated image. This is set to 1024 by default for the best results. - Anything below 512 pixels won't work well for - [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) - and checkpoints that are not specifically fine-tuned on low resolutions. - num_inference_steps (`int`, *optional*, defaults to 50): - The number of denoising steps. More denoising steps usually lead to a higher quality image at the - expense of slower inference. - guidance_scale (`float`, *optional*, defaults to 5.0): - Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598). - `guidance_scale` is defined as `w` of equation 2. of [Imagen - Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale > - 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, - usually at the expense of lower image quality. - negative_prompt (`str` or `List[str]`, *optional*): - The prompt or prompts not to guide the image generation. If not defined, one has to pass - `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is - less than `1`). - num_images_per_prompt (`int`, *optional*, defaults to 1): - The number of images to generate per prompt. - eta (`float`, *optional*, defaults to 0.0): - Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to - [`schedulers.DDIMScheduler`], will be ignored for others. - generator (`torch.Generator` or `List[torch.Generator]`, *optional*): - One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) - to make generation deterministic. - output_type (`str`, *optional*, defaults to `"pil"`): - The output format of the generate image. Choose between - [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. - return_dict (`bool`, *optional*, defaults to `True`): - Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead - of a plain tuple. - cross_attention_kwargs (`dict`, *optional*): - A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under - `self.processor` in - [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). - original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): - If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. - `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as - explained in section 2.2 of - [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). - crops_coords_top_left (`List[List[Tuple[int, int]]]`, *optional*, defaults to (0, 0)): - `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position - `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting - `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of - [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). - target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): - For most cases, `target_size` should be set to the desired height and width of the generated image. If - not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in - section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). - negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): - To negatively condition the generation process based on a specific image resolution. Part of SDXL's - micro-conditioning as explained in section 2.2 of - [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more - information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. - negative_crops_coords_top_left (`List[List[Tuple[int, int]]]`, *optional*, defaults to (0, 0)): - To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's - micro-conditioning as explained in section 2.2 of - [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more - information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. - negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): - To negatively condition the generation process based on a target image resolution. It should be as same - as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of - [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more - information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. - tile_height (`int`, *optional*, defaults to 1024): - Height of each grid tile in pixels. - tile_width (`int`, *optional*, defaults to 1024): - Width of each grid tile in pixels. - tile_row_overlap (`int`, *optional*, defaults to 128): - Number of overlapping pixels between tiles in consecutive rows. - tile_col_overlap (`int`, *optional*, defaults to 128): - Number of overlapping pixels between tiles in consecutive columns. - guidance_scale_tiles (`List[List[float]]`, *optional*): - Specific weights for classifier-free guidance in each tile. If `None`, the value provided in `guidance_scale` will be used. - seed_tiles (`List[List[int]]`, *optional*): - Specific seeds for the initialization latents in each tile. These will override the latents generated for the whole canvas using the standard `generator` parameter. - seed_tiles_mode (`Union[str, List[List[str]]]`, *optional*, defaults to `"full"`): - Mode for seeding tiles, can be `"full"` or `"exclusive"`. If `"full"`, all the latents affected by the tile will be overridden. If `"exclusive"`, only the latents that are exclusively affected by this tile (and no other tiles) will be overridden. - seed_reroll_regions (`List[Tuple[int, int, int, int, int]]`, *optional*): - A list of tuples in the form of `(start_row, end_row, start_column, end_column, seed)` defining regions in pixel space for which the latents will be overridden using the given seed. Takes priority over `seed_tiles`. - **kwargs (`Dict[str, Any]`, *optional*): - Additional optional keyword arguments to be passed to the `unet.__call__` and `scheduler.step` functions. - - Examples: - - Returns: - [`~pipelines.stable_diffusion_xl.StableDiffusionXLTilingPipelineOutput`] or `tuple`: - [`~pipelines.stable_diffusion_xl.StableDiffusionXLTilingPipelineOutput`] if `return_dict` is True, otherwise a - `tuple`. When returning a tuple, the first element is a list with the generated images. - """ - - # 0. Default height and width to unet - height = height or self.default_sample_size * self.vae_scale_factor - width = width or self.default_sample_size * self.vae_scale_factor - - original_size = original_size or (height, width) - target_size = target_size or (height, width) - negative_original_size = negative_original_size or (height, width) - negative_target_size = negative_target_size or (height, width) - - self._guidance_scale = guidance_scale - self._clip_skip = clip_skip - self._cross_attention_kwargs = cross_attention_kwargs - self._interrupt = False - - grid_rows = len(prompt) - grid_cols = len(prompt[0]) - - tiles_mode = [mode.value for mode in self.SeedTilesMode] - - if isinstance(seed_tiles_mode, str): - seed_tiles_mode = [[seed_tiles_mode for _ in range(len(row))] for row in prompt] - - # 1. Check inputs. Raise error if not correct - self.check_inputs( - prompt, - height, - width, - grid_cols, - seed_tiles_mode, - tiles_mode, - ) - - if seed_reroll_regions is None: - seed_reroll_regions = [] - - batch_size = 1 - - device = self._execution_device - - # update crops coords list - crops_coords_top_left = _get_crops_coords_list(grid_rows, grid_cols, tile_width) - if negative_original_size is not None and negative_target_size is not None: - negative_crops_coords_top_left = _get_crops_coords_list(grid_rows, grid_cols, tile_width) - - # update height and width tile size and tile overlap size - height = tile_height + (grid_rows - 1) * (tile_height - tile_row_overlap) - width = tile_width + (grid_cols - 1) * (tile_width - tile_col_overlap) - - # 3. Encode input prompt - lora_scale = ( - self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None - ) - text_embeddings = [ - [ - self.encode_prompt( - prompt=col, - device=device, - num_images_per_prompt=num_images_per_prompt, - do_classifier_free_guidance=self.do_classifier_free_guidance, - negative_prompt=negative_prompt, - prompt_embeds=None, - negative_prompt_embeds=None, - pooled_prompt_embeds=None, - negative_pooled_prompt_embeds=None, - lora_scale=lora_scale, - clip_skip=self.clip_skip, - ) - for col in row - ] - for row in prompt - ] - - # 3. Prepare latents - latents_shape = (batch_size, self.unet.config.in_channels, height // 8, width // 8) - dtype = text_embeddings[0][0][0].dtype - latents = randn_tensor(latents_shape, generator=generator, device=device, dtype=dtype) - - # 3.1 overwrite latents for specific tiles if provided - if seed_tiles is not None: - for row in range(grid_rows): - for col in range(grid_cols): - if (seed_tile := seed_tiles[row][col]) is not None: - mode = seed_tiles_mode[row][col] - if mode == self.SeedTilesMode.FULL.value: - row_init, row_end, col_init, col_end = _tile2latent_indices( - row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap - ) - else: - row_init, row_end, col_init, col_end = _tile2latent_exclusive_indices( - row, - col, - tile_width, - tile_height, - tile_row_overlap, - tile_col_overlap, - grid_rows, - grid_cols, - ) - tile_generator = torch.Generator(device).manual_seed(seed_tile) - tile_shape = (latents_shape[0], latents_shape[1], row_end - row_init, col_end - col_init) - latents[:, :, row_init:row_end, col_init:col_end] = torch.randn( - tile_shape, generator=tile_generator, device=device - ) - - # 3.2 overwrite again for seed reroll regions - for row_init, row_end, col_init, col_end, seed_reroll in seed_reroll_regions: - row_init, row_end, col_init, col_end = _pixel2latent_indices( - row_init, row_end, col_init, col_end - ) # to latent space coordinates - reroll_generator = torch.Generator(device).manual_seed(seed_reroll) - region_shape = (latents_shape[0], latents_shape[1], row_end - row_init, col_end - col_init) - latents[:, :, row_init:row_end, col_init:col_end] = torch.randn( - region_shape, generator=reroll_generator, device=device - ) - - # 4. Prepare timesteps - accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) - extra_set_kwargs = {} - if accepts_offset: - extra_set_kwargs["offset"] = 1 - timesteps, num_inference_steps = retrieve_timesteps( - self.scheduler, num_inference_steps, device, None, None, **extra_set_kwargs - ) - - # if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas - if isinstance(self.scheduler, LMSDiscreteScheduler): - latents = latents * self.scheduler.sigmas[0] - - # 5. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline - extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) - - # 6. Prepare added time ids & embeddings - # text_embeddings order: prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds - embeddings_and_added_time = [] - for row in range(grid_rows): - addition_embed_type_row = [] - for col in range(grid_cols): - # extract generated values - prompt_embeds = text_embeddings[row][col][0] - negative_prompt_embeds = text_embeddings[row][col][1] - pooled_prompt_embeds = text_embeddings[row][col][2] - negative_pooled_prompt_embeds = text_embeddings[row][col][3] - - add_text_embeds = pooled_prompt_embeds - if self.text_encoder_2 is None: - text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) - else: - text_encoder_projection_dim = self.text_encoder_2.config.projection_dim - add_time_ids = self._get_add_time_ids( - original_size, - crops_coords_top_left[row][col], - target_size, - dtype=prompt_embeds.dtype, - text_encoder_projection_dim=text_encoder_projection_dim, - ) - if negative_original_size is not None and negative_target_size is not None: - negative_add_time_ids = self._get_add_time_ids( - negative_original_size, - negative_crops_coords_top_left[row][col], - negative_target_size, - dtype=prompt_embeds.dtype, - text_encoder_projection_dim=text_encoder_projection_dim, - ) - else: - negative_add_time_ids = add_time_ids - - if self.do_classifier_free_guidance: - prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) - add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) - add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) - - prompt_embeds = prompt_embeds.to(device) - add_text_embeds = add_text_embeds.to(device) - add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) - addition_embed_type_row.append((prompt_embeds, add_text_embeds, add_time_ids)) - embeddings_and_added_time.append(addition_embed_type_row) - - num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) - - # 7. Mask for tile weights strength - tile_weights = self._gaussian_weights(tile_width, tile_height, batch_size, device, torch.float32) - - # 8. Denoising loop - self._num_timesteps = len(timesteps) - with self.progress_bar(total=num_inference_steps) as progress_bar: - for i, t in enumerate(timesteps): - # Diffuse each tile - noise_preds = [] - for row in range(grid_rows): - noise_preds_row = [] - for col in range(grid_cols): - if self.interrupt: - continue - px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices( - row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap - ) - tile_latents = latents[:, :, px_row_init:px_row_end, px_col_init:px_col_end] - # expand the latents if we are doing classifier free guidance - latent_model_input = ( - torch.cat([tile_latents] * 2) if self.do_classifier_free_guidance else tile_latents - ) - latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) - - # predict the noise residual - added_cond_kwargs = { - "text_embeds": embeddings_and_added_time[row][col][1], - "time_ids": embeddings_and_added_time[row][col][2], - } - with torch.amp.autocast(device.type, dtype=dtype, enabled=dtype != self.unet.dtype): - noise_pred = self.unet( - latent_model_input, - t, - encoder_hidden_states=embeddings_and_added_time[row][col][0], - cross_attention_kwargs=self.cross_attention_kwargs, - added_cond_kwargs=added_cond_kwargs, - return_dict=False, - )[0] - - # perform guidance - if self.do_classifier_free_guidance: - noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) - guidance = ( - guidance_scale - if guidance_scale_tiles is None or guidance_scale_tiles[row][col] is None - else guidance_scale_tiles[row][col] - ) - noise_pred_tile = noise_pred_uncond + guidance * (noise_pred_text - noise_pred_uncond) - noise_preds_row.append(noise_pred_tile) - noise_preds.append(noise_preds_row) - - # Stitch noise predictions for all tiles - noise_pred = torch.zeros(latents.shape, device=device) - contributors = torch.zeros(latents.shape, device=device) - - # Add each tile contribution to overall latents - for row in range(grid_rows): - for col in range(grid_cols): - px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices( - row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap - ) - noise_pred[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += ( - noise_preds[row][col] * tile_weights - ) - contributors[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += tile_weights - - # Average overlapping areas with more than 1 contributor - noise_pred /= contributors - noise_pred = noise_pred.to(dtype) - - # compute the previous noisy sample x_t -> x_t-1 - latents_dtype = latents.dtype - latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] - if latents.dtype != latents_dtype: - if torch.backends.mps.is_available(): - # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 - latents = latents.to(latents_dtype) - - # update progress bar - if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): - progress_bar.update() - - if XLA_AVAILABLE: - xm.mark_step() - - if not output_type == "latent": - # make sure the VAE is in float32 mode, as it overflows in float16 - needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast - - if needs_upcasting: - self.upcast_vae() - latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) - elif latents.dtype != self.vae.dtype: - if torch.backends.mps.is_available(): - # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 - self.vae = self.vae.to(latents.dtype) - - # unscale/denormalize the latents - # denormalize with the mean and std if available and not None - has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None - has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None - if has_latents_mean and has_latents_std: - latents_mean = ( - torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) - ) - latents_std = ( - torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) - ) - latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean - else: - latents = latents / self.vae.config.scaling_factor - - image = self.vae.decode(latents, return_dict=False)[0] - - # cast back to fp16 if needed - if needs_upcasting: - self.vae.to(dtype=torch.float16) - else: - image = latents - - if not output_type == "latent": - # apply watermark if available - if self.watermark is not None: - image = self.watermark.apply_watermark(image) - - image = self.image_processor.postprocess(image, output_type=output_type) - - # Offload all models - self.maybe_free_model_hooks() - - if not return_dict: - return (image,) - - return StableDiffusionXLPipelineOutput(images=image) +# Copyright 2025 The DEVAIEXP Team and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import inspect +from enum import Enum +from typing import Any, Dict, List, Optional, Tuple, Union + +import torch +from transformers import ( + CLIPTextModel, + CLIPTextModelWithProjection, + CLIPTokenizer, +) + +from diffusers.image_processor import VaeImageProcessor +from diffusers.loaders import ( + FromSingleFileMixin, + StableDiffusionXLLoraLoaderMixin, + TextualInversionLoaderMixin, +) +from diffusers.models import AutoencoderKL, UNet2DConditionModel +from diffusers.models.lora import adjust_lora_scale_text_encoder +from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput +from diffusers.schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler +from diffusers.utils import ( + USE_PEFT_BACKEND, + deprecate, + is_invisible_watermark_available, + is_torch_xla_available, + logging, + replace_example_docstring, + scale_lora_layers, + unscale_lora_layers, +) +from diffusers.utils.torch_utils import randn_tensor + + +try: + from ligo.segments import segment +except ImportError: + raise ImportError("Please install transformers and ligo-segments to use the mixture pipeline") + +if is_invisible_watermark_available(): + from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker + +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> import torch + >>> from diffusers import StableDiffusionXLPipeline + + >>> pipe = StableDiffusionXLPipeline.from_pretrained( + ... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 + ... ) + >>> pipe = pipe.to("cuda") + + >>> prompt = "a photo of an astronaut riding a horse on mars" + >>> image = pipe(prompt).images[0] + ``` +""" + + +def _tile2pixel_indices(tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap): + """Given a tile row and column numbers returns the range of pixels affected by that tiles in the overall image + + Returns a tuple with: + - Starting coordinates of rows in pixel space + - Ending coordinates of rows in pixel space + - Starting coordinates of columns in pixel space + - Ending coordinates of columns in pixel space + """ + px_row_init = 0 if tile_row == 0 else tile_row * (tile_height - tile_row_overlap) + px_row_end = px_row_init + tile_height + px_col_init = 0 if tile_col == 0 else tile_col * (tile_width - tile_col_overlap) + px_col_end = px_col_init + tile_width + return px_row_init, px_row_end, px_col_init, px_col_end + + +def _pixel2latent_indices(px_row_init, px_row_end, px_col_init, px_col_end): + """Translates coordinates in pixel space to coordinates in latent space""" + return px_row_init // 8, px_row_end // 8, px_col_init // 8, px_col_end // 8 + + +def _tile2latent_indices(tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap): + """Given a tile row and column numbers returns the range of latents affected by that tiles in the overall image + + Returns a tuple with: + - Starting coordinates of rows in latent space + - Ending coordinates of rows in latent space + - Starting coordinates of columns in latent space + - Ending coordinates of columns in latent space + """ + px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices( + tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap + ) + return _pixel2latent_indices(px_row_init, px_row_end, px_col_init, px_col_end) + + +def _tile2latent_exclusive_indices( + tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, rows, columns +): + """Given a tile row and column numbers returns the range of latents affected only by that tile in the overall image + + Returns a tuple with: + - Starting coordinates of rows in latent space + - Ending coordinates of rows in latent space + - Starting coordinates of columns in latent space + - Ending coordinates of columns in latent space + """ + row_init, row_end, col_init, col_end = _tile2latent_indices( + tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap + ) + row_segment = segment(row_init, row_end) + col_segment = segment(col_init, col_end) + # Iterate over the rest of tiles, clipping the region for the current tile + for row in range(rows): + for column in range(columns): + if row != tile_row and column != tile_col: + clip_row_init, clip_row_end, clip_col_init, clip_col_end = _tile2latent_indices( + row, column, tile_width, tile_height, tile_row_overlap, tile_col_overlap + ) + row_segment = row_segment - segment(clip_row_init, clip_row_end) + col_segment = col_segment - segment(clip_col_init, clip_col_end) + # return row_init, row_end, col_init, col_end + return row_segment[0], row_segment[1], col_segment[0], col_segment[1] + + +def _get_crops_coords_list(num_rows, num_cols, output_width): + """ + Generates a list of lists of `crops_coords_top_left` tuples for focusing on + different horizontal parts of an image, and repeats this list for the specified + number of rows in the output structure. + + This function calculates `crops_coords_top_left` tuples to create horizontal + focus variations (like left, center, right focus) based on `output_width` + and `num_cols` (which represents the number of horizontal focus points/columns). + It then repeats the *list* of these horizontal focus tuples `num_rows` times to + create the final list of lists output structure. + + Args: + num_rows (int): The desired number of rows in the output list of lists. + This determines how many times the list of horizontal + focus variations will be repeated. + num_cols (int): The number of horizontal focus points (columns) to generate. + This determines how many horizontal focus variations are + created based on dividing the `output_width`. + output_width (int): The desired width of the output image. + + Returns: + list[list[tuple[int, int]]]: A list of lists of tuples. Each inner list + contains `num_cols` tuples of `(ctop, cleft)`, + representing horizontal focus points. The outer list + contains `num_rows` such inner lists. + """ + crops_coords_list = [] + if num_cols <= 0: + crops_coords_list = [] + elif num_cols == 1: + crops_coords_list = [(0, 0)] + else: + section_width = output_width / num_cols + for i in range(num_cols): + cleft = int(round(i * section_width)) + crops_coords_list.append((0, cleft)) + + result_list = [] + for _ in range(num_rows): + result_list.append(list(crops_coords_list)) + + return result_list + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg +def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): + r""" + Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on + Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are + Flawed](https://huggingface.co/papers/2305.08891). + + Args: + noise_cfg (`torch.Tensor`): + The predicted noise tensor for the guided diffusion process. + noise_pred_text (`torch.Tensor`): + The predicted noise tensor for the text-guided diffusion process. + guidance_rescale (`float`, *optional*, defaults to 0.0): + A rescale factor applied to the noise predictions. + + Returns: + noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor. + """ + std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) + std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) + # rescale the results from guidance (fixes overexposure) + noise_pred_rescaled = noise_cfg * (std_text / std_cfg) + # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images + noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg + return noise_cfg + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, + sigmas: Optional[List[float]] = None, + **kwargs, +): + r""" + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` + must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, + `num_inference_steps` and `sigmas` must be `None`. + sigmas (`List[float]`, *optional*): + Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, + `num_inference_steps` and `timesteps` must be `None`. + + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + + if timesteps is not None and sigmas is not None: + raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") + if timesteps is not None: + accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" sigmas schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + + +class StableDiffusionXLTilingPipeline( + DiffusionPipeline, + StableDiffusionMixin, + FromSingleFileMixin, + StableDiffusionXLLoraLoaderMixin, + TextualInversionLoaderMixin, +): + r""" + Pipeline for text-to-image generation using Stable Diffusion XL. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the + library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) + + The pipeline also inherits the following loading methods: + - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings + - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files + - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights + - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights + + Args: + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. + text_encoder ([`CLIPTextModel`]): + Frozen text-encoder. Stable Diffusion XL uses the text portion of + [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically + the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. + text_encoder_2 ([` CLIPTextModelWithProjection`]): + Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of + [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), + specifically the + [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) + variant. + tokenizer (`CLIPTokenizer`): + Tokenizer of class + [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). + tokenizer_2 (`CLIPTokenizer`): + Second Tokenizer of class + [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). + unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of + [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. + force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): + Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of + `stabilityai/stable-diffusion-xl-base-1-0`. + add_watermarker (`bool`, *optional*): + Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to + watermark output images. If not defined, it will default to True if the package is installed, otherwise no + watermarker will be used. + """ + + model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae" + _optional_components = [ + "tokenizer", + "tokenizer_2", + "text_encoder", + "text_encoder_2", + ] + + def __init__( + self, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + text_encoder_2: CLIPTextModelWithProjection, + tokenizer: CLIPTokenizer, + tokenizer_2: CLIPTokenizer, + unet: UNet2DConditionModel, + scheduler: KarrasDiffusionSchedulers, + force_zeros_for_empty_prompt: bool = True, + add_watermarker: Optional[bool] = None, + ): + super().__init__() + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + text_encoder_2=text_encoder_2, + tokenizer=tokenizer, + tokenizer_2=tokenizer_2, + unet=unet, + scheduler=scheduler, + ) + self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + + self.default_sample_size = ( + self.unet.config.sample_size + if hasattr(self, "unet") and self.unet is not None and hasattr(self.unet.config, "sample_size") + else 128 + ) + + add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() + + if add_watermarker: + self.watermark = StableDiffusionXLWatermarker() + else: + self.watermark = None + + class SeedTilesMode(Enum): + """Modes in which the latents of a particular tile can be re-seeded""" + + FULL = "full" + EXCLUSIVE = "exclusive" + + def encode_prompt( + self, + prompt: str, + prompt_2: Optional[str] = None, + device: Optional[torch.device] = None, + num_images_per_prompt: int = 1, + do_classifier_free_guidance: bool = True, + negative_prompt: Optional[str] = None, + negative_prompt_2: Optional[str] = None, + prompt_embeds: Optional[torch.Tensor] = None, + negative_prompt_embeds: Optional[torch.Tensor] = None, + pooled_prompt_embeds: Optional[torch.Tensor] = None, + negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, + lora_scale: Optional[float] = None, + clip_skip: Optional[int] = None, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + used in both text-encoders + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + do_classifier_free_guidance (`bool`): + whether to use classifier free guidance or not + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + negative_prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and + `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders + prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + pooled_prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + If not provided, pooled text embeddings will be generated from `prompt` input argument. + negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` + input argument. + lora_scale (`float`, *optional*): + A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + clip_skip (`int`, *optional*): + Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that + the output of the pre-final layer will be used for computing the prompt embeddings. + """ + device = device or self._execution_device + + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): + self._lora_scale = lora_scale + + # dynamically adjust the LoRA scale + if self.text_encoder is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + + if self.text_encoder_2 is not None: + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) + else: + scale_lora_layers(self.text_encoder_2, lora_scale) + + prompt = [prompt] if isinstance(prompt, str) else prompt + + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + # Define tokenizers and text encoders + tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] + text_encoders = ( + [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] + ) + + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + + # textual inversion: process multi-vector tokens if necessary + prompt_embeds_list = [] + prompts = [prompt, prompt_2] + for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, tokenizer) + + text_inputs = tokenizer( + prompt, + padding="max_length", + max_length=tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + + text_input_ids = text_inputs.input_ids + untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( + text_input_ids, untruncated_ids + ): + removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {tokenizer.model_max_length} tokens: {removed_text}" + ) + + prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) + + # We are only ALWAYS interested in the pooled output of the final text encoder + if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2: + pooled_prompt_embeds = prompt_embeds[0] + + if clip_skip is None: + prompt_embeds = prompt_embeds.hidden_states[-2] + else: + # "2" because SDXL always indexes from the penultimate layer. + prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] + + prompt_embeds_list.append(prompt_embeds) + + prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) + + # get unconditional embeddings for classifier free guidance + zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt + if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: + negative_prompt_embeds = torch.zeros_like(prompt_embeds) + negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) + elif do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or "" + negative_prompt_2 = negative_prompt_2 or negative_prompt + + # normalize str to list + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + negative_prompt_2 = ( + batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 + ) + + uncond_tokens: List[str] + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + else: + uncond_tokens = [negative_prompt, negative_prompt_2] + + negative_prompt_embeds_list = [] + for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): + if isinstance(self, TextualInversionLoaderMixin): + negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) + + max_length = prompt_embeds.shape[1] + uncond_input = tokenizer( + negative_prompt, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + + negative_prompt_embeds = text_encoder( + uncond_input.input_ids.to(device), + output_hidden_states=True, + ) + + # We are only ALWAYS interested in the pooled output of the final text encoder + if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2: + negative_pooled_prompt_embeds = negative_prompt_embeds[0] + negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] + + negative_prompt_embeds_list.append(negative_prompt_embeds) + + negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) + + if self.text_encoder_2 is not None: + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) + + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + + if self.text_encoder_2 is not None: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) + else: + negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) + + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( + bs_embed * num_images_per_prompt, -1 + ) + if do_classifier_free_guidance: + negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( + bs_embed * num_images_per_prompt, -1 + ) + + if self.text_encoder is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder, lora_scale) + + if self.text_encoder_2 is not None: + if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder_2, lora_scale) + + return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs(self, prompt, height, width, grid_cols, seed_tiles_mode, tiles_mode): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") + + if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + + if not isinstance(prompt, list) or not all(isinstance(row, list) for row in prompt): + raise ValueError(f"`prompt` has to be a list of lists but is {type(prompt)}") + + if not all(len(row) == grid_cols for row in prompt): + raise ValueError("All prompt rows must have the same number of prompt columns") + + if not isinstance(seed_tiles_mode, str) and ( + not isinstance(seed_tiles_mode, list) or not all(isinstance(row, list) for row in seed_tiles_mode) + ): + raise ValueError(f"`seed_tiles_mode` has to be a string or list of lists but is {type(prompt)}") + + if any(mode not in tiles_mode for row in seed_tiles_mode for mode in row): + raise ValueError(f"Seed tiles mode must be one of {tiles_mode}") + + def _get_add_time_ids( + self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None + ): + add_time_ids = list(original_size + crops_coords_top_left + target_size) + + passed_add_embed_dim = ( + self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim + ) + expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features + + if expected_add_embed_dim != passed_add_embed_dim: + raise ValueError( + f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." + ) + + add_time_ids = torch.tensor([add_time_ids], dtype=dtype) + return add_time_ids + + def _gaussian_weights(self, tile_width, tile_height, nbatches, device, dtype): + """Generates a gaussian mask of weights for tile contributions""" + import numpy as np + from numpy import exp, pi, sqrt + + latent_width = tile_width // 8 + latent_height = tile_height // 8 + + var = 0.01 + midpoint = (latent_width - 1) / 2 # -1 because index goes from 0 to latent_width - 1 + x_probs = [ + exp(-(x - midpoint) * (x - midpoint) / (latent_width * latent_width) / (2 * var)) / sqrt(2 * pi * var) + for x in range(latent_width) + ] + midpoint = latent_height / 2 + y_probs = [ + exp(-(y - midpoint) * (y - midpoint) / (latent_height * latent_height) / (2 * var)) / sqrt(2 * pi * var) + for y in range(latent_height) + ] + + weights_np = np.outer(y_probs, x_probs) + weights_torch = torch.tensor(weights_np, device=device) + weights_torch = weights_torch.to(dtype) + return torch.tile(weights_torch, (nbatches, self.unet.config.in_channels, 1, 1)) + + def upcast_vae(self): + deprecate("`upcast_vae` is deprecated") + + # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding + def get_guidance_scale_embedding( + self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 + ) -> torch.Tensor: + """ + See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 + + Args: + w (`torch.Tensor`): + Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. + embedding_dim (`int`, *optional*, defaults to 512): + Dimension of the embeddings to generate. + dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): + Data type of the generated embeddings. + + Returns: + `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. + """ + assert len(w.shape) == 1 + w = w * 1000.0 + + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: # zero pad + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 50, + guidance_scale: float = 5.0, + negative_prompt: Optional[Union[str, List[str]]] = None, + num_images_per_prompt: Optional[int] = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + original_size: Optional[Tuple[int, int]] = None, + crops_coords_top_left: Optional[List[List[Tuple[int, int]]]] = None, + target_size: Optional[Tuple[int, int]] = None, + negative_original_size: Optional[Tuple[int, int]] = None, + negative_crops_coords_top_left: Optional[List[List[Tuple[int, int]]]] = None, + negative_target_size: Optional[Tuple[int, int]] = None, + clip_skip: Optional[int] = None, + tile_height: Optional[int] = 1024, + tile_width: Optional[int] = 1024, + tile_row_overlap: Optional[int] = 128, + tile_col_overlap: Optional[int] = 128, + guidance_scale_tiles: Optional[List[List[float]]] = None, + seed_tiles: Optional[List[List[int]]] = None, + seed_tiles_mode: Optional[Union[str, List[List[str]]]] = "full", + seed_reroll_regions: Optional[List[Tuple[int, int, int, int, int]]] = None, + **kwargs, + ): + r""" + Function invoked when calling the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. + instead. + height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The height in pixels of the generated image. This is set to 1024 by default for the best results. + Anything below 512 pixels won't work well for + [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) + and checkpoints that are not specifically fine-tuned on low resolutions. + width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The width in pixels of the generated image. This is set to 1024 by default for the best results. + Anything below 512 pixels won't work well for + [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) + and checkpoints that are not specifically fine-tuned on low resolutions. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + guidance_scale (`float`, *optional*, defaults to 5.0): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598). + `guidance_scale` is defined as `w` of equation 2. of [Imagen + Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale > + 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, + usually at the expense of lower image quality. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to + [`schedulers.DDIMScheduler`], will be ignored for others. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead + of a plain tuple. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. + `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as + explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + crops_coords_top_left (`List[List[Tuple[int, int]]]`, *optional*, defaults to (0, 0)): + `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position + `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting + `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + For most cases, `target_size` should be set to the desired height and width of the generated image. If + not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in + section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). + negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + To negatively condition the generation process based on a specific image resolution. Part of SDXL's + micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more + information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. + negative_crops_coords_top_left (`List[List[Tuple[int, int]]]`, *optional*, defaults to (0, 0)): + To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's + micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more + information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. + negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): + To negatively condition the generation process based on a target image resolution. It should be as same + as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of + [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more + information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. + tile_height (`int`, *optional*, defaults to 1024): + Height of each grid tile in pixels. + tile_width (`int`, *optional*, defaults to 1024): + Width of each grid tile in pixels. + tile_row_overlap (`int`, *optional*, defaults to 128): + Number of overlapping pixels between tiles in consecutive rows. + tile_col_overlap (`int`, *optional*, defaults to 128): + Number of overlapping pixels between tiles in consecutive columns. + guidance_scale_tiles (`List[List[float]]`, *optional*): + Specific weights for classifier-free guidance in each tile. If `None`, the value provided in `guidance_scale` will be used. + seed_tiles (`List[List[int]]`, *optional*): + Specific seeds for the initialization latents in each tile. These will override the latents generated for the whole canvas using the standard `generator` parameter. + seed_tiles_mode (`Union[str, List[List[str]]]`, *optional*, defaults to `"full"`): + Mode for seeding tiles, can be `"full"` or `"exclusive"`. If `"full"`, all the latents affected by the tile will be overridden. If `"exclusive"`, only the latents that are exclusively affected by this tile (and no other tiles) will be overridden. + seed_reroll_regions (`List[Tuple[int, int, int, int, int]]`, *optional*): + A list of tuples in the form of `(start_row, end_row, start_column, end_column, seed)` defining regions in pixel space for which the latents will be overridden using the given seed. Takes priority over `seed_tiles`. + **kwargs (`Dict[str, Any]`, *optional*): + Additional optional keyword arguments to be passed to the `unet.__call__` and `scheduler.step` functions. + + Examples: + + Returns: + [`~pipelines.stable_diffusion_xl.StableDiffusionXLTilingPipelineOutput`] or `tuple`: + [`~pipelines.stable_diffusion_xl.StableDiffusionXLTilingPipelineOutput`] if `return_dict` is True, otherwise a + `tuple`. When returning a tuple, the first element is a list with the generated images. + """ + + # 0. Default height and width to unet + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + + original_size = original_size or (height, width) + target_size = target_size or (height, width) + negative_original_size = negative_original_size or (height, width) + negative_target_size = negative_target_size or (height, width) + + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + self._interrupt = False + + grid_rows = len(prompt) + grid_cols = len(prompt[0]) + + tiles_mode = [mode.value for mode in self.SeedTilesMode] + + if isinstance(seed_tiles_mode, str): + seed_tiles_mode = [[seed_tiles_mode for _ in range(len(row))] for row in prompt] + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + height, + width, + grid_cols, + seed_tiles_mode, + tiles_mode, + ) + + if seed_reroll_regions is None: + seed_reroll_regions = [] + + batch_size = 1 + + device = self._execution_device + + # update crops coords list + crops_coords_top_left = _get_crops_coords_list(grid_rows, grid_cols, tile_width) + if negative_original_size is not None and negative_target_size is not None: + negative_crops_coords_top_left = _get_crops_coords_list(grid_rows, grid_cols, tile_width) + + # update height and width tile size and tile overlap size + height = tile_height + (grid_rows - 1) * (tile_height - tile_row_overlap) + width = tile_width + (grid_cols - 1) * (tile_width - tile_col_overlap) + + # 3. Encode input prompt + lora_scale = ( + self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None + ) + text_embeddings = [ + [ + self.encode_prompt( + prompt=col, + device=device, + num_images_per_prompt=num_images_per_prompt, + do_classifier_free_guidance=self.do_classifier_free_guidance, + negative_prompt=negative_prompt, + prompt_embeds=None, + negative_prompt_embeds=None, + pooled_prompt_embeds=None, + negative_pooled_prompt_embeds=None, + lora_scale=lora_scale, + clip_skip=self.clip_skip, + ) + for col in row + ] + for row in prompt + ] + + # 3. Prepare latents + latents_shape = (batch_size, self.unet.config.in_channels, height // 8, width // 8) + dtype = text_embeddings[0][0][0].dtype + latents = randn_tensor(latents_shape, generator=generator, device=device, dtype=dtype) + + # 3.1 overwrite latents for specific tiles if provided + if seed_tiles is not None: + for row in range(grid_rows): + for col in range(grid_cols): + if (seed_tile := seed_tiles[row][col]) is not None: + mode = seed_tiles_mode[row][col] + if mode == self.SeedTilesMode.FULL.value: + row_init, row_end, col_init, col_end = _tile2latent_indices( + row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap + ) + else: + row_init, row_end, col_init, col_end = _tile2latent_exclusive_indices( + row, + col, + tile_width, + tile_height, + tile_row_overlap, + tile_col_overlap, + grid_rows, + grid_cols, + ) + tile_generator = torch.Generator(device).manual_seed(seed_tile) + tile_shape = (latents_shape[0], latents_shape[1], row_end - row_init, col_end - col_init) + latents[:, :, row_init:row_end, col_init:col_end] = torch.randn( + tile_shape, generator=tile_generator, device=device + ) + + # 3.2 overwrite again for seed reroll regions + for row_init, row_end, col_init, col_end, seed_reroll in seed_reroll_regions: + row_init, row_end, col_init, col_end = _pixel2latent_indices( + row_init, row_end, col_init, col_end + ) # to latent space coordinates + reroll_generator = torch.Generator(device).manual_seed(seed_reroll) + region_shape = (latents_shape[0], latents_shape[1], row_end - row_init, col_end - col_init) + latents[:, :, row_init:row_end, col_init:col_end] = torch.randn( + region_shape, generator=reroll_generator, device=device + ) + + # 4. Prepare timesteps + accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) + extra_set_kwargs = {} + if accepts_offset: + extra_set_kwargs["offset"] = 1 + timesteps, num_inference_steps = retrieve_timesteps( + self.scheduler, num_inference_steps, device, None, None, **extra_set_kwargs + ) + + # if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas + if isinstance(self.scheduler, LMSDiscreteScheduler): + latents = latents * self.scheduler.sigmas[0] + + # 5. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 6. Prepare added time ids & embeddings + # text_embeddings order: prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds + embeddings_and_added_time = [] + for row in range(grid_rows): + addition_embed_type_row = [] + for col in range(grid_cols): + # extract generated values + prompt_embeds = text_embeddings[row][col][0] + negative_prompt_embeds = text_embeddings[row][col][1] + pooled_prompt_embeds = text_embeddings[row][col][2] + negative_pooled_prompt_embeds = text_embeddings[row][col][3] + + add_text_embeds = pooled_prompt_embeds + if self.text_encoder_2 is None: + text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) + else: + text_encoder_projection_dim = self.text_encoder_2.config.projection_dim + add_time_ids = self._get_add_time_ids( + original_size, + crops_coords_top_left[row][col], + target_size, + dtype=prompt_embeds.dtype, + text_encoder_projection_dim=text_encoder_projection_dim, + ) + if negative_original_size is not None and negative_target_size is not None: + negative_add_time_ids = self._get_add_time_ids( + negative_original_size, + negative_crops_coords_top_left[row][col], + negative_target_size, + dtype=prompt_embeds.dtype, + text_encoder_projection_dim=text_encoder_projection_dim, + ) + else: + negative_add_time_ids = add_time_ids + + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) + add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) + + prompt_embeds = prompt_embeds.to(device) + add_text_embeds = add_text_embeds.to(device) + add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) + addition_embed_type_row.append((prompt_embeds, add_text_embeds, add_time_ids)) + embeddings_and_added_time.append(addition_embed_type_row) + + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + + # 7. Mask for tile weights strength + tile_weights = self._gaussian_weights(tile_width, tile_height, batch_size, device, torch.float32) + + # 8. Denoising loop + self._num_timesteps = len(timesteps) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + # Diffuse each tile + noise_preds = [] + for row in range(grid_rows): + noise_preds_row = [] + for col in range(grid_cols): + if self.interrupt: + continue + px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices( + row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap + ) + tile_latents = latents[:, :, px_row_init:px_row_end, px_col_init:px_col_end] + # expand the latents if we are doing classifier free guidance + latent_model_input = ( + torch.cat([tile_latents] * 2) if self.do_classifier_free_guidance else tile_latents + ) + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + # predict the noise residual + added_cond_kwargs = { + "text_embeds": embeddings_and_added_time[row][col][1], + "time_ids": embeddings_and_added_time[row][col][2], + } + with torch.amp.autocast(device.type, dtype=dtype, enabled=dtype != self.unet.dtype): + noise_pred = self.unet( + latent_model_input, + t, + encoder_hidden_states=embeddings_and_added_time[row][col][0], + cross_attention_kwargs=self.cross_attention_kwargs, + added_cond_kwargs=added_cond_kwargs, + return_dict=False, + )[0] + + # perform guidance + if self.do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + guidance = ( + guidance_scale + if guidance_scale_tiles is None or guidance_scale_tiles[row][col] is None + else guidance_scale_tiles[row][col] + ) + noise_pred_tile = noise_pred_uncond + guidance * (noise_pred_text - noise_pred_uncond) + noise_preds_row.append(noise_pred_tile) + noise_preds.append(noise_preds_row) + + # Stitch noise predictions for all tiles + noise_pred = torch.zeros(latents.shape, device=device) + contributors = torch.zeros(latents.shape, device=device) + + # Add each tile contribution to overall latents + for row in range(grid_rows): + for col in range(grid_cols): + px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices( + row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap + ) + noise_pred[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += ( + noise_preds[row][col] * tile_weights + ) + contributors[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += tile_weights + + # Average overlapping areas with more than 1 contributor + noise_pred /= contributors + noise_pred = noise_pred.to(dtype) + + # compute the previous noisy sample x_t -> x_t-1 + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 + latents = latents.to(latents_dtype) + + # update progress bar + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + + if XLA_AVAILABLE: + xm.mark_step() + + if not output_type == "latent": + # make sure the VAE is in float32 mode, as it overflows in float16 + needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast + + if needs_upcasting: + self.vae.to(torch.float32) + latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) + elif latents.dtype != self.vae.dtype: + if torch.backends.mps.is_available(): + # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 + self.vae = self.vae.to(latents.dtype) + + # unscale/denormalize the latents + # denormalize with the mean and std if available and not None + has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None + has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None + if has_latents_mean and has_latents_std: + latents_mean = ( + torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) + ) + latents_std = ( + torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) + ) + latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean + else: + latents = latents / self.vae.config.scaling_factor + + image = self.vae.decode(latents, return_dict=False)[0] + + # cast back to fp16 if needed + if needs_upcasting: + self.vae.to(dtype=torch.float16) + else: + image = latents + + if not output_type == "latent": + # apply watermark if available + if self.watermark is not None: + image = self.watermark.apply_watermark(image) + + image = self.image_processor.postprocess(image, output_type=output_type) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image,) + + return StableDiffusionXLPipelineOutput(images=image) diff --git a/examples/community/mod_controlnet_tile_sr_sdxl.py b/examples/community/mod_controlnet_tile_sr_sdxl.py index 27249ce3fb5e..686ea7502f59 100644 --- a/examples/community/mod_controlnet_tile_sr_sdxl.py +++ b/examples/community/mod_controlnet_tile_sr_sdxl.py @@ -39,16 +39,13 @@ MultiControlNetModel, UNet2DConditionModel, ) -from diffusers.models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput from diffusers.schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler from diffusers.utils import ( USE_PEFT_BACKEND, + deprecate, logging, replace_example_docstring, scale_lora_layers, @@ -1222,21 +1219,7 @@ def prepare_tiles( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") @property def guidance_scale(self): @@ -1820,7 +1803,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) # unscale/denormalize the latents diff --git a/examples/community/pipeline_controlnet_xl_kolors.py b/examples/community/pipeline_controlnet_xl_kolors.py index dc90aacdbc6b..71b26490bd60 100644 --- a/examples/community/pipeline_controlnet_xl_kolors.py +++ b/examples/community/pipeline_controlnet_xl_kolors.py @@ -40,10 +40,6 @@ MultiControlNetModel, UNet2DConditionModel, ) -from diffusers.models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput @@ -760,21 +756,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") @property def guidance_scale(self): @@ -1331,7 +1313,7 @@ def _cn_patch_forward(*args, **kwargs): needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) latents = latents / self.vae.config.scaling_factor diff --git a/examples/community/pipeline_controlnet_xl_kolors_img2img.py b/examples/community/pipeline_controlnet_xl_kolors_img2img.py index 189d0312143f..a9199dd2c5b1 100644 --- a/examples/community/pipeline_controlnet_xl_kolors_img2img.py +++ b/examples/community/pipeline_controlnet_xl_kolors_img2img.py @@ -40,10 +40,6 @@ MultiControlNetModel, UNet2DConditionModel, ) -from diffusers.models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput @@ -930,21 +926,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") @property def guidance_scale(self): @@ -1533,7 +1515,7 @@ def _cn_patch_forward(*args, **kwargs): needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) latents = latents / self.vae.config.scaling_factor diff --git a/examples/community/pipeline_controlnet_xl_kolors_inpaint.py b/examples/community/pipeline_controlnet_xl_kolors_inpaint.py index 3abd98482980..b54bef63e259 100644 --- a/examples/community/pipeline_controlnet_xl_kolors_inpaint.py +++ b/examples/community/pipeline_controlnet_xl_kolors_inpaint.py @@ -39,10 +39,6 @@ MultiControlNetModel, UNet2DConditionModel, ) -from diffusers.models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput @@ -1006,21 +1002,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") @property def denoising_end(self): @@ -1847,7 +1829,7 @@ def _cn_patch_forward(*args, **kwargs): needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) latents = latents / self.vae.config.scaling_factor diff --git a/examples/community/pipeline_demofusion_sdxl.py b/examples/community/pipeline_demofusion_sdxl.py index 119b39cefe68..5bacbf15fe67 100644 --- a/examples/community/pipeline_demofusion_sdxl.py +++ b/examples/community/pipeline_demofusion_sdxl.py @@ -16,11 +16,11 @@ TextualInversionLoaderMixin, ) from diffusers.models import AutoencoderKL, UNet2DConditionModel -from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import ( + deprecate, is_accelerate_available, is_accelerate_version, is_invisible_watermark_available, @@ -614,18 +614,7 @@ def tiled_decode(self, latents, current_height, current_width): # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - (AttnProcessor2_0, XFormersAttnProcessor), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) @@ -997,7 +986,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) print("### Phase 1 Decoding ###") image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] @@ -1257,7 +1246,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) print("### Phase {} Decoding ###".format(current_scale_num)) diff --git a/examples/community/pipeline_faithdiff_stable_diffusion_xl.py b/examples/community/pipeline_faithdiff_stable_diffusion_xl.py index a8fdc133d08b..40124f443f31 100644 --- a/examples/community/pipeline_faithdiff_stable_diffusion_xl.py +++ b/examples/community/pipeline_faithdiff_stable_diffusion_xl.py @@ -40,13 +40,6 @@ UNet2DConditionLoadersMixin, ) from diffusers.models import AutoencoderKL -from diffusers.models.attention_processor import ( - AttnProcessor2_0, - FusedAttnProcessor2_0, - LoRAAttnProcessor2_0, - LoRAXFormersAttnProcessor, - XFormersAttnProcessor, -) from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin @@ -1637,24 +1630,7 @@ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype return latents def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - LoRAXFormersAttnProcessor, - LoRAAttnProcessor2_0, - FusedAttnProcessor2_0, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( @@ -1782,7 +1758,7 @@ def prepare_image_latents( # needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast # if needs_upcasting: # image = image.float() - # self.upcast_vae() + # self.vae.to(torch.float32) self.unet.denoise_encoder.to(device=image.device, dtype=image.dtype) image_latents = self.unet.denoise_encoder(image) self.unet.denoise_encoder.to("cpu") @@ -2235,7 +2211,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): diff --git a/examples/community/pipeline_kolors_differential_img2img.py b/examples/community/pipeline_kolors_differential_img2img.py index d299c839815e..89cd95a6604f 100644 --- a/examples/community/pipeline_kolors_differential_img2img.py +++ b/examples/community/pipeline_kolors_differential_img2img.py @@ -22,13 +22,12 @@ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor from diffusers.loaders import IPAdapterMixin, StableDiffusionXLLoraLoaderMixin from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel -from diffusers.models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor from diffusers.pipelines.kolors.pipeline_output import KolorsPipelineOutput from diffusers.pipelines.kolors.text_encoder import ChatGLMModel from diffusers.pipelines.kolors.tokenizer import ChatGLMTokenizer from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin from diffusers.schedulers import KarrasDiffusionSchedulers -from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring +from diffusers.utils import deprecate, is_torch_xla_available, logging, replace_example_docstring from diffusers.utils.torch_utils import randn_tensor @@ -711,22 +710,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - FusedAttnProcessor2_0, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( @@ -1252,7 +1236,7 @@ def denoising_value_valid(dnv): needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): diff --git a/examples/community/pipeline_kolors_inpainting.py b/examples/community/pipeline_kolors_inpainting.py index 26517819ebd0..53f59d6c22a6 100644 --- a/examples/community/pipeline_kolors_inpainting.py +++ b/examples/community/pipeline_kolors_inpainting.py @@ -32,12 +32,6 @@ TextualInversionLoaderMixin, ) from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel -from diffusers.models.attention_processor import ( - AttnProcessor2_0, - LoRAAttnProcessor2_0, - LoRAXFormersAttnProcessor, - XFormersAttnProcessor, -) from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput @@ -1008,23 +1002,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - LoRAXFormersAttnProcessor, - LoRAAttnProcessor2_0, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( @@ -1680,7 +1658,7 @@ def denoising_value_valid(dnv): needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): diff --git a/examples/community/pipeline_sdxl_style_aligned.py b/examples/community/pipeline_sdxl_style_aligned.py index 51547599f531..e8cdf7ef6171 100644 --- a/examples/community/pipeline_sdxl_style_aligned.py +++ b/examples/community/pipeline_sdxl_style_aligned.py @@ -45,8 +45,6 @@ from diffusers.models.attention_processor import ( Attention, AttnProcessor2_0, - FusedAttnProcessor2_0, - XFormersAttnProcessor, ) from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin @@ -1151,22 +1149,7 @@ def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, d return add_time_ids def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - FusedAttnProcessor2_0, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") def _enable_shared_attention_processors( self, @@ -1892,7 +1875,7 @@ def denoising_value_valid(dnv): needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] diff --git a/examples/community/pipeline_stable_diffusion_upscale_ldm3d.py b/examples/community/pipeline_stable_diffusion_upscale_ldm3d.py index e358f66b4acc..f5de8f7b2471 100644 --- a/examples/community/pipeline_stable_diffusion_upscale_ldm3d.py +++ b/examples/community/pipeline_stable_diffusion_upscale_ldm3d.py @@ -736,7 +736,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image = self.vae.decode(latents / self.vae.scaling_factor, return_dict=False)[0] diff --git a/examples/community/pipeline_stable_diffusion_xl_attentive_eraser.py b/examples/community/pipeline_stable_diffusion_xl_attentive_eraser.py index 65df4c03eb2c..8e9eacc8154d 100644 --- a/examples/community/pipeline_stable_diffusion_xl_attentive_eraser.py +++ b/examples/community/pipeline_stable_diffusion_xl_attentive_eraser.py @@ -35,12 +35,6 @@ TextualInversionLoaderMixin, ) from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel -from diffusers.models.attention_processor import ( - AttnProcessor2_0, - LoRAAttnProcessor2_0, - LoRAXFormersAttnProcessor, - XFormersAttnProcessor, -) from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput @@ -1282,23 +1276,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - LoRAXFormersAttnProcessor, - LoRAAttnProcessor2_0, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): @@ -2274,7 +2252,7 @@ def denoising_value_valid(dnv): latents = latents[-1:] if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) # unscale/denormalize the latents diff --git a/examples/community/pipeline_stable_diffusion_xl_controlnet_adapter.py b/examples/community/pipeline_stable_diffusion_xl_controlnet_adapter.py index 6dade126f282..e63d23327a75 100644 --- a/examples/community/pipeline_stable_diffusion_xl_controlnet_adapter.py +++ b/examples/community/pipeline_stable_diffusion_xl_controlnet_adapter.py @@ -25,7 +25,6 @@ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor from diffusers.loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin from diffusers.models import AutoencoderKL, ControlNetModel, MultiAdapter, T2IAdapter, UNet2DConditionModel -from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin @@ -34,6 +33,7 @@ from diffusers.utils import ( PIL_INTERPOLATION, USE_PEFT_BACKEND, + deprecate, logging, replace_example_docstring, scale_lora_layers, @@ -795,18 +795,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - (AttnProcessor2_0, XFormersAttnProcessor), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.t2i_adapter.pipeline_stable_diffusion_adapter.StableDiffusionAdapterPipeline._default_height_width def _default_height_width(self, height, width, image): @@ -1385,7 +1374,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] diff --git a/examples/community/pipeline_stable_diffusion_xl_controlnet_adapter_inpaint.py b/examples/community/pipeline_stable_diffusion_xl_controlnet_adapter_inpaint.py index 9ec6a90b072d..098a93a684f3 100644 --- a/examples/community/pipeline_stable_diffusion_xl_controlnet_adapter_inpaint.py +++ b/examples/community/pipeline_stable_diffusion_xl_controlnet_adapter_inpaint.py @@ -43,7 +43,6 @@ T2IAdapter, UNet2DConditionModel, ) -from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel from diffusers.pipelines.pipeline_utils import StableDiffusionMixin @@ -52,6 +51,7 @@ from diffusers.utils import ( PIL_INTERPOLATION, USE_PEFT_BACKEND, + deprecate, logging, replace_example_docstring, scale_lora_layers, @@ -1132,18 +1132,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - (AttnProcessor2_0, XFormersAttnProcessor), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.t2i_adapter.pipeline_stable_diffusion_adapter.StableDiffusionAdapterPipeline._default_height_width def _default_height_width(self, height, width, image): @@ -1825,7 +1814,7 @@ def denoising_value_valid(dnv): # make sure the VAE is in float32 mode, as it overflows in float16 if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) if output_type != "latent": diff --git a/examples/community/pipeline_stable_diffusion_xl_differential_img2img.py b/examples/community/pipeline_stable_diffusion_xl_differential_img2img.py index 89388e10cb19..1f6e2fcf473c 100644 --- a/examples/community/pipeline_stable_diffusion_xl_differential_img2img.py +++ b/examples/community/pipeline_stable_diffusion_xl_differential_img2img.py @@ -35,10 +35,6 @@ TextualInversionLoaderMixin, ) from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel -from diffusers.models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput @@ -848,21 +844,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( @@ -1421,7 +1403,7 @@ def denoising_value_valid(dnv): needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): diff --git a/examples/community/pipeline_stable_diffusion_xl_instandid_img2img.py b/examples/community/pipeline_stable_diffusion_xl_instandid_img2img.py index 33bf5ad346f4..dc2e6006a4f3 100644 --- a/examples/community/pipeline_stable_diffusion_xl_instandid_img2img.py +++ b/examples/community/pipeline_stable_diffusion_xl_instandid_img2img.py @@ -1050,7 +1050,7 @@ def __call__( # make sure the VAE is in float32 mode, as it overflows in float16 needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] diff --git a/examples/community/pipeline_stable_diffusion_xl_instantid.py b/examples/community/pipeline_stable_diffusion_xl_instantid.py index 45876b91f7d8..729c63ee7dd5 100644 --- a/examples/community/pipeline_stable_diffusion_xl_instantid.py +++ b/examples/community/pipeline_stable_diffusion_xl_instantid.py @@ -1039,7 +1039,7 @@ def __call__( # make sure the VAE is in float32 mode, as it overflows in float16 needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] diff --git a/examples/community/pipeline_stable_diffusion_xl_ipex.py b/examples/community/pipeline_stable_diffusion_xl_ipex.py index aa2b24f3965a..9e259ad220ed 100644 --- a/examples/community/pipeline_stable_diffusion_xl_ipex.py +++ b/examples/community/pipeline_stable_diffusion_xl_ipex.py @@ -32,10 +32,6 @@ TextualInversionLoaderMixin, ) from diffusers.models import AutoencoderKL, UNet2DConditionModel -from diffusers.models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput from diffusers.schedulers import KarrasDiffusionSchedulers @@ -660,21 +656,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): @@ -1150,7 +1132,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] @@ -1363,7 +1345,7 @@ def prepare_for_ipex( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) # cast back to fp16 if needed diff --git a/examples/community/stable_diffusion_xl_controlnet_reference.py b/examples/community/stable_diffusion_xl_controlnet_reference.py index 421e67f5bba6..575e3ac13bf2 100644 --- a/examples/community/stable_diffusion_xl_controlnet_reference.py +++ b/examples/community/stable_diffusion_xl_controlnet_reference.py @@ -195,7 +195,7 @@ def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do refimage = refimage.to(device=device) needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) refimage = refimage.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) if refimage.dtype != self.vae.dtype: refimage = refimage.to(dtype=self.vae.dtype) @@ -1326,7 +1326,7 @@ def hacked_UpBlock2D_forward( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) # unscale/denormalize the latents diff --git a/examples/community/stable_diffusion_xl_reference.py b/examples/community/stable_diffusion_xl_reference.py index eb055574966d..acbe29d2c084 100644 --- a/examples/community/stable_diffusion_xl_reference.py +++ b/examples/community/stable_diffusion_xl_reference.py @@ -141,7 +141,7 @@ def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do refimage = refimage.to(device=device) needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) refimage = refimage.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) if refimage.dtype != self.vae.dtype: refimage = refimage.to(dtype=self.vae.dtype) @@ -1156,7 +1156,7 @@ def hacked_UpBlock2D_forward( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): diff --git a/src/diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py b/src/diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py index 56d319027595..e1c254ee5302 100644 --- a/src/diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +++ b/src/diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py @@ -32,11 +32,6 @@ TextualInversionLoaderMixin, ) from ...models import AutoencoderKL, ImageProjection, MotionAdapter, UNet2DConditionModel, UNetMotionModel -from ...models.attention_processor import ( - AttnProcessor2_0, - FusedAttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import ( DDIMScheduler, @@ -48,6 +43,7 @@ ) from ...utils import ( USE_PEFT_BACKEND, + deprecate, is_torch_xla_available, logging, replace_example_docstring, @@ -783,22 +779,7 @@ def _get_add_time_ids( return add_time_ids def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - FusedAttnProcessor2_0, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( @@ -1286,7 +1267,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) # 10. Post processing diff --git a/src/diffusers/pipelines/aura_flow/pipeline_aura_flow.py b/src/diffusers/pipelines/aura_flow/pipeline_aura_flow.py index 6251ca443533..1ea47d102644 100644 --- a/src/diffusers/pipelines/aura_flow/pipeline_aura_flow.py +++ b/src/diffusers/pipelines/aura_flow/pipeline_aura_flow.py @@ -21,10 +21,10 @@ from ...image_processor import VaeImageProcessor from ...loaders import AuraFlowLoraLoaderMixin from ...models import AuraFlowTransformer2DModel, AutoencoderKL -from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor from ...schedulers import FlowMatchEulerDiscreteScheduler from ...utils import ( USE_PEFT_BACKEND, + deprecate, is_torch_xla_available, logging, replace_example_docstring, @@ -406,22 +406,7 @@ def prepare_latents( # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - FusedAttnProcessor2_0, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") @property def guidance_scale(self): @@ -663,7 +648,7 @@ def __call__( # make sure the VAE is in float32 mode, as it overflows in float16 needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image = self.image_processor.postprocess(image, output_type=output_type) diff --git a/src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py b/src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py index 397ab15715c2..1cede169d2fa 100644 --- a/src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +++ b/src/diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py @@ -36,10 +36,6 @@ TextualInversionLoaderMixin, ) from ...models import AutoencoderKL, ControlNetModel, ImageProjection, MultiControlNetModel, UNet2DConditionModel -from ...models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( @@ -1132,21 +1128,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") @property def guidance_scale(self): @@ -1850,7 +1832,7 @@ def denoising_value_valid(dnv): # make sure the VAE is in float32 mode, as it overflows in float16 if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) # If we do sequential model offloading, let's offload unet and controlnet diff --git a/src/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py b/src/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py index 8b37d38b9099..53b3f8a7f5a2 100644 --- a/src/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +++ b/src/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py @@ -39,10 +39,6 @@ TextualInversionLoaderMixin, ) from ...models import AutoencoderKL, ControlNetModel, ImageProjection, MultiControlNetModel, UNet2DConditionModel -from ...models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( @@ -929,21 +925,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( @@ -1574,7 +1556,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) # unscale/denormalize the latents diff --git a/src/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py b/src/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py index 4d4845c5a0a3..2c6a4d4455c2 100644 --- a/src/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +++ b/src/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py @@ -39,10 +39,6 @@ TextualInversionLoaderMixin, ) from ...models import AutoencoderKL, ControlNetModel, ImageProjection, MultiControlNetModel, UNet2DConditionModel -from ...models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( @@ -1044,21 +1040,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") @property def guidance_scale(self): @@ -1639,7 +1621,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) # unscale/denormalize the latents diff --git a/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py b/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py index fb58b222112a..459e398e6a9d 100644 --- a/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +++ b/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py @@ -41,10 +41,6 @@ MultiControlNetUnionModel, UNet2DConditionModel, ) -from ...models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( @@ -1111,21 +1107,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") @property def guidance_scale(self): @@ -1877,7 +1859,7 @@ def denoising_value_valid(dnv): # make sure the VAE is in float32 mode, as it overflows in float16 if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) # If we do sequential model offloading, let's offload unet and controlnet diff --git a/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py b/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py index 5961d389effb..8a4b952b599a 100644 --- a/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +++ b/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py @@ -44,14 +44,11 @@ MultiControlNetUnionModel, UNet2DConditionModel, ) -from ...models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( USE_PEFT_BACKEND, + deprecate, logging, replace_example_docstring, scale_lora_layers, @@ -904,21 +901,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( @@ -1578,7 +1561,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) # unscale/denormalize the latents diff --git a/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py b/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py index 8fedb6d8609a..964bcd21dfb3 100644 --- a/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +++ b/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py @@ -44,10 +44,6 @@ MultiControlNetUnionModel, UNet2DConditionModel, ) -from ...models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( @@ -1032,21 +1028,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") @property def guidance_scale(self): @@ -1683,7 +1665,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) # unscale/denormalize the latents diff --git a/src/diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py b/src/diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py index c10931a0f44a..9e1005554443 100644 --- a/src/diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +++ b/src/diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py @@ -32,14 +32,11 @@ from ...image_processor import PipelineImageInput, VaeImageProcessor from ...loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin from ...models import AutoencoderKL, ControlNetXSAdapter, UNet2DConditionModel, UNetControlNetXSModel -from ...models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( USE_PEFT_BACKEND, + deprecate, logging, replace_example_docstring, scale_lora_layers, @@ -685,21 +682,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.guidance_scale @@ -1095,7 +1078,7 @@ def __call__( # manually for max memory savings if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) if not output_type == "latent": @@ -1103,7 +1086,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] diff --git a/src/diffusers/pipelines/kolors/pipeline_kolors.py b/src/diffusers/pipelines/kolors/pipeline_kolors.py index 948f73ed91eb..a406e52ccb61 100644 --- a/src/diffusers/pipelines/kolors/pipeline_kolors.py +++ b/src/diffusers/pipelines/kolors/pipeline_kolors.py @@ -21,9 +21,8 @@ from ...image_processor import PipelineImageInput, VaeImageProcessor from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel -from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor from ...schedulers import KarrasDiffusionSchedulers -from ...utils import is_torch_xla_available, logging, replace_example_docstring +from ...utils import deprecate, is_torch_xla_available, logging, replace_example_docstring from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin from .pipeline_output import KolorsPipelineOutput @@ -580,22 +579,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - FusedAttnProcessor2_0, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( @@ -1042,7 +1026,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): diff --git a/src/diffusers/pipelines/kolors/pipeline_kolors_img2img.py b/src/diffusers/pipelines/kolors/pipeline_kolors_img2img.py index 67d49b9a8c5e..f9a528e93519 100644 --- a/src/diffusers/pipelines/kolors/pipeline_kolors_img2img.py +++ b/src/diffusers/pipelines/kolors/pipeline_kolors_img2img.py @@ -22,9 +22,8 @@ from ...image_processor import PipelineImageInput, VaeImageProcessor from ...loaders import IPAdapterMixin, StableDiffusionXLLoraLoaderMixin from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel -from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor from ...schedulers import KarrasDiffusionSchedulers -from ...utils import is_torch_xla_available, logging, replace_example_docstring +from ...utils import deprecate, is_torch_xla_available, logging, replace_example_docstring from ...utils.torch_utils import empty_device_cache, randn_tensor from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin from .pipeline_output import KolorsPipelineOutput @@ -708,22 +707,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - FusedAttnProcessor2_0, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( @@ -1222,7 +1206,7 @@ def denoising_value_valid(dnv): needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): diff --git a/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py b/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py index c1f9a98f0632..5ad5c4811c00 100644 --- a/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +++ b/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py @@ -37,8 +37,6 @@ from ...models.attention_processor import ( Attention, AttnProcessor, - AttnProcessor2_0, - XFormersAttnProcessor, ) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import DDIMScheduler, DPMSolverMultistepScheduler @@ -688,21 +686,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( @@ -1421,7 +1405,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] @@ -1472,7 +1456,7 @@ def encode_image(self, image, dtype=None, height=None, width=None, resize_mode=" if needs_upcasting: image = image.float() - self.upcast_vae() + self.vae.to(torch.float32) x0 = self.vae.encode(image).latent_dist.mode() x0 = x0.to(dtype) @@ -1638,7 +1622,7 @@ def invert( # autoencoder reconstruction if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: - self.upcast_vae() + self.vae.to(torch.float32) x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image_rec = self.vae.decode( x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator diff --git a/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py b/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py index 24cbab43c966..3775df7993e0 100644 --- a/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +++ b/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py @@ -39,14 +39,11 @@ TextualInversionLoaderMixin, ) from ...models import AutoencoderKL, ControlNetModel, ImageProjection, MultiControlNetModel, UNet2DConditionModel -from ...models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( USE_PEFT_BACKEND, + deprecate, logging, replace_example_docstring, scale_lora_layers, @@ -936,21 +933,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( @@ -1586,7 +1569,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) # unscale/denormalize the latents diff --git a/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py b/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py index a6df1b22c8b9..b01aa87f118a 100644 --- a/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +++ b/src/diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py @@ -39,14 +39,11 @@ TextualInversionLoaderMixin, ) from ...models import AutoencoderKL, ControlNetModel, ImageProjection, MultiControlNetModel, UNet2DConditionModel -from ...models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( USE_PEFT_BACKEND, + deprecate, logging, replace_example_docstring, scale_lora_layers, @@ -1049,21 +1046,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") @property def guidance_scale(self): @@ -1655,7 +1638,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) # unscale/denormalize the latents diff --git a/src/diffusers/pipelines/pag/pipeline_pag_kolors.py b/src/diffusers/pipelines/pag/pipeline_pag_kolors.py index 1368358db6ba..4fa7a1c29d34 100644 --- a/src/diffusers/pipelines/pag/pipeline_pag_kolors.py +++ b/src/diffusers/pipelines/pag/pipeline_pag_kolors.py @@ -21,9 +21,8 @@ from ...image_processor import PipelineImageInput, VaeImageProcessor from ...loaders import IPAdapterMixin, StableDiffusionXLLoraLoaderMixin from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel -from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor from ...schedulers import KarrasDiffusionSchedulers -from ...utils import is_torch_xla_available, logging, replace_example_docstring +from ...utils import deprecate, is_torch_xla_available, logging, replace_example_docstring from ...utils.torch_utils import randn_tensor from ..kolors.pipeline_output import KolorsPipelineOutput from ..kolors.text_encoder import ChatGLMModel @@ -598,22 +597,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - FusedAttnProcessor2_0, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( @@ -1105,7 +1089,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): diff --git a/src/diffusers/pipelines/pag/pipeline_pag_sd_xl.py b/src/diffusers/pipelines/pag/pipeline_pag_sd_xl.py index 6b62ddcc7ca5..dba8079f956d 100644 --- a/src/diffusers/pipelines/pag/pipeline_pag_sd_xl.py +++ b/src/diffusers/pipelines/pag/pipeline_pag_sd_xl.py @@ -32,15 +32,11 @@ TextualInversionLoaderMixin, ) from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel -from ...models.attention_processor import ( - AttnProcessor2_0, - FusedAttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( USE_PEFT_BACKEND, + deprecate, is_invisible_watermark_available, is_torch_xla_available, logging, @@ -762,22 +758,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - FusedAttnProcessor2_0, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( @@ -1305,7 +1286,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): diff --git a/src/diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py b/src/diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py index b6422b23648c..0c0cbde56bff 100644 --- a/src/diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +++ b/src/diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py @@ -34,14 +34,11 @@ TextualInversionLoaderMixin, ) from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel -from ...models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( USE_PEFT_BACKEND, + deprecate, is_invisible_watermark_available, is_torch_xla_available, logging, @@ -910,21 +907,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( @@ -1501,7 +1484,7 @@ def denoising_value_valid(dnv): needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): diff --git a/src/diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py b/src/diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py index 2a8f7a448d5e..fb117aba0d07 100644 --- a/src/diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +++ b/src/diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py @@ -34,14 +34,11 @@ TextualInversionLoaderMixin, ) from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel -from ...models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( USE_PEFT_BACKEND, + deprecate, is_invisible_watermark_available, is_torch_xla_available, logging, @@ -1001,21 +998,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( @@ -1729,7 +1712,7 @@ def denoising_value_valid(dnv): needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): diff --git a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py index 02f7526b7102..24e2f13c0272 100644 --- a/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +++ b/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py @@ -24,10 +24,6 @@ from ...image_processor import PipelineImageInput, VaeImageProcessor from ...loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin from ...models import AutoencoderKL, UNet2DConditionModel -from ...models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import DDPMScheduler, KarrasDiffusionSchedulers from ...utils import ( @@ -529,21 +525,7 @@ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype return latents def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") @torch.no_grad() def __call__( @@ -791,7 +773,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) # Ensure latents are always the same type as the VAE latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) diff --git a/src/diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py b/src/diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py index 766ca37d8142..03b4341bbe79 100644 --- a/src/diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +++ b/src/diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py @@ -33,15 +33,11 @@ TextualInversionLoaderMixin, ) from ...models import AutoencoderKL, UNet2DConditionModel -from ...models.attention_processor import ( - AttnProcessor2_0, - FusedAttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler from ...utils import ( USE_PEFT_BACKEND, + deprecate, logging, replace_example_docstring, scale_lora_layers, @@ -545,22 +541,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - FusedAttnProcessor2_0, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") @property def guidance_scale(self): @@ -880,7 +861,7 @@ def model_fn(x, t): needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] diff --git a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py index b97cf6f1f6f8..146027601049 100644 --- a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +++ b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py @@ -33,11 +33,6 @@ TextualInversionLoaderMixin, ) from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel -from ...models.attention_processor import ( - AttnProcessor2_0, - FusedAttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( @@ -750,22 +745,7 @@ def _get_add_time_ids( return add_time_ids def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - FusedAttnProcessor2_0, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( @@ -1267,7 +1247,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): diff --git a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py index 44e8f4fe4b54..121026887ebb 100644 --- a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +++ b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py @@ -34,10 +34,6 @@ TextualInversionLoaderMixin, ) from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel -from ...models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( @@ -897,21 +893,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( @@ -1458,7 +1440,7 @@ def denoising_value_valid(dnv): needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): diff --git a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py index 88cc7515b051..a8d19eb73fcf 100644 --- a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +++ b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py @@ -35,10 +35,6 @@ TextualInversionLoaderMixin, ) from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel -from ...models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( @@ -1002,21 +998,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( @@ -1692,7 +1674,7 @@ def denoising_value_valid(dnv): needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): diff --git a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py index 58b008361782..8776bfbea236 100644 --- a/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +++ b/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py @@ -22,11 +22,6 @@ from ...image_processor import PipelineImageInput, VaeImageProcessor from ...loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin from ...models import AutoencoderKL, UNet2DConditionModel -from ...models.attention_processor import ( - AttnProcessor2_0, - FusedAttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( @@ -531,7 +526,7 @@ def prepare_image_latents( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: image = image.float() - self.upcast_vae() + self.vae.to(torch.float32) image_latents = retrieve_latents(self.vae.encode(image), sample_mode="argmax") @@ -590,22 +585,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - FusedAttnProcessor2_0, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) @@ -955,7 +935,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): diff --git a/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py b/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py index 2802d690f3cc..6cd215d366f7 100644 --- a/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +++ b/src/diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py @@ -34,15 +34,12 @@ TextualInversionLoaderMixin, ) from ...models import AutoencoderKL, ImageProjection, MultiAdapter, T2IAdapter, UNet2DConditionModel -from ...models.attention_processor import ( - AttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( PIL_INTERPOLATION, USE_PEFT_BACKEND, + deprecate, is_torch_xla_available, logging, replace_example_docstring, @@ -779,21 +776,7 @@ def _get_add_time_ids( # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.t2i_adapter.pipeline_stable_diffusion_adapter.StableDiffusionAdapterPipeline._default_height_width def _default_height_width(self, height, width, image): @@ -1288,7 +1271,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] diff --git a/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py b/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py index 288aae6c0d44..e108e73dddb2 100644 --- a/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +++ b/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py @@ -19,16 +19,12 @@ from ...image_processor import VaeImageProcessor from ...loaders import StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin from ...models import AutoencoderKL, UNet2DConditionModel -from ...models.attention_processor import ( - AttnProcessor2_0, - FusedAttnProcessor2_0, - XFormersAttnProcessor, -) from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( USE_PEFT_BACKEND, BaseOutput, + deprecate, is_invisible_watermark_available, logging, scale_lora_layers, @@ -457,22 +453,7 @@ def prepare_extra_step_kwargs(self, generator, eta): # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae def upcast_vae(self): - dtype = self.vae.dtype - self.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - self.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - FusedAttnProcessor2_0, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - self.vae.post_quant_conv.to(dtype) - self.vae.decoder.conv_in.to(dtype) - self.vae.decoder.mid_block.to(dtype) + deprecate("`upcast_vae` is deprecated") # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids def _get_add_time_ids( @@ -1326,7 +1307,7 @@ def __call__( needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: - self.upcast_vae() + self.vae.to(torch.float32) latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] From 73906381ab76da96eb8f9b841177cd4f49861eb1 Mon Sep 17 00:00:00 2001 From: DN6 Date: Tue, 11 Nov 2025 11:36:22 +0530 Subject: [PATCH 2/2] update --- .../stable_diffusion_xl/decoders.py | 22 +------------------ 1 file changed, 1 insertion(+), 21 deletions(-) diff --git a/src/diffusers/modular_pipelines/stable_diffusion_xl/decoders.py b/src/diffusers/modular_pipelines/stable_diffusion_xl/decoders.py index feb78e1ef11b..bfc55e156a82 100644 --- a/src/diffusers/modular_pipelines/stable_diffusion_xl/decoders.py +++ b/src/diffusers/modular_pipelines/stable_diffusion_xl/decoders.py @@ -21,7 +21,6 @@ from ...configuration_utils import FrozenDict from ...image_processor import VaeImageProcessor from ...models import AutoencoderKL -from ...models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor from ...utils import logging from ..modular_pipeline import ( ModularPipelineBlocks, @@ -74,25 +73,6 @@ def intermediate_outputs(self) -> List[str]: ) ] - @staticmethod - # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae with self->components - def upcast_vae(components): - dtype = components.vae.dtype - components.vae.to(dtype=torch.float32) - use_torch_2_0_or_xformers = isinstance( - components.vae.decoder.mid_block.attentions[0].processor, - ( - AttnProcessor2_0, - XFormersAttnProcessor, - ), - ) - # if xformers or torch_2_0 is used attention block does not need - # to be in float32 which can save lots of memory - if use_torch_2_0_or_xformers: - components.vae.post_quant_conv.to(dtype) - components.vae.decoder.conv_in.to(dtype) - components.vae.decoder.mid_block.to(dtype) - @torch.no_grad() def __call__(self, components, state: PipelineState) -> PipelineState: block_state = self.get_block_state(state) @@ -103,7 +83,7 @@ def __call__(self, components, state: PipelineState) -> PipelineState: block_state.needs_upcasting = components.vae.dtype == torch.float16 and components.vae.config.force_upcast if block_state.needs_upcasting: - self.upcast_vae(components) + self.components.vae.to(torch.float32) latents = latents.to(next(iter(components.vae.post_quant_conv.parameters())).dtype) elif latents.dtype != components.vae.dtype: if torch.backends.mps.is_available():