@@ -898,13 +898,16 @@ class GaussianSmoothing(nn.Module):
898898 Apply gaussian smoothing on a
899899 1d, 2d or 3d tensor. Filtering is performed seperately for each channel
900900 in the input using a depthwise convolution.
901- Arguments:
902- channels (int, sequence): Number of channels of the input tensors. Output will
903- have this number of channels as well.
904- kernel_size (int, sequence): Size of the gaussian kernel.
905- sigma (float, sequence): Standard deviation of the gaussian kernel.
906- dim (int, optional): The number of dimensions of the data.
907- Default value is 2 (spatial).
901+
902+ Args:
903+ channels (`int` or `sequence`):
904+ Number of channels of the input tensors. The output will have this number of channels as well.
905+ kernel_size (`int` or `sequence`):
906+ Size of the Gaussian kernel.
907+ sigma (`float` or `sequence`):
908+ Standard deviation of the Gaussian kernel.
909+ dim (`int`, *optional*, defaults to `2`):
910+ The number of dimensions of the data. Default is 2 (spatial dimensions).
908911 """
909912
910913 def __init__ (self , channels , kernel_size , sigma , dim = 2 ):
@@ -944,10 +947,14 @@ def __init__(self, channels, kernel_size, sigma, dim=2):
944947 def forward (self , input ):
945948 """
946949 Apply gaussian filter to input.
947- Arguments:
948- input (torch.Tensor): Input to apply gaussian filter on.
950+
951+ Args:
952+ input (`torch.Tensor` of shape `(N, C, H, W)`):
953+ Input to apply Gaussian filter on.
954+
949955 Returns:
950- filtered (torch.Tensor): Filtered output.
956+ `torch.Tensor`:
957+ The filtered output tensor with the same shape as the input.
951958 """
952959 return self .conv (input , weight = self .weight .to (input .dtype ), groups = self .groups , padding = "same" )
953960
0 commit comments