|
| 1 | +This project is an attempt to check if it's possible to apply to [ORPO](https://arxiv.org/abs/2403.07691) on a text-conditioned diffusion model to align it on preference data WITHOUT a reference model. The implementation is based on https://github.com/huggingface/trl/pull/1435/. |
| 2 | + |
| 3 | +> [!WARNING] |
| 4 | +> We assume that MSE in the diffusion formulation approximates the log-probs as required by ORPO (hat-tip to [@kashif](https://github.com/kashif) for the idea). So, please consider this to be extremely experimental. |
| 5 | +
|
| 6 | +## Training |
| 7 | + |
| 8 | +Here's training command you can use on a 40GB A100 to validate things on a [small preference |
| 9 | +dataset](https://hf.co/datasets/kashif/pickascore): |
| 10 | + |
| 11 | +```bash |
| 12 | +accelerate launch train_diffusion_orpo_sdxl_lora.py \ |
| 13 | + --pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0 \ |
| 14 | + --pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix \ |
| 15 | + --output_dir="diffusion-sdxl-orpo" \ |
| 16 | + --mixed_precision="fp16" \ |
| 17 | + --dataset_name=kashif/pickascore \ |
| 18 | + --train_batch_size=8 \ |
| 19 | + --gradient_accumulation_steps=2 \ |
| 20 | + --gradient_checkpointing \ |
| 21 | + --use_8bit_adam \ |
| 22 | + --rank=8 \ |
| 23 | + --learning_rate=1e-5 \ |
| 24 | + --report_to="wandb" \ |
| 25 | + --lr_scheduler="constant" \ |
| 26 | + --lr_warmup_steps=0 \ |
| 27 | + --max_train_steps=2000 \ |
| 28 | + --checkpointing_steps=500 \ |
| 29 | + --run_validation --validation_steps=50 \ |
| 30 | + --seed="0" \ |
| 31 | + --report_to="wandb" \ |
| 32 | + --push_to_hub |
| 33 | +``` |
| 34 | + |
| 35 | +We also provide a simple script to scale up the training on the [yuvalkirstain/pickapic_v2](https://huggingface.co/datasets/yuvalkirstain/pickapic_v2) dataset: |
| 36 | + |
| 37 | +```bash |
| 38 | +accelerate launch --multi_gpu train_diffusion_orpo_sdxl_lora_wds.py \ |
| 39 | + --pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0 \ |
| 40 | + --pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix \ |
| 41 | + --dataset_path="pipe:aws s3 cp s3://diffusion-preference-opt/{00000..00644}.tar -" \ |
| 42 | + --output_dir="diffusion-sdxl-orpo-wds" \ |
| 43 | + --mixed_precision="fp16" \ |
| 44 | + --gradient_accumulation_steps=1 \ |
| 45 | + --gradient_checkpointing \ |
| 46 | + --use_8bit_adam \ |
| 47 | + --rank=8 \ |
| 48 | + --dataloader_num_workers=8 \ |
| 49 | + --learning_rate=3e-5 \ |
| 50 | + --report_to="wandb" \ |
| 51 | + --lr_scheduler="constant" \ |
| 52 | + --lr_warmup_steps=0 \ |
| 53 | + --max_train_steps=50000 \ |
| 54 | + --checkpointing_steps=2000 \ |
| 55 | + --run_validation --validation_steps=500 \ |
| 56 | + --seed="0" \ |
| 57 | + --report_to="wandb" \ |
| 58 | + --push_to_hub |
| 59 | +``` |
| 60 | + |
| 61 | +We tested the above on a node of 8 H100s but it should also work on A100s. It requires the `webdataset` library for faster dataloading. Note that we kept the dataset shards on an S3 bucket but it should be also possible to have them stored locally. |
| 62 | + |
| 63 | +You can use the code below to convert the original dataset into `webdataset` shards: |
| 64 | + |
| 65 | +```python |
| 66 | +import os |
| 67 | +import io |
| 68 | +import ray |
| 69 | +import webdataset as wds |
| 70 | +from datasets import Dataset |
| 71 | +from PIL import Image |
| 72 | + |
| 73 | +ray.init(num_cpus=8) |
| 74 | + |
| 75 | + |
| 76 | +def convert_to_image(im_bytes): |
| 77 | + return Image.open(io.BytesIO(im_bytes)).convert("RGB") |
| 78 | + |
| 79 | +def main(): |
| 80 | + dataset_path = "/pickapic_v2/data" |
| 81 | + wds_shards_path = "/pickapic_v2_webdataset" |
| 82 | + # get all .parquet files in the dataset path |
| 83 | + dataset_files = [ |
| 84 | + os.path.join(dataset_path, f) |
| 85 | + for f in os.listdir(dataset_path) |
| 86 | + if f.endswith(".parquet") |
| 87 | + ] |
| 88 | + |
| 89 | + @ray.remote |
| 90 | + def create_shard(path): |
| 91 | + # get basename of the file |
| 92 | + basename = os.path.basename(path) |
| 93 | + # get the shard number data-00123-of-01034.parquet -> 00123 |
| 94 | + shard_num = basename.split("-")[1] |
| 95 | + dataset = Dataset.from_parquet(path) |
| 96 | + # create a webdataset shard |
| 97 | + shard = wds.TarWriter(os.path.join(wds_shards_path, f"{shard_num}.tar")) |
| 98 | + |
| 99 | + for i, example in enumerate(dataset): |
| 100 | + wds_example = { |
| 101 | + "__key__": str(i), |
| 102 | + "original_prompt.txt": example["caption"], |
| 103 | + "jpg_0.jpg": convert_to_image(example["jpg_0"]), |
| 104 | + "jpg_1.jpg": convert_to_image(example["jpg_1"]), |
| 105 | + "label_0.txt": str(example["label_0"]), |
| 106 | + "label_1.txt": str(example["label_1"]) |
| 107 | + } |
| 108 | + shard.write(wds_example) |
| 109 | + shard.close() |
| 110 | + |
| 111 | + futures = [create_shard.remote(path) for path in dataset_files] |
| 112 | + ray.get(futures) |
| 113 | + |
| 114 | + |
| 115 | +if __name__ == "__main__": |
| 116 | + main() |
| 117 | +``` |
| 118 | + |
| 119 | +## Inference |
| 120 | + |
| 121 | +Refer to [sayakpaul/diffusion-sdxl-orpo](https://huggingface.co/sayakpaul/diffusion-sdxl-orpo) for an experimental checkpoint. |
0 commit comments