diff --git "a/Anomal\303\255a.html" "b/Anomal\303\255a.html"
new file mode 100644
index 0000000..75d1c38
--- /dev/null
+++ "b/Anomal\303\255a.html"
@@ -0,0 +1,27 @@
+# fgme_ai_security.py
+import json
+import numpy as np
+from sklearn.ensemble import IsolationForest
+import joblib
+
+class FGME_AI_Security:
+ def __init__(self, model_path="fgme_ai_model.pkl"):
+ try:
+ self.model = joblib.load(model_path)
+ except:
+ self.model = IsolationForest(n_estimators=100, contamination=0.05)
+ self.model.fit(np.random.rand(100, 5)) # Entrenamiento inicial con datos simulados
+ joblib.dump(self.model, model_path)
+
+ def analizar_evento(self, evento: dict):
+ vector = np.array([[evento["cpu"], evento["mem"], evento["net"], evento["disk"], evento["proc"]]])
+ score = self.model.decision_function(vector)[0]
+ riesgo = self.model.predict(vector)[0] # -1 = sospechoso
+ return {"riesgo": "ALTO" if riesgo == -1 else "BAJO", "score": score}
+
+# Ejemplo de uso
+if __name__ == "__main__":
+ ai = FGME_AI_Security()
+ evento = {"cpu": 0.9, "mem": 0.8, "net": 0.95, "disk": 0.7, "proc": 0.85}
+ resultado = ai.analizar_evento(evento)
+ print(json.dumps(resultado, indent=2))