|
| 1 | +# |
| 2 | +# Copyright (C) 2023, Inria |
| 3 | +# GRAPHDECO research group, https://team.inria.fr/graphdeco |
| 4 | +# All rights reserved. |
| 5 | +# |
| 6 | +# This software is free for non-commercial, research and evaluation use |
| 7 | +# under the terms of the LICENSE.md file. |
| 8 | +# |
| 9 | +# For inquiries contact george.drettakis@inria.fr |
| 10 | +# |
| 11 | + |
| 12 | +import torch |
| 13 | +from scene import Scene |
| 14 | +import os |
| 15 | +from tqdm import tqdm |
| 16 | +from os import makedirs |
| 17 | +from gaussian_renderer import render |
| 18 | +import torchvision |
| 19 | +from utils.general_utils import safe_state |
| 20 | +from argparse import ArgumentParser |
| 21 | +from arguments import ModelParams, PipelineParams, get_combined_args, OptimizationParams |
| 22 | +from gaussian_renderer import GaussianModel |
| 23 | +from random import randint |
| 24 | +from utils.loss_utils import l1_loss, ssim |
| 25 | +from utils.image_utils import psnr |
| 26 | + |
| 27 | + |
| 28 | +def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene: Scene, renderFunc, |
| 29 | + renderArgs): |
| 30 | + if tb_writer: |
| 31 | + tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration) |
| 32 | + tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration) |
| 33 | + tb_writer.add_scalar('iter_time', elapsed, iteration) |
| 34 | + |
| 35 | + # Report test and samples of training set |
| 36 | + if iteration in testing_iterations: |
| 37 | + torch.cuda.empty_cache() |
| 38 | + validation_configs = ({'name': 'test', 'cameras': scene.getTestCameras()}, |
| 39 | + {'name': 'train', |
| 40 | + 'cameras': [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in |
| 41 | + range(5, 30, 5)]}) |
| 42 | + |
| 43 | + for config in validation_configs: |
| 44 | + if config['cameras'] and len(config['cameras']) > 0: |
| 45 | + images = torch.tensor([], device="cuda") |
| 46 | + gts = torch.tensor([], device="cuda") |
| 47 | + for idx, viewpoint in enumerate(config['cameras']): |
| 48 | + image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs)["render"], 0.0, 1.0) |
| 49 | + gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0) |
| 50 | + images = torch.cat((images, image.unsqueeze(0)), dim=0) |
| 51 | + gts = torch.cat((gts, gt_image.unsqueeze(0)), dim=0) |
| 52 | + if tb_writer and (idx < 5): |
| 53 | + tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), |
| 54 | + image[None], global_step=iteration) |
| 55 | + if iteration == testing_iterations[0]: |
| 56 | + tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), |
| 57 | + gt_image[None], global_step=iteration) |
| 58 | + |
| 59 | + l1_test = l1_loss(images, gts) |
| 60 | + psnr_test = psnr(images, gts).mean() |
| 61 | + print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test)) |
| 62 | + if tb_writer: |
| 63 | + tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration) |
| 64 | + tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration) |
| 65 | + |
| 66 | + if tb_writer: |
| 67 | + tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration) |
| 68 | + tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration) |
| 69 | + torch.cuda.empty_cache() |
| 70 | + |
| 71 | + |
| 72 | +def fine_tune_sets(dataset: ModelParams, opt: OptimizationParams, pipe: PipelineParams, iteration: int, |
| 73 | + testing_iterations: int, saving_iterations: int): |
| 74 | + gaussians = GaussianModel(dataset.sh_degree) |
| 75 | + |
| 76 | + scene = Scene(dataset, gaussians, load_iteration=iteration) |
| 77 | + gaussians.training_setup(opt) |
| 78 | + |
| 79 | + bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0] |
| 80 | + background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") |
| 81 | + |
| 82 | + iter_start = torch.cuda.Event(enable_timing=True) |
| 83 | + iter_end = torch.cuda.Event(enable_timing=True) |
| 84 | + |
| 85 | + viewpoint_stack = None |
| 86 | + ema_loss_for_log = 0.0 |
| 87 | + progress_bar = tqdm(range(opt.iterations), desc="Fine Tune progress") |
| 88 | + |
| 89 | + loaded_iter = scene.loaded_iter + 1 |
| 90 | + final_iter = opt.iterations + loaded_iter |
| 91 | + for iteration in range(loaded_iter, final_iter): |
| 92 | + iter_start.record() |
| 93 | + |
| 94 | + # Pick a random Camera |
| 95 | + if not viewpoint_stack: |
| 96 | + viewpoint_stack = scene.getTrainCameras().copy() |
| 97 | + |
| 98 | + viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack) - 1)) |
| 99 | + # Render |
| 100 | + render_pkg = render(viewpoint_cam, gaussians, pipe, background) |
| 101 | + image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], \ |
| 102 | + render_pkg["visibility_filter"], render_pkg["radii"] |
| 103 | + |
| 104 | + # Loss |
| 105 | + gt_image = viewpoint_cam.original_image.cuda() |
| 106 | + Ll1 = l1_loss(image, gt_image) |
| 107 | + loss = 1.0 - ssim(image, gt_image) |
| 108 | + loss.backward() |
| 109 | + |
| 110 | + iter_end.record() |
| 111 | + |
| 112 | + with torch.no_grad(): |
| 113 | + # Progress bar |
| 114 | + ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log |
| 115 | + if iteration % 10 == 0: |
| 116 | + progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"}) |
| 117 | + progress_bar.update(10) |
| 118 | + if iteration == final_iter: |
| 119 | + progress_bar.close() |
| 120 | + |
| 121 | + # Log and save |
| 122 | + training_report(None, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), |
| 123 | + testing_iterations, scene, render, (pipe, background)) |
| 124 | + |
| 125 | + if (iteration in saving_iterations): |
| 126 | + print("\n[ITER {}] Saving Gaussians".format(iteration)) |
| 127 | + scene.save(iteration) |
| 128 | + |
| 129 | + # Optimizer step |
| 130 | + if iteration < final_iter: |
| 131 | + gaussians.optimizer.step() |
| 132 | + gaussians.optimizer.zero_grad(set_to_none=True) |
| 133 | + gaussians.update_learning_rate(iteration) |
| 134 | + |
| 135 | + |
| 136 | +if __name__ == "__main__": |
| 137 | + # Set up command line argument parser |
| 138 | + parser = ArgumentParser(description="Testing script parameters") # add argument into parser |
| 139 | + model = ModelParams(parser, sentinel=True) |
| 140 | + op = OptimizationParams(parser) |
| 141 | + pipeline = PipelineParams(parser) |
| 142 | + parser.add_argument("--iteration", default=-1, type=int) |
| 143 | + parser.add_argument("--test_iterations", nargs="+", type=int, default=[35_000, 40_000]) |
| 144 | + parser.add_argument("--save_iterations", nargs="+", type=int, default=[35_000, 40_000]) |
| 145 | + parser.add_argument("--quiet", action="store_true") |
| 146 | + args = get_combined_args(parser) |
| 147 | + print("Rendering " + args.model_path) |
| 148 | + |
| 149 | + # Initialize system state (RNG) |
| 150 | + safe_state(args.quiet) |
| 151 | + |
| 152 | + fine_tune_sets(model.extract(args), op.extract(args), pipeline.extract(args), args.iteration, args.test_iterations, |
| 153 | + args.save_iterations) |
0 commit comments