Skip to content

Commit 0876b5c

Browse files
Update doc
1 parent 4396525 commit 0876b5c

File tree

2 files changed

+9
-7
lines changed

2 files changed

+9
-7
lines changed

doc/documentation.md

Lines changed: 9 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -60,7 +60,7 @@ CochleaNet can be used via:
6060
### Napari Plugin
6161

6262
The plugins for segmentation (SGNs and IHCS) and detection (ribbon synapses) is available under `Plugins->CochleaNet->Segmentation/Detection` in napari:
63-
<img src="https://raw.githubusercontent.com/computational-cell-analytics/cochlea-net/refs/heads/master/doc/img/cochlea-net-plugin-selection.png" alt="The CochleaNet plugins available in napari.">
63+
<img src="https://raw.githubusercontent.com/computational-cell-analytics/cochlea-net/refs/heads/master/doc/img/cochlea-net-plugin-selection.png" alt="The CochleaNet plugins available in napari." width="256">
6464

6565

6666
The segmentation plugin offers the choice of different models under `Select Model:` (see [Available Models](#available-models) for details). `Image data` enables the choice which image data (napari layer) the model is applied to.
@@ -78,11 +78,13 @@ For more information on how to use napari, check out the tutorials at [www.napar
7878

7979
The command line interface provides the following commands:
8080

81-
`flamingo_tools.convert_data`: Convert data from a flamingo microscope into the [bdv.n5 format](https://github.com/bigdataviewer/bigdataviewer-core/blob/master/BDV%20N5%20format.md) (compatible with [BigStitcher](https://imagej.net/plugins/bigstitcher/)) or into [ome.zarr format](https://ngff.openmicroscopy.org/). You can use this command as follows:
81+
`flamingo_tools.convert_data`: Convert data from a flamingo microscope. You can use this command as follows:
8282
```bash
8383
flamingo_tools.convert_data -i /path/to/data -o /path/to/output.n5 --file_ext .tif
8484
```
85-
Use `--file_ext .raw` instead if the data is stored in raw files. By default, the data will be exported to the n5 format. It can be opened with BigDataViewer via `Plugins->BigDataViewer->Open XML/HDF5` or with BigStitcher as described [here](https://imagej.net/plugins/bigstitcher/open-existing).
85+
Use `--file_ext .raw` if the data is stored in raw files. The the output data format is determined by the extension of the output path you specify (`-o`):
86+
- If you specify `.n5` the data will be exported to the [bdv.n5 format](https://github.com/bigdataviewer/bigdataviewer-core/blob/master/BDV%20N5%20format.md). It can be opened with BigDataViewer via `Plugins->BigDataViewer->Open XML/HDF5` or with [BigStitcher](https://imagej.net/plugins/bigstitcher/) as described [here](https://imagej.net/plugins/bigstitcher/open-existing).
87+
- If you specify `.ome.zarr` the data will be exported to the [ome.zarr format](https://ngff.openmicroscopy.org/).
8688

8789
`flamingo_tools.run_segmentation`: To segment cells in volumetric light microscopy data.
8890

@@ -93,10 +95,10 @@ For more information on any of the command run `flamingo_tools.<COMMAND> -h` (e.
9395
### Python Library
9496

9597
CochleaNet's functionality is implemented in the `flamingo_tools` python library. It implements:
96-
- `measurements`: functionality to measure morphological attributes and intensity statistics for segmented cells.
97-
- `mobie`: functionality to export flamingo image data or segmentation results to a MoBIE project.
98-
- `segmentation`: functionality to apply segmentation and detection models to large volumetric image data.
99-
- `training`: functionality to train segmentation and detection networks.
98+
- `flamingo_tools.measurements`: functionality to measure morphological attributes and intensity statistics for segmented cells.
99+
- `flamingo_tools.mobie`: functionality to export flamingo image data or segmentation results to a MoBIE project.
100+
- `flamingo_tools.segmentation`: functionality to apply segmentation and detection models to large volumetric image data.
101+
- `flamingo_tools.training`: functionality to train segmentation and detection networks.
100102

101103

102104
## Available Models
8.28 KB
Loading

0 commit comments

Comments
 (0)