Skip to content

Commit 06e370a

Browse files
committed
untested implem; limited to method="linear"; trying to mimic numpy behavior
1 parent f92fc4b commit 06e370a

File tree

2 files changed

+54
-81
lines changed

2 files changed

+54
-81
lines changed

src/array_api_extra/_delegation.py

Lines changed: 15 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -910,16 +910,29 @@ def quantile(
910910
"""
911911
TODO
912912
"""
913-
914913
methods = {"linear"}
914+
915915
if method not in methods:
916916
message = f"`method` must be one of {methods}"
917917
raise ValueError(message)
918+
if keepdims not in {True, False}:
919+
message = "If specified, `keepdims` must be True or False."
920+
raise ValueError(message)
918921
if xp is None:
919922
xp = array_namespace(a)
920-
if a.ndim < 1:
923+
924+
a = xp.asarray(a)
925+
if not xp.isdtype(a.dtype, ('integral', 'real floating')):
926+
raise ValueError("`a` must have real dtype.")
927+
if not xp.isdtype(xp.asarray(q).dtype, 'real floating'):
928+
raise ValueError("`q` must have real floating dtype.")
929+
ndim = a.ndim
930+
if ndim < 1:
921931
msg = "`a` must be at least 1-dimensional"
922932
raise TypeError(msg)
933+
if (axis >= ndim) or (axis < -ndim):
934+
message = "`axis` is not compatible with the dimension of `a`."
935+
raise ValueError(message)
923936

924937
# Delegate where possible.
925938
if is_numpy_namespace(xp) or is_dask_namespace(xp):

src/array_api_extra/_lib/_quantile.py

Lines changed: 39 additions & 79 deletions
Original file line numberDiff line numberDiff line change
@@ -10,8 +10,8 @@
1010

1111

1212
def quantile( # numpydoc ignore=PR01,RT01
13-
x,
14-
p,
13+
a: Array,
14+
q: Array | float,
1515
/,
1616
method: str = 'linear', # noqa: ARG001
1717
axis: int | None = None,
@@ -20,107 +20,67 @@ def quantile( # numpydoc ignore=PR01,RT01
2020
xp: ModuleType,
2121
):
2222
"""See docstring in `array_api_extra._delegation.py`."""
23-
# Input validation / standardization
24-
temp = _quantile_iv(x, p, axis, keepdims)
25-
y, p, axis, keepdims, n, axis_none, ndim = temp
23+
device = get_device(a)
24+
floating_dtype = xp.result_type(a, xp.asarray(q))
25+
a = xp.asarray(a, dtype=floating_dtype, device=device)
26+
q = xp.asarray(q, dtype=floating_dtype, device=device)
2627

27-
res = _quantile_hf(y, p, n, xp)
28+
if xp.any((q > 1) | (q < 0) | xp.isnan(q)):
29+
raise ValueError("`q` values must be in the range [0, 1]")
2830

29-
# Reshape per axis/keepdims
30-
if axis_none and keepdims:
31-
shape = (1,)*(ndim - 1) + res.shape
32-
res = xp.reshape(res, shape)
33-
axis = -1
34-
35-
res = xp.moveaxis(res, -1, axis)
36-
37-
if not keepdims:
38-
res = xp.squeeze(res, axis=axis)
39-
40-
return res[()] if res.ndim == 0 else res
41-
42-
43-
def _quantile_iv(
44-
x: Array,
45-
p: Array,
46-
axis: int | None,
47-
keepdims: bool,
48-
xp: ModuleType
49-
):
50-
51-
if not xp.isdtype(xp.asarray(x).dtype, ('integral', 'real floating')):
52-
raise ValueError("`x` must have real dtype.")
53-
54-
if not xp.isdtype(xp.asarray(p).dtype, 'real floating'):
55-
raise ValueError("`p` must have real floating dtype.")
56-
57-
p_mask = (p > 1) | (p < 0) | xp.isnan(p)
58-
if xp.any(p_mask):
59-
raise ValueError("`p` values must be in the range [0, 1]")
60-
61-
device = get_device(x)
62-
floating_dtype = xp.result_type(x, p)
63-
x = xp.asarray(x, dtype=floating_dtype, device=device)
64-
p = xp.asarray(p, dtype=floating_dtype, device=device)
65-
dtype = x.dtype
31+
q_scalar = q.ndim == 0
32+
if q_scalar:
33+
q = xp.reshape(q, (1,))
6634

6735
axis_none = axis is None
68-
ndim = max(x.ndim, p.ndim)
6936
if axis_none:
70-
x = xp.reshape(x, (-1,))
71-
p = xp.reshape(p, (-1,))
37+
a = xp.reshape(a, (-1,))
7238
axis = 0
73-
elif np.iterable(axis) or int(axis) != axis:
74-
message = "`axis` must be an integer or None."
75-
raise ValueError(message)
76-
elif (axis >= ndim) or (axis < -ndim):
77-
message = "`axis` is not compatible with the shapes of the inputs."
78-
raise ValueError(message)
7939
axis = int(axis)
8040

81-
if keepdims not in {None, True, False}:
82-
message = "If specified, `keepdims` must be True or False."
83-
raise ValueError(message)
84-
41+
n = eager_shape(a, axis)
8542
# If data has length zero along `axis`, the result will be an array of NaNs just
8643
# as if the data had length 1 along axis and were filled with NaNs.
87-
n = eager_shape(x, axis)
8844
if n == 0:
89-
shape = eager_shape(x)
45+
shape = list(eager_shape(a))
9046
shape[axis] = 1
9147
n = 1
92-
x = xp.full(shape, xp.nan, dtype=dtype, device=device)
93-
94-
y = xp.sort(x, axis=axis, stable=False)
95-
# FIXME: I still need to look into the broadcasting:
96-
y, p = _broadcast_arrays((y, p), axis=axis)
48+
a = xp.full(shape, xp.nan, dtype=floating_dtype, device=device)
9749

98-
p_shape = eager_shape(p)
99-
if (keepdims is False) and (p_shape[axis] != 1):
100-
message = "`keepdims` may be False only if the length of `p` along `axis` is 1."
101-
raise ValueError(message)
102-
keepdims = (p_shape[axis] != 1) if keepdims is None else keepdims
50+
a = xp.sort(a, axis=axis, stable=False)
51+
# to support weights, the main thing would be to
52+
# argsort a, and then use it to sort a and w.
53+
# The hard part will be dealing with 0-weights and NaNs
54+
# But maybe a proper use of searchsorted + left/right side will work?
10355

104-
y = xp.moveaxis(y, axis, -1)
105-
p = xp.moveaxis(p, axis, -1)
56+
res = _quantile_hf(a, q, n, axis, xp)
10657

107-
nans = xp.isnan(y)
108-
nan_out = xp.any(nans, axis=-1)
109-
if xp.any(nan_out):
110-
y = xp.asarray(y, copy=True) # ensure writable
111-
y = at(y, nan_out).set(xp.nan)
58+
# reshaping to conform to doc/other libs' behavior
59+
if axis_none:
60+
if keepdims:
61+
res = xp.reshape(res, q.shape + (1,) * a.ndim)
62+
else:
63+
res = xp.moveaxis(res, axis, 0)
64+
if keepdims:
65+
shape = list(a.shape)
66+
shape[axis] = 1
67+
shape = q.shape + tuple(shape)
68+
res = xp.reshape(res, shape)
11269

113-
return y, p, axis, keepdims, n, axis_none, ndim, xp
70+
return res[0, ...] if q_scalar else res
11471

11572

116-
def _quantile_hf(y, p, n, xp):
73+
def _quantile_hf(y: Array, p: Array, n: int, axis: int, xp: ModuleType):
11774
m = 1 - p
11875
jg = p*n + m - 1
11976
j = jg // 1
12077
g = jg % 1
12178
g[j < 0] = 0
12279
j = xp.clip(j, 0., n - 1)
12380
jp1 = xp.clip(j + 1, 0., n - 1)
81+
# `̀j` and `jp1` are 1d arrays
12482

125-
return ((1 - g) * xp.take_along_axis(y, xp.astype(j, xp.int64), axis=-1)
126-
+ g * xp.take_along_axis(y, xp.astype(jp1, xp.int64), axis=-1))
83+
return (
84+
(1 - g) * xp.take(y, xp.astype(j, xp.int64), axis=axis)
85+
+ g * xp.take(y, xp.astype(jp1, xp.int64), axis=axis)
86+
)

0 commit comments

Comments
 (0)