|
| 1 | +"""Taken from Teven and Leandro""" |
| 2 | +import gzip |
| 3 | +import os |
| 4 | +import shutil |
| 5 | +import time |
| 6 | +import logging |
| 7 | +import argparse |
| 8 | +import datasets |
| 9 | + |
| 10 | +from datasets import load_dataset, Features |
| 11 | +from datasets.utils.logging import set_verbosity_info |
| 12 | + |
| 13 | + |
| 14 | +set_verbosity_info() |
| 15 | +logger = logging.getLogger(__name__) |
| 16 | + |
| 17 | +null = None |
| 18 | +# features = { |
| 19 | +# "HtmlPreprocessor_error": {"dtype": "int64", "id": null, "_type": "Value"}, |
| 20 | +# "HtmlPreprocessor_error_comment": {"dtype": "string", "id": null, "_type": "Value"}, |
| 21 | +# "content_languages": {"dtype": "string", "id": null, "_type": "Value"}, |
| 22 | +# "content_mime_detected": {"dtype": "string", "id": null, "_type": "Value"}, |
| 23 | +# "depth": {"dtype": "int16", "id": null, "_type": "Value"}, |
| 24 | +# "download_exception": {"dtype": "string", "id": null, "_type": "Value"}, |
| 25 | +# "external_urls": [{"dtype": "string", "id": null, "_type": "Value"}], |
| 26 | +# "fetch_redirect": {"dtype": "string", "id": null, "_type": "Value"}, |
| 27 | +# "fetch_status": {"dtype": "int32", "id": null, "_type": "Value"}, |
| 28 | +# "fetch_time": {"dtype": "timestamp[ns]", "id": null, "_type": "Value"}, |
| 29 | +# "html_error": {"dtype": "string", "id": null, "_type": "Value"}, |
| 30 | +# "html_footer": [{"dtype": "string", "id": null, "_type": "Value"}], |
| 31 | +# "html_head": [{"dtype": "string", "id": null, "_type": "Value"}], |
| 32 | +# "html_str": {"dtype": "string", "id": null, "_type": "Value"}, |
| 33 | +# "html_title": [{"dtype": "string", "id": null, "_type": "Value"}], |
| 34 | +# "metadata_html": [ |
| 35 | +# { |
| 36 | +# "char_end_idx": {"dtype": "int64", "id": null, "_type": "Value"}, |
| 37 | +# "char_start_idx": {"dtype": "int64", "id": null, "_type": "Value"}, |
| 38 | +# "html_attrs": { |
| 39 | +# "attrs": [{"dtype": "string", "id": null, "_type": "Value"}], |
| 40 | +# "values": [{"dtype": "string", "id": null, "_type": "Value"}], |
| 41 | +# }, |
| 42 | +# "key": {"dtype": "string", "id": null, "_type": "Value"}, |
| 43 | +# "relative_end_pos": {"dtype": "int64", "id": null, "_type": "Value"}, |
| 44 | +# "relative_start_pos": {"dtype": "int64", "id": null, "_type": "Value"}, |
| 45 | +# "type": {"dtype": "string", "id": null, "_type": "Value"}, |
| 46 | +# "value": {"dtype": "string", "id": null, "_type": "Value"}, |
| 47 | +# } |
| 48 | +# ], |
| 49 | +# "seed_id": {"dtype": "int32", "id": null, "_type": "Value"}, |
| 50 | +# "text": {"dtype": "string", "id": null, "_type": "Value"}, |
| 51 | +# "url": {"dtype": "string", "id": null, "_type": "Value"}, |
| 52 | +# "url_host_name": {"dtype": "string", "id": null, "_type": "Value"}, |
| 53 | +# "url_host_registered_domain": {"dtype": "string", "id": null, "_type": "Value"}, |
| 54 | +# "url_host_tld": {"dtype": "string", "id": null, "_type": "Value"}, |
| 55 | +# "url_surtkey": {"dtype": "string", "id": null, "_type": "Value"}, |
| 56 | +# "warc_filename": {"dtype": "string", "id": null, "_type": "Value"}, |
| 57 | +# "warc_record_length": {"dtype": "int32", "id": null, "_type": "Value"}, |
| 58 | +# "warc_record_offset": {"dtype": "int32", "id": null, "_type": "Value"}, |
| 59 | +# } |
| 60 | +features = { |
| 61 | + "text": {"dtype": "string", "id": null, "_type": "Value"}, |
| 62 | + "meta": { |
| 63 | + "content_languages": {"dtype": "string", "id": null, "_type": "Value"}, |
| 64 | + "seed_id": {"dtype": "int64", "id": null, "_type": "Value"}, |
| 65 | + "url": {"dtype": "string", "id": null, "_type": "Value"}, |
| 66 | + }, |
| 67 | +} |
| 68 | + |
| 69 | + |
| 70 | +def convert_types(features): |
| 71 | + if isinstance(features, dict) and "_type" in features: |
| 72 | + return getattr(datasets, features["_type"])(features["dtype"]) |
| 73 | + elif isinstance(features, dict): |
| 74 | + return {key: convert_types(value) for key, value in features.items()} |
| 75 | + elif isinstance(features, list): |
| 76 | + return [convert_types(value) for value in features] |
| 77 | + |
| 78 | + |
| 79 | +final_features = convert_types(features) |
| 80 | +final_features = Features(final_features) |
| 81 | +final_features |
| 82 | + |
| 83 | + |
| 84 | +def get_hash(example): |
| 85 | + """Get hash of content field.""" |
| 86 | + return {"hash": hash(example["text"].replace(" ", ""))} |
| 87 | + |
| 88 | + |
| 89 | +def check_uniques(example, uniques): |
| 90 | + """Check if current hash is still in set of unique hashes and remove if true.""" |
| 91 | + if example["hash"] in uniques: |
| 92 | + uniques.remove(example["hash"]) |
| 93 | + return True |
| 94 | + else: |
| 95 | + return False |
| 96 | + |
| 97 | + |
| 98 | +def preprocess(example): |
| 99 | + """Chain all preprocessing steps into one function to not fill cache.""" |
| 100 | + results = dict() |
| 101 | + results.update(get_hash(example)) |
| 102 | + return results |
| 103 | + |
| 104 | + |
| 105 | +def filter(example, uniques, args): |
| 106 | + """Filter dataset with heuristics.""" |
| 107 | + if not check_uniques(example, uniques): |
| 108 | + return False |
| 109 | + else: |
| 110 | + return True |
| 111 | + |
| 112 | + |
| 113 | +def compress_file(file_path): |
| 114 | + """Compress a file with g-zip.""" |
| 115 | + with open(file_path, "rb") as f_in: |
| 116 | + with gzip.open(file_path + ".gz", "wb", compresslevel=6) as f_out: |
| 117 | + shutil.copyfileobj(f_in, f_out) |
| 118 | + os.unlink(file_path) |
| 119 | + |
| 120 | + |
| 121 | +def main(): |
| 122 | + logging.basicConfig( |
| 123 | + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
| 124 | + datefmt="%m/%d/%Y %H:%M:%S", |
| 125 | + level=logging.INFO, |
| 126 | + ) |
| 127 | + parser = argparse.ArgumentParser(description="Load seed and upload to hub") |
| 128 | + parser.add_argument( |
| 129 | + "--seed-id", |
| 130 | + help="seed ID", |
| 131 | + required=True, |
| 132 | + type=int, |
| 133 | + ) |
| 134 | + parser.add_argument( |
| 135 | + "--save-dir", required=True, type=str, help="Where to save the datasets." |
| 136 | + ) |
| 137 | + parser.add_argument( |
| 138 | + "--pseudo_crawl_path", |
| 139 | + help="path to where the pseudocrawl is located", |
| 140 | + required=True, |
| 141 | + type=str, |
| 142 | + ) |
| 143 | + parser.add_argument( |
| 144 | + "--gzipped", |
| 145 | + help="Write file directly in jsonl.gz compressed format", |
| 146 | + action="store_true", |
| 147 | + ) |
| 148 | + parser.add_argument( |
| 149 | + "--save-batch-size", |
| 150 | + help="Batch size used for saving the dataset", |
| 151 | + required=True, |
| 152 | + type=int, |
| 153 | + ) |
| 154 | + parser.add_argument( |
| 155 | + "--batch-size", |
| 156 | + help="Batch size used for the mapping and saving of the dataset", |
| 157 | + required=True, |
| 158 | + type=int, |
| 159 | + ) |
| 160 | + parser.add_argument( |
| 161 | + "--num-proc", |
| 162 | + help="Number of processors used for the mapping and saving of the dataset", |
| 163 | + required=True, |
| 164 | + type=int, |
| 165 | + ) |
| 166 | + args = parser.parse_args() |
| 167 | + |
| 168 | + # Load dataset |
| 169 | + t_start = time.time() |
| 170 | + ds = load_dataset( |
| 171 | + "json", |
| 172 | + # data_files=[f"{args.pseudo_crawl_path}/seed_id={args.seed_id}/text__html/*.jsonl.gz"], |
| 173 | + data_files=[ |
| 174 | + f"{args.pseudo_crawl_path}/lm_change_lang_id_seed_id_{args.seed_id}_pseudocrawl_change_name/*.jsonl" |
| 175 | + ], |
| 176 | + features=final_features, |
| 177 | + split="train", |
| 178 | + ) |
| 179 | + logger.info(f"Time to load dataset: {time.time()-t_start:.2f}") |
| 180 | + |
| 181 | + # Run preprocessing |
| 182 | + t_start = time.time() |
| 183 | + ds = ds.map(preprocess, num_proc=args.num_proc) |
| 184 | + logger.info(f"Time to preprocess dataset: {time.time()-t_start:.2f}") |
| 185 | + |
| 186 | + # Deduplicate hashes |
| 187 | + uniques = set(ds.unique("hash")) |
| 188 | + frac = len(uniques) / len(ds) |
| 189 | + logger.info(f"Fraction of duplicates: {1-frac:.2%}") |
| 190 | + |
| 191 | + # Deduplicate data and apply heuristics |
| 192 | + t_start = time.time() |
| 193 | + ds_filter = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) |
| 194 | + logger.info(f"Time to filter dataset: {time.time()-t_start:.2f}") |
| 195 | + logger.info(f"Size of filtered dataset: {len(ds_filter)}") |
| 196 | + |
| 197 | + # Save data |
| 198 | + t_start = time.time() |
| 199 | + if args.gzipped: |
| 200 | + file_name = os.path.join(args.save_dir, f"data.jsonl.gz") |
| 201 | + logger.info(f"the dataset will be saved at {file_name}") |
| 202 | + ds_filter.to_json( |
| 203 | + file_name, |
| 204 | + num_proc=args.num_proc, |
| 205 | + batch_size=args.save_batch_size, |
| 206 | + compression="gzip", |
| 207 | + ) |
| 208 | + else: |
| 209 | + file_name = os.path.join(args.save_dir, f"data.jsonl") |
| 210 | + logger.info(f"the dataset will be saved at {file_name}") |
| 211 | + ds_filter.to_json( |
| 212 | + file_name, |
| 213 | + num_proc=args.num_proc, |
| 214 | + batch_size=args.save_batch_size, |
| 215 | + ) |
| 216 | + |
| 217 | + logger.info(f"Time to save dataset: {time.time()-t_start:.2f}") |
| 218 | + |
| 219 | + |
| 220 | +if __name__ == "__main__": |
| 221 | + main() |
0 commit comments