@@ -37,7 +37,7 @@ def _callback(*args):
3737
3838 Parameters
3939 ----------
40- parameters : np. ndarray
40+ parameters : : ndarray
4141 Parameter value (not used by function)
4242
4343 Notes
@@ -60,9 +60,9 @@ def constraint(a, b):
6060
6161 Parameters
6262 ----------
63- a : np. ndarray
63+ a : ndarray
6464 Parameter loadings
65- b : np. ndarray
65+ b : ndarray
6666 Constraint bounds
6767
6868 Returns
@@ -113,7 +113,7 @@ def implicit_constant(x):
113113
114114 Parameters
115115 ----------
116- x : np. ndarray
116+ x : ndarray
117117 Array to be tested
118118
119119 Returns
@@ -178,9 +178,9 @@ def constraints(self):
178178
179179 Returns
180180 -------
181- a : np. ndarray
181+ a : ndarray
182182 Number of constraints by number of parameters loading array
183- b : np. ndarray
183+ b : ndarray
184184 Number of constraints array of lower bounds
185185
186186 Notes
@@ -387,7 +387,7 @@ def fit(self, update_freq=1, disp='final', starting_values=None,
387387 disp : str
388388 Either 'final' to print optimization result or 'off' to display
389389 nothing
390- starting_values : np. ndarray, optional
390+ starting_values : ndarray, optional
391391 Array of starting values to use. If not provided, starting values
392392 are constructed by the model components.
393393 cov_type : str, optional
@@ -572,7 +572,7 @@ def starting_values(self):
572572
573573 Returns
574574 -------
575- sv : np. ndarray
575+ sv : ndarray
576576 Starting values
577577 """
578578 params = np .asarray (self ._fit_no_arch_normal_errors ().params )
@@ -599,16 +599,16 @@ def resids(self, params, y=None, regressors=None):
599599
600600 Parameters
601601 ----------
602- params : np. ndarray
602+ params : ndarray
603603 Model parameters
604- y : np. ndarray, optional
604+ y : ndarray, optional
605605 Alternative values to use when computing model residuals
606- regressors : np. ndarray, optional
606+ regressors : ndarray, optional
607607 Alternative regressor values to use when computing model residuals
608608
609609 Returns
610610 -------
611- resids : np. ndarray
611+ resids : ndarray
612612 Model residuals
613613 """
614614 raise NotImplementedError ('Subclasses must implement' )
@@ -619,7 +619,7 @@ def compute_param_cov(self, params, backcast=None, robust=True):
619619
620620 Parameters
621621 ----------
622- params : np. ndarray
622+ params : ndarray
623623 Model parameters
624624 backcast : float
625625 Value to use for pre-sample observations
@@ -660,7 +660,7 @@ def forecast(self, params, horizon=1, start=None, align='origin', method='analyt
660660
661661 Parameters
662662 ----------
663- params : np. ndarray, optional
663+ params : ndarray, optional
664664 Alternative parameters to use. If not provided, the parameters
665665 estimated when fitting the model are used. Must be identical in
666666 shape to the parameters computed by fitting the model.
@@ -751,12 +751,12 @@ class ARCHModelFixedResult(_SummaryRepr):
751751
752752 Parameters
753753 ----------
754- params : np. ndarray
754+ params : ndarray
755755 Estimated parameters
756- resid : np. ndarray
756+ resid : ndarray
757757 Residuals from model. Residuals have same shape as original data and
758758 contain nan-values in locations not used in estimation
759- volatility : np. ndarray
759+ volatility : ndarray
760760 Conditional volatility from model
761761 dep_var: Series
762762 Dependent variable
@@ -786,7 +786,7 @@ class ARCHModelFixedResult(_SummaryRepr):
786786 Akaike information criteria
787787 bic : float
788788 Schwarz/Bayes information criteria
789- conditional_volatility : {np. ndarray, Series}
789+ conditional_volatility : {ndarray, Series}
790790 nobs element array containing the conditional volatility (square root
791791 of conditional variance). The values are aligned with the input data
792792 so that the value in the t-th position is the variance of t-th error,
@@ -797,7 +797,7 @@ class ARCHModelFixedResult(_SummaryRepr):
797797 Number of observations used in the estimation
798798 num_params : int
799799 Number of parameters in the model
800- resid : {np. ndarray, Series}
800+ resid : {ndarray, Series}
801801 nobs element array containing model residuals
802802 model : ARCHModel
803803 Model instance used to produce the fit
@@ -1056,7 +1056,7 @@ def forecast(self, params=None, horizon=1, start=None, align='origin', method='a
10561056
10571057 Parameters
10581058 ----------
1059- params : np. ndarray, optional
1059+ params : ndarray, optional
10601060 Alternative parameters to use. If not provided, the parameters
10611061 estimated when fitting the model are used. Must be identical in
10621062 shape to the parameters computed by fitting the model.
@@ -1126,7 +1126,7 @@ def hedgehog_plot(self, params=None, horizon=10, step=10, start=None,
11261126
11271127 Parameters
11281128 ----------
1129- params : {np. ndarray, Series}
1129+ params : {ndarray, Series}
11301130 Alternative parameters to use. If not provided, the parameters
11311131 computed by fitting the model are used. Must be 1-d and identical
11321132 in shape to the parameters computed by fitting the model.
@@ -1225,18 +1225,18 @@ class ARCHModelResult(ARCHModelFixedResult):
12251225
12261226 Parameters
12271227 ----------
1228- params : np. ndarray
1228+ params : ndarray
12291229 Estimated parameters
1230- param_cov : {np. ndarray, None}
1230+ param_cov : {ndarray, None}
12311231 Estimated variance-covariance matrix of params. If none, calls method
12321232 to compute variance from model when parameter covariance is first used
12331233 from result
12341234 r2 : float
12351235 Model R-squared
1236- resid : np. ndarray
1236+ resid : ndarray
12371237 Residuals from model. Residuals have same shape as original data and
12381238 contain nan-values in locations not used in estimation
1239- volatility : np. ndarray
1239+ volatility : ndarray
12401240 Conditional volatility from model
12411241 cov_type : str
12421242 String describing the covariance estimator used
@@ -1273,7 +1273,7 @@ class ARCHModelResult(ARCHModelFixedResult):
12731273 Akaike information criteria
12741274 bic : float
12751275 Schwarz/Bayes information criteria
1276- conditional_volatility : {np. ndarray, Series}
1276+ conditional_volatility : {ndarray, Series}
12771277 nobs element array containing the conditional volatility (square root
12781278 of conditional variance). The values are aligned with the input data
12791279 so that the value in the t-th position is the variance of t-th error,
@@ -1296,7 +1296,7 @@ class ARCHModelResult(ARCHModelFixedResult):
12961296 Array of parameter standard errors
12971297 pvalues : Series
12981298 Array of p-values for the t-statistics
1299- resid : {np. ndarray, Series}
1299+ resid : {ndarray, Series}
13001300 nobs element array containing model residuals
13011301 model : ARCHModel
13021302 Model instance used to produce the fit
@@ -1324,7 +1324,7 @@ def conf_int(self, alpha=0.05):
13241324
13251325 Returns
13261326 -------
1327- ci : np. ndarray
1327+ ci : ndarray
13281328 Array where the ith row contains the confidence interval for the
13291329 ith parameter
13301330 """
@@ -1598,14 +1598,14 @@ class ARCHModelForecast(object):
15981598
15991599 Parameters
16001600 ----------
1601- index : {list, np. ndarray}
1602- mean : np. ndarray
1603- variance : np. ndarray
1604- residual_variance : np. ndarray
1605- simulated_paths : np. ndarray, optional
1606- simulated_variances : np. ndarray, optional
1607- simulated_residual_variances : np. ndarray, optional
1608- simulated_residuals : np. ndarray, optional
1601+ index : {list, ndarray}
1602+ mean : ndarray
1603+ variance : ndarray
1604+ residual_variance : ndarray
1605+ simulated_paths : ndarray, optional
1606+ simulated_variances : ndarray, optional
1607+ simulated_residual_variances : ndarray, optional
1608+ simulated_residuals : ndarray, optional
16091609 align : {'origin', 'target'}
16101610
16111611 Attributes
0 commit comments