@@ -600,9 +600,11 @@ def read_parquet(
600600
601601 There are two batching strategies on awswrangler:
602602
603- - If **chunked=True**, a new DataFrame will be returned for each file in your path/dataset.
603+ - If **chunked=True**, depending on the size of the data, one or more data frames will be
604+ returned per each file in the path/dataset.
605+ Unlike **chunked=INTEGER**, rows from different files will not be mixed in the resulting data frames.
604606
605- - If **chunked=INTEGER**, awswrangler will iterate on the data by number of rows igual the received INTEGER.
607+ - If **chunked=INTEGER**, awswrangler will iterate on the data by number of rows egual the received INTEGER.
606608
607609 `P.S.` `chunked=True` if faster and uses less memory while `chunked=INTEGER` is more precise
608610 in number of rows for each Dataframe.
@@ -652,7 +654,7 @@ def read_parquet(
652654 chunked : Union[int, bool]
653655 If passed will split the data in a Iterable of DataFrames (Memory friendly).
654656 If `True` awswrangler iterates on the data by files in the most efficient way without guarantee of chunksize.
655- If an `INTEGER` is passed awswrangler will iterate on the data by number of rows igual the received INTEGER.
657+ If an `INTEGER` is passed awswrangler will iterate on the data by number of rows egual the received INTEGER.
656658 dataset: bool
657659 If `True` read a parquet dataset instead of simple file(s) loading all the related partitions as columns.
658660 categories: Optional[List[str]], optional
@@ -830,10 +832,12 @@ def read_parquet_table(
830832
831833 There are two batching strategies on awswrangler:
832834
833- - If **chunked=True**, a new DataFrame will be returned for each file in your path/dataset.
835+ - If **chunked=True**, depending on the size of the data, one or more data frames will be
836+ returned per each file in the path/dataset.
837+ Unlike **chunked=INTEGER**, rows from different files will not be mixed in the resulting data frames.
834838
835839 - If **chunked=INTEGER**, awswrangler will paginate through files slicing and concatenating
836- to return DataFrames with the number of row igual the received INTEGER.
840+ to return DataFrames with the number of rows egual the received INTEGER.
837841
838842 `P.S.` `chunked=True` if faster and uses less memory while `chunked=INTEGER` is more precise
839843 in number of rows for each Dataframe.
0 commit comments