diff --git a/ML.pages b/ML.pages new file mode 100644 index 0000000..a642ee7 Binary files /dev/null and b/ML.pages differ diff --git a/check_it.py b/check_it.py new file mode 100644 index 0000000..5025ae8 --- /dev/null +++ b/check_it.py @@ -0,0 +1,63 @@ +import tensorflow as tf +import numpy +import matplotlib.pyplot as plt +rng = numpy.random + +# Parameters +learning_rate = 0.01 +training_epochs = 1000 +display_step = 50 + +# Training Data +train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1]) +train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3]) +n_samples = train_X.shape[0] + +# Graph Inputs +X = tf.placeholder("float") +Y = tf.placeholder("float") + +# Weights +W = tf.Variable(rng.randn(),name = "Weight") +b = tf.Variable(rng.randn(),name = "Bais") + +# Constructing the linear model +# Linear Regression +# Y = W*X + b +pred = tf.add(tf.multiply(X,W),b) + +# Cost Function +# ((Y-pred).^2)/N +cost = tf.reduce_sum(tf.pow(pred-Y,2))/(2*n_samples) + +# Gradient descent optimisation +optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) + +# Assign default values +init = tf.global_variables_initializer() + +# Actual Training Starts here +with tf.Session() as sess: + sess.run(init) + + # Use the training data to fit the model + for epoch in range(training_epochs): + # zip merges two lists of same length + for (x,y) in zip(train_X,train_Y): + # Pass elements zipped in (x,y) to the gradient optimiser + sess.run(optimizer,feed_dict={X:x,Y:y}) + + # Display the cost c and the optimised values every nth display step + if (epoch+1)%display_step == 0: + c = sess.run(cost,feed_dict={X:x,Y:y}) + print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c),"W=", sess.run(W), "b=", sess.run(b)) + + print("Done with the optimisation") + training_cost = sess.run(cost, feed_dict={X:x,Y:y}) + print("Final Cost",training_cost,"W=",sess.run(W),"b=",sess.run(b)) + + # Display Stuff + plt.plot(train_X, train_Y, 'ro', label='Original data') + plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line') + plt.legend() + plt.show()#