diff --git a/src/metric-spaces.lagda.md b/src/metric-spaces.lagda.md index bc48c2ee7e7..ee5c43ff9ae 100644 --- a/src/metric-spaces.lagda.md +++ b/src/metric-spaces.lagda.md @@ -97,6 +97,7 @@ open import metric-spaces.images-uniformly-continuous-functions-metric-spaces pu open import metric-spaces.indexed-sums-metric-spaces public open import metric-spaces.inhabited-totally-bounded-subspaces-metric-spaces public open import metric-spaces.interior-subsets-metric-spaces public +open import metric-spaces.isometries-between-metric-extensions-of-pseudometric-spaces public open import metric-spaces.isometries-metric-spaces public open import metric-spaces.isometries-pseudometric-spaces public open import metric-spaces.limits-of-cauchy-approximations-metric-spaces public @@ -106,6 +107,7 @@ open import metric-spaces.limits-of-sequences-metric-spaces public open import metric-spaces.lipschitz-functions-metric-spaces public open import metric-spaces.locally-constant-functions-metric-spaces public open import metric-spaces.located-metric-spaces public +open import metric-spaces.metric-extensions-of-pseudometric-spaces public open import metric-spaces.metric-quotients-of-pseudometric-spaces public open import metric-spaces.metric-space-of-cauchy-approximations-complete-metric-spaces public open import metric-spaces.metric-space-of-cauchy-approximations-metric-spaces public diff --git a/src/metric-spaces/bounded-distance-decompositions-of-metric-spaces.lagda.md b/src/metric-spaces/bounded-distance-decompositions-of-metric-spaces.lagda.md index ea2bf3aa077..57bdd01bc5a 100644 --- a/src/metric-spaces/bounded-distance-decompositions-of-metric-spaces.lagda.md +++ b/src/metric-spaces/bounded-distance-decompositions-of-metric-spaces.lagda.md @@ -213,7 +213,7 @@ module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where - preserves-neighborhood-map-equiv-bounded-distance-decomposition-Metric-Space : + preserves-neighborhoods-map-equiv-bounded-distance-decomposition-Metric-Space : ( d : ℚ⁺) ( x y : type-bounded-distance-decomposition-Metric-Space A) → neighborhood-Metric-Space @@ -224,7 +224,7 @@ module _ neighborhood-Metric-Space A d ( map-equiv-bounded-distance-decomposition-Metric-Space A x) ( map-equiv-bounded-distance-decomposition-Metric-Space A y) - preserves-neighborhood-map-equiv-bounded-distance-decomposition-Metric-Space + preserves-neighborhoods-map-equiv-bounded-distance-decomposition-Metric-Space d (X , x , x∈X) (Y , y , y∈Y) (X=Y , Nxy) = forward-implication ( lemma-iff-neighborhood-bounded-distance-decomposition-Metric-Space @@ -237,7 +237,7 @@ module _ ( y , y∈Y)) ( Nxy) - reflects-neighborhood-map-equiv-bounded-distance-decomposition-Metric-Space : + reflects-neighborhoods-map-equiv-bounded-distance-decomposition-Metric-Space : ( d : ℚ⁺) ( x y : type-bounded-distance-decomposition-Metric-Space A) → neighborhood-Metric-Space A d @@ -248,7 +248,7 @@ module _ ( d) ( x) ( y) - reflects-neighborhood-map-equiv-bounded-distance-decomposition-Metric-Space + reflects-neighborhoods-map-equiv-bounded-distance-decomposition-Metric-Space d (X , x , x∈X) (Y , y , y∈Y) Nxy = ( lemma-eq , backward-implication @@ -280,11 +280,11 @@ module _ ( map-equiv-bounded-distance-decomposition-Metric-Space A) is-isometry-map-equiv-bounded-distance-decomposition-Metric-Space d x y = - ( ( preserves-neighborhood-map-equiv-bounded-distance-decomposition-Metric-Space + ( ( preserves-neighborhoods-map-equiv-bounded-distance-decomposition-Metric-Space ( d) ( x) ( y)) , - ( reflects-neighborhood-map-equiv-bounded-distance-decomposition-Metric-Space + ( reflects-neighborhoods-map-equiv-bounded-distance-decomposition-Metric-Space ( d) ( x) ( y))) diff --git a/src/metric-spaces/cauchy-approximations-metric-quotients-of-pseudometric-spaces.lagda.md b/src/metric-spaces/cauchy-approximations-metric-quotients-of-pseudometric-spaces.lagda.md index 9184f29af6a..b5ce744455e 100644 --- a/src/metric-spaces/cauchy-approximations-metric-quotients-of-pseudometric-spaces.lagda.md +++ b/src/metric-spaces/cauchy-approximations-metric-quotients-of-pseudometric-spaces.lagda.md @@ -107,7 +107,7 @@ module _ ( cauchy-pseudocompletion-Metric-Space ( metric-quotient-Pseudometric-Space M)) short-map-metric-quotient-cauchy-apprtoximation-Pseudometric-Space = - short-map-short-function-cauchy-approximation-Pseudometric-Space + short-map-cauchy-approximation-short-function-Pseudometric-Space ( M) ( pseudometric-metric-quotient-Pseudometric-Space M) ( short-map-metric-quotient-Pseudometric-Space M) @@ -233,7 +233,7 @@ module _ ( x) ( x∈uε) in - preserves-neighborhood-sim-Pseudometric-Space + preserves-neighborhoods-sim-Pseudometric-Space ( M) ( uε~x) ( lim~y) diff --git a/src/metric-spaces/cauchy-approximations-metric-spaces.lagda.md b/src/metric-spaces/cauchy-approximations-metric-spaces.lagda.md index caf5ee3d31c..e48cfc33262 100644 --- a/src/metric-spaces/cauchy-approximations-metric-spaces.lagda.md +++ b/src/metric-spaces/cauchy-approximations-metric-spaces.lagda.md @@ -10,9 +10,6 @@ module metric-spaces.cauchy-approximations-metric-spaces where open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers -open import foundation.constant-maps -open import foundation.dependent-pair-types -open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types @@ -20,7 +17,6 @@ open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels -open import metric-spaces.cartesian-products-metric-spaces open import metric-spaces.cauchy-approximations-pseudometric-spaces open import metric-spaces.metric-spaces open import metric-spaces.short-functions-metric-spaces @@ -123,7 +119,7 @@ module _ cauchy-approximation-Metric-Space A → cauchy-approximation-Metric-Space B map-short-function-cauchy-approximation-Metric-Space = - map-short-function-cauchy-approximation-Pseudometric-Space + map-cauchy-approximation-short-function-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) ( f) @@ -137,7 +133,7 @@ module _ map-short-function-cauchy-approximation-Metric-Space ( A) ( A) - ( short-id-Metric-Space A) = + ( id-short-function-Metric-Space A) = id eq-id-map-short-function-cauchy-approximation-Metric-Space = refl diff --git a/src/metric-spaces/cauchy-approximations-pseudometric-spaces.lagda.md b/src/metric-spaces/cauchy-approximations-pseudometric-spaces.lagda.md index 3f7b863d422..b6b0b62a391 100644 --- a/src/metric-spaces/cauchy-approximations-pseudometric-spaces.lagda.md +++ b/src/metric-spaces/cauchy-approximations-pseudometric-spaces.lagda.md @@ -19,6 +19,7 @@ open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels +open import metric-spaces.isometries-pseudometric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.short-functions-pseudometric-spaces ``` @@ -112,10 +113,10 @@ module _ (f : short-function-Pseudometric-Space A B) where - map-short-function-cauchy-approximation-Pseudometric-Space : + map-cauchy-approximation-short-function-Pseudometric-Space : cauchy-approximation-Pseudometric-Space A → cauchy-approximation-Pseudometric-Space B - map-short-function-cauchy-approximation-Pseudometric-Space (u , H) = + map-cauchy-approximation-short-function-Pseudometric-Space (u , H) = ( map-short-function-Pseudometric-Space A B f ∘ u , λ ε δ → is-short-map-short-function-Pseudometric-Space @@ -128,6 +129,25 @@ module _ ( H ε δ)) ``` +### The action of isometries on Cauchy approximations + +```agda +module _ + {l1 l2 l1' l2' : Level} + (A : Pseudometric-Space l1 l2) (B : Pseudometric-Space l1' l2') + (f : isometry-Pseudometric-Space A B) + where + + map-cauchy-approximation-isometry-Pseudometric-Space : + cauchy-approximation-Pseudometric-Space A → + cauchy-approximation-Pseudometric-Space B + map-cauchy-approximation-isometry-Pseudometric-Space = + map-cauchy-approximation-short-function-Pseudometric-Space + ( A) + ( B) + ( short-isometry-Pseudometric-Space A B f) +``` + ### Homotopic Cauchy approximations are equal ```agda diff --git a/src/metric-spaces/cauchy-pseudocompletion-of-metric-spaces.lagda.md b/src/metric-spaces/cauchy-pseudocompletion-of-metric-spaces.lagda.md index 9dad3ad6549..802663a17b7 100644 --- a/src/metric-spaces/cauchy-pseudocompletion-of-metric-spaces.lagda.md +++ b/src/metric-spaces/cauchy-pseudocompletion-of-metric-spaces.lagda.md @@ -9,17 +9,13 @@ module metric-spaces.cauchy-pseudocompletion-of-metric-spaces where ```agda open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers -open import elementary-number-theory.strict-inequality-rational-numbers -open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.binary-relations -open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.function-types open import foundation.homotopies open import foundation.identity-types -open import foundation.propositions open import foundation.transport-along-identifications open import foundation.universe-levels @@ -27,7 +23,6 @@ open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.cauchy-approximations-pseudometric-spaces open import metric-spaces.cauchy-pseudocompletion-of-pseudometric-spaces open import metric-spaces.complete-metric-spaces -open import metric-spaces.convergent-cauchy-approximations-metric-spaces open import metric-spaces.functions-pseudometric-spaces open import metric-spaces.isometries-pseudometric-spaces open import metric-spaces.limits-of-cauchy-approximations-metric-spaces @@ -354,7 +349,7 @@ module _ ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space)) is-short-const-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space d x y = - preserves-neighborhood-sim-Pseudometric-Space + preserves-neighborhoods-sim-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space M) { x} { const-cauchy-approximation-Metric-Space @@ -437,3 +432,103 @@ module _ ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space u) ( is-limit-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space u) ``` + +### The isometry from the Cauchy pseudocompletion of a complete metric space to its limit + +```agda +module _ + {l1 l2 : Level} (M : Metric-Space l1 l2) + (is-complete-M : is-complete-Metric-Space M) + where + + abstract + reflects-neighborhoods-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space : + (δ : ℚ⁺) → + (u v : cauchy-approximation-Metric-Space M) → + neighborhood-Metric-Space + ( M) + ( δ) + ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space + ( M) + ( is-complete-M) + ( u)) + ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space + ( M) + ( is-complete-M) + ( v)) → + neighborhood-Pseudometric-Space + ( cauchy-pseudocompletion-Metric-Space M) + ( δ) + ( u) + ( v) + reflects-neighborhoods-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space + δ x y Nδ = + reflects-neighborhoods-sim-Pseudometric-Space + ( cauchy-pseudocompletion-Metric-Space M) + { x} + { const-cauchy-approximation-Metric-Space + ( M) + ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space + ( M) + ( is-complete-M) + ( x))} + { y} + { const-cauchy-approximation-Metric-Space + ( M) + ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space + ( M) + ( is-complete-M) + ( y))} + ( sim-const-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space + ( M) + ( is-complete-M) + ( x)) + ( sim-const-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space + ( M) + ( is-complete-M) + ( y)) + ( δ) + ( preserves-neighborhoods-map-isometry-Pseudometric-Space + ( pseudometric-Metric-Space M) + ( cauchy-pseudocompletion-Metric-Space M) + ( isometry-cauchy-pseudocompletion-Metric-Space M) + ( δ) + ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space + ( M) + ( is-complete-M) + ( x)) + ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space + ( M) + ( is-complete-M) + ( y)) + ( Nδ)) + + is-isometry-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space : + is-isometry-Pseudometric-Space + ( cauchy-pseudocompletion-Metric-Space M) + ( pseudometric-Metric-Space M) + ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space + ( M) + ( is-complete-M)) + is-isometry-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space d x y = + ( ( is-short-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space + ( M) + ( is-complete-M) + ( d) + ( x) + ( y)) , + ( reflects-neighborhoods-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space + ( d) + ( x) + ( y))) + + isometry-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space : + isometry-Pseudometric-Space + ( cauchy-pseudocompletion-Metric-Space M) + ( pseudometric-Metric-Space M) + isometry-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space = + ( ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space + ( M) + ( is-complete-M)) , + ( is-isometry-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space)) +``` diff --git a/src/metric-spaces/cauchy-pseudocompletion-of-pseudometric-spaces.lagda.md b/src/metric-spaces/cauchy-pseudocompletion-of-pseudometric-spaces.lagda.md index 5bc301fcc11..41506234ff6 100644 --- a/src/metric-spaces/cauchy-pseudocompletion-of-pseudometric-spaces.lagda.md +++ b/src/metric-spaces/cauchy-pseudocompletion-of-pseudometric-spaces.lagda.md @@ -17,24 +17,16 @@ open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.binary-relations -open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.function-types -open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.transport-along-identifications open import foundation.universe-levels -open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.cauchy-approximations-pseudometric-spaces -open import metric-spaces.complete-metric-spaces -open import metric-spaces.convergent-cauchy-approximations-metric-spaces -open import metric-spaces.functions-pseudometric-spaces open import metric-spaces.isometries-pseudometric-spaces -open import metric-spaces.limits-of-cauchy-approximations-metric-spaces open import metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces -open import metric-spaces.metric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.rational-neighborhood-relations open import metric-spaces.short-functions-pseudometric-spaces @@ -303,7 +295,7 @@ module _ const-cauchy-approximation-Pseudometric-Space M abstract - preserves-neighborhood-map-cauchy-pseudocompletion-Pseudometric-Space : + preserves-neighborhoods-map-cauchy-pseudocompletion-Pseudometric-Space : (d : ℚ⁺) (x y : type-Pseudometric-Space M) → neighborhood-Pseudometric-Space M d x y → neighborhood-cauchy-pseudocompletion-Pseudometric-Space @@ -311,13 +303,13 @@ module _ ( d) ( map-cauchy-pseudocompletion-Pseudometric-Space x) ( map-cauchy-pseudocompletion-Pseudometric-Space y) - preserves-neighborhood-map-cauchy-pseudocompletion-Pseudometric-Space + preserves-neighborhoods-map-cauchy-pseudocompletion-Pseudometric-Space d x y Nxy δ ε = monotonic-neighborhood-Pseudometric-Space M x y d (δ +ℚ⁺ ε +ℚ⁺ d) ( le-right-add-ℚ⁺ (δ +ℚ⁺ ε) d) ( Nxy) - reflects-neighborhood-map-cauchy-pseudocompletion-Pseudometric-Space : + reflects-neighborhoods-map-cauchy-pseudocompletion-Pseudometric-Space : (d : ℚ⁺) (x y : type-Pseudometric-Space M) → neighborhood-cauchy-pseudocompletion-Pseudometric-Space ( M) @@ -325,7 +317,7 @@ module _ ( map-cauchy-pseudocompletion-Pseudometric-Space x) ( map-cauchy-pseudocompletion-Pseudometric-Space y) → neighborhood-Pseudometric-Space M d x y - reflects-neighborhood-map-cauchy-pseudocompletion-Pseudometric-Space + reflects-neighborhoods-map-cauchy-pseudocompletion-Pseudometric-Space d x y Nxy = saturated-neighborhood-Pseudometric-Space M d x y ( λ δ → @@ -343,11 +335,11 @@ module _ ( cauchy-pseudocompletion-Pseudometric-Space M) ( map-cauchy-pseudocompletion-Pseudometric-Space) is-isometry-map-cauchy-pseudocompletion-Pseudometric-Space d x y = - ( ( preserves-neighborhood-map-cauchy-pseudocompletion-Pseudometric-Space + ( ( preserves-neighborhoods-map-cauchy-pseudocompletion-Pseudometric-Space ( d) ( x) ( y)) , - (reflects-neighborhood-map-cauchy-pseudocompletion-Pseudometric-Space + (reflects-neighborhoods-map-cauchy-pseudocompletion-Pseudometric-Space ( d) ( x) ( y))) @@ -412,6 +404,64 @@ module _ ( λ d → H d α β) ``` +### Similarity in the Cauchy pseudocompletion preserves and reflects limits + +```agda +module _ + {l1 l2 : Level} (M : Pseudometric-Space l1 l2) + (u v : cauchy-approximation-Pseudometric-Space M) + (x : type-Pseudometric-Space M) + where + + has-same-limit-sim-cauchy-approximation-Pseudometric-Space : + sim-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space M) + ( u) + ( v) → + is-limit-cauchy-approximation-Pseudometric-Space M u x → + is-limit-cauchy-approximation-Pseudometric-Space M v x + has-same-limit-sim-cauchy-approximation-Pseudometric-Space u~v lim-u = + is-limit-sim-const-cauchy-approximation-Pseudometric-Space + ( M) + ( v) + ( x) + ( transitive-sim-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space M) + ( v) + ( u) + ( const-cauchy-approximation-Pseudometric-Space M x) + ( sim-const-is-limit-cauchy-approximation-Pseudometric-Space + ( M) + ( u) + ( x) + ( lim-u)) + ( inv-sim-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space M) + ( u~v))) + + sim-has-same-limit-cauchy-approximation-Pseudometric-Space : + is-limit-cauchy-approximation-Pseudometric-Space M u x → + is-limit-cauchy-approximation-Pseudometric-Space M v x → + sim-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space M) + ( u) + ( v) + sim-has-same-limit-cauchy-approximation-Pseudometric-Space lim-u lim-v = + transitive-sim-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space M) + ( u) + ( const-cauchy-approximation-Pseudometric-Space M x) + ( v) + ( inv-sim-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space M) + ( sim-const-is-limit-cauchy-approximation-Pseudometric-Space + ( M) + ( v) + ( x) + ( lim-v))) + ( sim-const-is-limit-cauchy-approximation-Pseudometric-Space M u x lim-u) +``` + ### Any Cauchy approximation in the Cauchy pseudocompletion of a pseudometric space has a limit ```agda @@ -616,7 +666,7 @@ module _ ( M))) is-short-function-const-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space d u v = - preserves-neighborhood-sim-Pseudometric-Space + preserves-neighborhoods-sim-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M)) { u} @@ -647,7 +697,7 @@ module _ ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space M) is-short-function-lim-cauchy-approximation-pseudocompletion-Pseudometric-Space d u v Nuv = - reflects-neighborhood-map-cauchy-pseudocompletion-Pseudometric-Space + reflects-neighborhoods-map-cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( d) ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space @@ -680,7 +730,7 @@ module _ where abstract - reflects-neighborhood-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space : + reflects-neighborhoods-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space : ( d : ℚ⁺) → ( u v : cauchy-approximation-Pseudometric-Space @@ -700,9 +750,9 @@ module _ ( d) ( u) ( v) - reflects-neighborhood-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space + reflects-neighborhoods-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space d u v N-lim = - reflects-neighborhood-sim-Pseudometric-Space + reflects-neighborhoods-sim-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M)) { u} @@ -724,7 +774,7 @@ module _ ( M) ( v)) ( d) - ( preserves-neighborhood-map-cauchy-pseudocompletion-Pseudometric-Space + ( preserves-neighborhoods-map-cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( d) ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space @@ -748,7 +798,7 @@ module _ ( d) ( x) ( y)) , - ( reflects-neighborhood-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space + ( reflects-neighborhoods-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( d) ( x) ( y))) @@ -772,12 +822,12 @@ module _ (f : short-function-Pseudometric-Space A B) where - is-short-map-short-function-cauchy-approximation-Pseudometric-Space : + is-short-map-cauchy-approximation-short-function-Pseudometric-Space : is-short-function-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space A) ( cauchy-pseudocompletion-Pseudometric-Space B) - ( map-short-function-cauchy-approximation-Pseudometric-Space A B f) - is-short-map-short-function-cauchy-approximation-Pseudometric-Space + ( map-cauchy-approximation-short-function-Pseudometric-Space A B f) + is-short-map-cauchy-approximation-short-function-Pseudometric-Space d x y Nxy α β = is-short-map-short-function-Pseudometric-Space A B f ( α +ℚ⁺ β +ℚ⁺ d) @@ -785,13 +835,95 @@ module _ ( map-cauchy-approximation-Pseudometric-Space A y β) ( Nxy α β) - short-map-short-function-cauchy-approximation-Pseudometric-Space : + short-map-cauchy-approximation-short-function-Pseudometric-Space : short-function-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space A) ( cauchy-pseudocompletion-Pseudometric-Space B) - short-map-short-function-cauchy-approximation-Pseudometric-Space = - ( map-short-function-cauchy-approximation-Pseudometric-Space A B f , - is-short-map-short-function-cauchy-approximation-Pseudometric-Space) + short-map-cauchy-approximation-short-function-Pseudometric-Space = + ( map-cauchy-approximation-short-function-Pseudometric-Space A B f , + is-short-map-cauchy-approximation-short-function-Pseudometric-Space) +``` + +### The action of isometries on Cauchy approximations is an isometry + +```agda +module _ + {l1 l2 l1' l2' : Level} + (A : Pseudometric-Space l1 l2) (B : Pseudometric-Space l1' l2') + (f : isometry-Pseudometric-Space A B) + where abstract + + preserves-neighborhoods-map-cauchy-approximation-isometry-Pseudometric-Space : + (d : ℚ⁺) → + (x y : cauchy-approximation-Pseudometric-Space A) → + neighborhood-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space A) + ( d) + ( x) + ( y) → + neighborhood-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space B) + ( d) + ( map-cauchy-approximation-isometry-Pseudometric-Space A B f x) + ( map-cauchy-approximation-isometry-Pseudometric-Space A B f y) + preserves-neighborhoods-map-cauchy-approximation-isometry-Pseudometric-Space = + is-short-map-cauchy-approximation-short-function-Pseudometric-Space + ( A) + ( B) + ( short-isometry-Pseudometric-Space A B f) + + reflects-neighborhoods-map-cauchy-approximation-isometry-Pseudometric-Space : + (d : ℚ⁺) → + (x y : cauchy-approximation-Pseudometric-Space A) → + neighborhood-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space B) + ( d) + ( map-cauchy-approximation-isometry-Pseudometric-Space A B f x) + ( map-cauchy-approximation-isometry-Pseudometric-Space A B f y) → + neighborhood-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space A) + ( d) + ( x) + ( y) + reflects-neighborhoods-map-cauchy-approximation-isometry-Pseudometric-Space + d x y Nxy α β = + reflects-neighborhoods-map-isometry-Pseudometric-Space + ( A) + ( B) + ( f) + ( α +ℚ⁺ β +ℚ⁺ d) + ( map-cauchy-approximation-Pseudometric-Space A x α) + ( map-cauchy-approximation-Pseudometric-Space A y β) + ( Nxy α β) + + is-isometry-map-cauchy-approximation-isometry-Pseudometric-Space : + is-isometry-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space A) + ( cauchy-pseudocompletion-Pseudometric-Space B) + ( map-cauchy-approximation-isometry-Pseudometric-Space A B f) + is-isometry-map-cauchy-approximation-isometry-Pseudometric-Space d x y = + ( ( preserves-neighborhoods-map-cauchy-approximation-isometry-Pseudometric-Space + ( d) + ( x) + ( y)) , + ( reflects-neighborhoods-map-cauchy-approximation-isometry-Pseudometric-Space + ( d) + ( x) + ( y))) + +module _ + {l1 l2 l1' l2' : Level} + (A : Pseudometric-Space l1 l2) (B : Pseudometric-Space l1' l2') + (f : isometry-Pseudometric-Space A B) + where + + isometry-map-cauchy-approximation-isometry-Pseudometric-Space : + isometry-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space A) + ( cauchy-pseudocompletion-Pseudometric-Space B) + isometry-map-cauchy-approximation-isometry-Pseudometric-Space = + ( map-cauchy-approximation-isometry-Pseudometric-Space A B f , + is-isometry-map-cauchy-approximation-isometry-Pseudometric-Space A B f) ``` ### The image of a Cauchy approximation in the Cauchy pseudocompletion is convergent @@ -805,7 +937,7 @@ module _ is-limit-map-cauchy-approximation-cauchy-pseudocompletion-Ppseudometric-Space : is-limit-cauchy-approximation-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) - ( map-short-function-cauchy-approximation-Pseudometric-Space + ( map-cauchy-approximation-short-function-Pseudometric-Space ( M) ( cauchy-pseudocompletion-Pseudometric-Space M) ( short-map-cauchy-pseudocompletion-Pseudometric-Space M) @@ -839,7 +971,7 @@ module _ sim-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M)) - ( map-short-function-cauchy-approximation-Pseudometric-Space + ( map-cauchy-approximation-short-function-Pseudometric-Space ( M) ( cauchy-pseudocompletion-Pseudometric-Space M) ( short-map-cauchy-pseudocompletion-Pseudometric-Space M) @@ -850,7 +982,7 @@ module _ sim-map-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space = sim-const-is-limit-cauchy-approximation-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) - ( map-short-function-cauchy-approximation-Pseudometric-Space + ( map-cauchy-approximation-short-function-Pseudometric-Space ( M) ( cauchy-pseudocompletion-Pseudometric-Space M) ( short-map-cauchy-pseudocompletion-Pseudometric-Space M) diff --git a/src/metric-spaces/indexed-sums-metric-spaces.lagda.md b/src/metric-spaces/indexed-sums-metric-spaces.lagda.md index 4ed15b71da2..c07e513fe37 100644 --- a/src/metric-spaces/indexed-sums-metric-spaces.lagda.md +++ b/src/metric-spaces/indexed-sums-metric-spaces.lagda.md @@ -295,7 +295,7 @@ module _ ( map-emb-fiber-indexed-sum-Metric-Space A P x , is-short-emb-fiber-indexed-sum-Metric-Space) - reflects-neighborhood-emb-fiber-indexed-sum-Metric-Space : + reflects-neighborhoods-emb-fiber-indexed-sum-Metric-Space : (d : ℚ⁺) (px px' : type-Metric-Space (P x)) → neighborhood-Metric-Space ( indexed-sum-Metric-Space A P) @@ -307,7 +307,8 @@ module _ ( d) ( px) ( px') - reflects-neighborhood-emb-fiber-indexed-sum-Metric-Space d px px' (e , Nxx') = + reflects-neighborhoods-emb-fiber-indexed-sum-Metric-Space + d px px' (e , Nxx') = inv-tr ( λ e' → neighborhood-Metric-Space @@ -328,7 +329,7 @@ module _ ( map-emb-fiber-indexed-sum-Metric-Space A P x) is-isometry-emb-fiber-indexed-sum-Metric-Space d px px' = ( is-short-emb-fiber-indexed-sum-Metric-Space d px px' , - reflects-neighborhood-emb-fiber-indexed-sum-Metric-Space d px px') + reflects-neighborhoods-emb-fiber-indexed-sum-Metric-Space d px px') isometry-emb-fiber-indexed-Metric-Space : isometry-Metric-Space (P x) (indexed-sum-Metric-Space A P) diff --git a/src/metric-spaces/isometries-between-metric-extensions-of-pseudometric-spaces.lagda.md b/src/metric-spaces/isometries-between-metric-extensions-of-pseudometric-spaces.lagda.md new file mode 100644 index 00000000000..411d45fc060 --- /dev/null +++ b/src/metric-spaces/isometries-between-metric-extensions-of-pseudometric-spaces.lagda.md @@ -0,0 +1,299 @@ +# Isometries between metric extensions of a pseudometric space + +```agda +{-# OPTIONS --lossy-unification #-} + +module metric-spaces.isometries-between-metric-extensions-of-pseudometric-spaces where +``` + +
Imports + +```agda +open import elementary-number-theory.addition-positive-rational-numbers +open import elementary-number-theory.positive-rational-numbers +open import elementary-number-theory.strict-inequality-positive-rational-numbers +open import elementary-number-theory.strict-inequality-rational-numbers + +open import foundation.action-on-identifications-binary-functions +open import foundation.action-on-identifications-functions +open import foundation.binary-relations +open import foundation.binary-transport +open import foundation.dependent-pair-types +open import foundation.equivalences +open import foundation.existential-quantification +open import foundation.function-types +open import foundation.homotopies +open import foundation.identity-types +open import foundation.logical-equivalences +open import foundation.propositional-truncations +open import foundation.propositions +open import foundation.set-quotients +open import foundation.sets +open import foundation.subtypes +open import foundation.transport-along-identifications +open import foundation.universe-levels +open import foundation.whiskering-homotopies-composition + +open import metric-spaces.cauchy-approximations-metric-quotients-of-pseudometric-spaces +open import metric-spaces.cauchy-approximations-metric-spaces +open import metric-spaces.cauchy-approximations-pseudometric-spaces +open import metric-spaces.cauchy-pseudocompletion-of-metric-spaces +open import metric-spaces.cauchy-pseudocompletion-of-pseudometric-spaces +open import metric-spaces.complete-metric-spaces +open import metric-spaces.convergent-cauchy-approximations-metric-spaces +open import metric-spaces.equality-of-metric-spaces +open import metric-spaces.functions-metric-spaces +open import metric-spaces.functions-pseudometric-spaces +open import metric-spaces.isometries-metric-spaces +open import metric-spaces.isometries-pseudometric-spaces +open import metric-spaces.limits-of-cauchy-approximations-metric-spaces +open import metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces +open import metric-spaces.metric-extensions-of-pseudometric-spaces +open import metric-spaces.metric-quotients-of-pseudometric-spaces +open import metric-spaces.metric-spaces +open import metric-spaces.precategory-of-metric-spaces-and-short-functions +open import metric-spaces.pseudometric-spaces +open import metric-spaces.rational-neighborhood-relations +open import metric-spaces.short-functions-metric-spaces +open import metric-spaces.short-functions-pseudometric-spaces +open import metric-spaces.similarity-of-elements-pseudometric-spaces +``` + +
+ +## Idea + +An +{{#concept "isometry" Disambiguation="between metric extensions of a pseudometric space" Agda=isometry-Metric-Extension}} +between two +[metric extensions](metric-spaces.metric-extensions-of-pseudometric-spaces.md) +of a [pseudometric space](metric-spaces.pseudometric-spaces.md) `P`, `i : P → M` +and `j : P → N`, is an [isometry](metric-spaces.isometries-metric-spaces.md) +`f : M → N` such that + +```text + f ∘ i ~ j. +``` + +## Definitions + +### The property of being an isometry between metric extensions + +```agda +module _ + { l1 l2 l3 l4 l5 l6 : Level} + ( P : Pseudometric-Space l1 l2) + ( M : Metric-Extension l3 l4 P) + ( N : Metric-Extension l5 l6 P) + ( f : + isometry-Metric-Space + ( metric-space-Metric-Extension P M) + ( metric-space-Metric-Extension P N)) + where + + coherence-triangle-prop-isometry-metric-space-Metric-Extension : + Prop (l1 ⊔ l5) + coherence-triangle-prop-isometry-metric-space-Metric-Extension = + Π-Prop + ( type-Pseudometric-Space P) + ( λ x → + Id-Prop + ( set-Metric-Space + ( metric-space-Metric-Extension P N)) + ( map-isometry-Pseudometric-Space + ( P) + ( pseudometric-space-Metric-Extension P N) + ( comp-isometry-Pseudometric-Space + ( P) + ( pseudometric-space-Metric-Extension P M) + ( pseudometric-space-Metric-Extension P N) + ( f) + ( isometry-metric-space-Metric-Extension P M)) + ( x)) + ( map-isometry-metric-space-Metric-Extension P N x)) + + coherence-triangle-isometry-metric-space-Metric-Extension : UU (l1 ⊔ l5) + coherence-triangle-isometry-metric-space-Metric-Extension = + type-Prop + coherence-triangle-prop-isometry-metric-space-Metric-Extension + + is-prop-coherence-triangle-isometry-metric-space-Metric-Extension : + is-prop coherence-triangle-isometry-metric-space-Metric-Extension + is-prop-coherence-triangle-isometry-metric-space-Metric-Extension = + is-prop-type-Prop + coherence-triangle-prop-isometry-metric-space-Metric-Extension +``` + +### The type of isometries between metric extensions of a pseudometric space + +```agda +module _ + { l1 l2 l3 l4 l5 l6 : Level} + ( P : Pseudometric-Space l1 l2) + ( M : Metric-Extension l3 l4 P) + ( N : Metric-Extension l5 l6 P) + where + + isometry-Metric-Extension : UU (l1 ⊔ l3 ⊔ l4 ⊔ l5 ⊔ l6) + isometry-Metric-Extension = + type-subtype + ( coherence-triangle-prop-isometry-metric-space-Metric-Extension P M N) + +module _ + { l1 l2 l3 l4 l5 l6 : Level} + ( P : Pseudometric-Space l1 l2) + ( M : Metric-Extension l3 l4 P) + ( N : Metric-Extension l5 l6 P) + ( f : isometry-Metric-Extension P M N) + where + + isometry-metric-space-isometry-Metric-Extension : + isometry-Metric-Space + ( metric-space-Metric-Extension P M) + ( metric-space-Metric-Extension P N) + isometry-metric-space-isometry-Metric-Extension = pr1 f + + map-metric-space-isometry-Metric-Extension : + type-metric-space-Metric-Extension P M → + type-metric-space-Metric-Extension P N + map-metric-space-isometry-Metric-Extension = + map-isometry-Metric-Space + ( metric-space-Metric-Extension P M) + ( metric-space-Metric-Extension P N) + ( isometry-metric-space-isometry-Metric-Extension) + + is-isometry-map-metric-space-isometry-Metric-Extension : + is-isometry-Metric-Space + ( metric-space-Metric-Extension P M) + ( metric-space-Metric-Extension P N) + ( map-metric-space-isometry-Metric-Extension) + is-isometry-map-metric-space-isometry-Metric-Extension = + is-isometry-map-isometry-Metric-Space + ( metric-space-Metric-Extension P M) + ( metric-space-Metric-Extension P N) + ( isometry-metric-space-isometry-Metric-Extension) + + coh-isometry-Metric-Extension : + coherence-triangle-isometry-metric-space-Metric-Extension + ( P) + ( M) + ( N) + ( isometry-metric-space-isometry-Metric-Extension) + coh-isometry-Metric-Extension = pr2 f +``` + +## Properties + +### Isometries of metric spaces are isometries of metric extensions + +```agda +module _ + {l1 l2 l3 l4 : Level} + (M : Metric-Space l1 l2) + (N : Metric-Space l3 l4) + (f : isometry-Metric-Space M N) + where + + forgetful-isometry-Metric-Extension : + isometry-Metric-Extension + ( pseudometric-Metric-Space M) + ( forgetful-Metric-Extension M) + ( N , f) + forgetful-isometry-Metric-Extension = (f , refl-htpy) +``` + +### The identity isometry of a metric extension + +```agda +module _ + {l1 l2 l3 l4 : Level} + (P : Pseudometric-Space l1 l2) + (M : Metric-Extension l3 l4 P) + where + + id-isometry-Metric-Extension : isometry-Metric-Extension P M M + pr1 id-isometry-Metric-Extension = + id-isometry-Metric-Space (metric-space-Metric-Extension P M) + pr2 id-isometry-Metric-Extension = refl-htpy +``` + +### Composition of isometries between metric extensions + +```agda +module _ + {l l' lu lu' lv lv' lw lw' : Level} + (P : Pseudometric-Space l l') + (U : Metric-Extension lu lu' P) + (V : Metric-Extension lv lv' P) + (W : Metric-Extension lw lw' P) + (g : isometry-Metric-Extension P V W) + (f : isometry-Metric-Extension P U V) + where + + abstract + coh-comp-isometry-Metric-Extension : + coherence-triangle-isometry-metric-space-Metric-Extension P U W + ( comp-isometry-Metric-Space + ( metric-space-Metric-Extension P U) + ( metric-space-Metric-Extension P V) + ( metric-space-Metric-Extension P W) + ( isometry-metric-space-isometry-Metric-Extension P V W g) + ( isometry-metric-space-isometry-Metric-Extension P U V f)) + coh-comp-isometry-Metric-Extension = + ( ( map-metric-space-isometry-Metric-Extension P V W g) ·l + ( coh-isometry-Metric-Extension P U V f)) ∙h + ( coh-isometry-Metric-Extension P V W g) + + comp-isometry-Metric-Extension : isometry-Metric-Extension P U W + pr1 comp-isometry-Metric-Extension = + comp-isometry-Metric-Space + ( metric-space-Metric-Extension P U) + ( metric-space-Metric-Extension P V) + ( metric-space-Metric-Extension P W) + ( isometry-metric-space-isometry-Metric-Extension P V W g) + ( isometry-metric-space-isometry-Metric-Extension P U V f) + pr2 comp-isometry-Metric-Extension = coh-comp-isometry-Metric-Extension +``` + +### Homotopic isometries between metric extensions are equal + +```agda +module _ + { l1 l2 l3 l4 l5 l6 : Level} + ( P : Pseudometric-Space l1 l2) + ( M : Metric-Extension l3 l4 P) + ( N : Metric-Extension l5 l6 P) + ( f g : isometry-Metric-Extension P M N) + where + + htpy-isometry-Metric-Extension : UU (l3 ⊔ l5) + htpy-isometry-Metric-Extension = + ( map-metric-space-isometry-Metric-Extension P M N f ~ + map-metric-space-isometry-Metric-Extension P M N g) + + is-prop-htpy-isometry-Metric-Extension : + is-prop htpy-isometry-Metric-Extension + is-prop-htpy-isometry-Metric-Extension = + is-prop-Π + ( λ x → + is-set-type-Metric-Space + ( metric-space-Metric-Extension P N) + ( map-metric-space-isometry-Metric-Extension P M N f x) + ( map-metric-space-isometry-Metric-Extension P M N g x)) + + htpy-prop-isometry-Metric-Extension : Prop (l3 ⊔ l5) + htpy-prop-isometry-Metric-Extension = + ( htpy-isometry-Metric-Extension , is-prop-htpy-isometry-Metric-Extension) + + eq-htpy-isometry-Metric-Extension : + htpy-isometry-Metric-Extension → f = g + eq-htpy-isometry-Metric-Extension f~g = + eq-type-subtype + ( coherence-triangle-prop-isometry-metric-space-Metric-Extension P M N) + ( eq-htpy-map-isometry-Metric-Space + ( metric-space-Metric-Extension P M) + ( metric-space-Metric-Extension P N) + ( isometry-metric-space-isometry-Metric-Extension P M N f) + ( isometry-metric-space-isometry-Metric-Extension P M N g) + ( f~g)) +``` diff --git a/src/metric-spaces/isometries-metric-spaces.lagda.md b/src/metric-spaces/isometries-metric-spaces.lagda.md index 3fee4dcad8f..92c1c0a3e88 100644 --- a/src/metric-spaces/isometries-metric-spaces.lagda.md +++ b/src/metric-spaces/isometries-metric-spaces.lagda.md @@ -125,8 +125,8 @@ module _ is-isometry-Metric-Space A A (id-Metric-Space A) is-isometry-id-Metric-Space d x y = id-iff - isometry-id-Metric-Space : isometry-Metric-Space A A - isometry-id-Metric-Space = + id-isometry-Metric-Space : isometry-Metric-Space A A + id-isometry-Metric-Space = id-Metric-Space A , is-isometry-id-Metric-Space ``` @@ -171,7 +171,7 @@ module _ (f : isometry-Metric-Space A B) where - preserves-neighborhood-map-isometry-Metric-Space : + preserves-neighborhoods-map-isometry-Metric-Space : (d : ℚ⁺) (x y : type-Metric-Space A) → neighborhood-Metric-Space A d x y → neighborhood-Metric-Space @@ -179,11 +179,11 @@ module _ ( d) ( map-isometry-Metric-Space A B f x) ( map-isometry-Metric-Space A B f y) - preserves-neighborhood-map-isometry-Metric-Space d x y = + preserves-neighborhoods-map-isometry-Metric-Space d x y = forward-implication ( is-isometry-map-isometry-Metric-Space A B f d x y) - reflects-neighborhood-map-isometry-Metric-Space : + reflects-neighborhoods-map-isometry-Metric-Space : (d : ℚ⁺) (x y : type-Metric-Space A) → neighborhood-Metric-Space ( B) @@ -191,7 +191,7 @@ module _ ( map-isometry-Metric-Space A B f x) ( map-isometry-Metric-Space A B f y) → neighborhood-Metric-Space A d x y - reflects-neighborhood-map-isometry-Metric-Space d x y = + reflects-neighborhoods-map-isometry-Metric-Space d x y = backward-implication ( is-isometry-map-isometry-Metric-Space A B f d x y) ``` @@ -238,7 +238,7 @@ module _ left-unit-law-comp-isometry-Metric-Space : ( comp-isometry-Metric-Space A B B - (isometry-id-Metric-Space B) + ( id-isometry-Metric-Space B) ( f)) = ( f) left-unit-law-comp-isometry-Metric-Space = @@ -250,7 +250,7 @@ module _ right-unit-law-comp-isometry-Metric-Space : ( comp-isometry-Metric-Space A A B ( f) - ( isometry-id-Metric-Space A)) = + ( id-isometry-Metric-Space A)) = ( f) right-unit-law-comp-isometry-Metric-Space = right-unit-law-comp-isometry-Pseudometric-Space @@ -335,7 +335,7 @@ module _ B f isometry-inv-is-equiv-isometry-Metric-Space) = - ( isometry-id-Metric-Space B) + ( id-isometry-Metric-Space B) is-section-isometry-inv-is-equiv-isometry-Metric-Space = is-section-isometry-inv-is-equiv-isometry-Pseudometric-Space ( pseudometric-Metric-Space A) @@ -350,7 +350,7 @@ module _ A isometry-inv-is-equiv-isometry-Metric-Space f) = - ( isometry-id-Metric-Space A) + ( id-isometry-Metric-Space A) is-retraction-isometry-inv-is-equiv-isometry-Metric-Space = is-retraction-isometry-inv-is-equiv-isometry-Pseudometric-Space ( pseudometric-Metric-Space A) diff --git a/src/metric-spaces/isometries-pseudometric-spaces.lagda.md b/src/metric-spaces/isometries-pseudometric-spaces.lagda.md index 35d81a521c0..7147daf5c02 100644 --- a/src/metric-spaces/isometries-pseudometric-spaces.lagda.md +++ b/src/metric-spaces/isometries-pseudometric-spaces.lagda.md @@ -113,8 +113,8 @@ module _ is-isometry-Pseudometric-Space A A (id-Pseudometric-Space A) is-isometry-id-Pseudometric-Space d x y = id-iff - isometry-id-Pseudometric-Space : isometry-Pseudometric-Space A A - isometry-id-Pseudometric-Space = + id-isometry-Pseudometric-Space : isometry-Pseudometric-Space A A + id-isometry-Pseudometric-Space = ( id-Pseudometric-Space A , is-isometry-id-Pseudometric-Space) ``` @@ -162,7 +162,7 @@ module _ (f : isometry-Pseudometric-Space A B) where - preserves-neighborhood-map-isometry-Pseudometric-Space : + preserves-neighborhoods-map-isometry-Pseudometric-Space : (d : ℚ⁺) (x y : type-Pseudometric-Space A) → neighborhood-Pseudometric-Space A d x y → neighborhood-Pseudometric-Space @@ -170,11 +170,11 @@ module _ ( d) ( map-isometry-Pseudometric-Space A B f x) ( map-isometry-Pseudometric-Space A B f y) - preserves-neighborhood-map-isometry-Pseudometric-Space d x y = + preserves-neighborhoods-map-isometry-Pseudometric-Space d x y = forward-implication ( is-isometry-map-isometry-Pseudometric-Space A B f d x y) - reflects-neighborhood-map-isometry-Pseudometric-Space : + reflects-neighborhoods-map-isometry-Pseudometric-Space : (d : ℚ⁺) (x y : type-Pseudometric-Space A) → neighborhood-Pseudometric-Space ( B) @@ -182,7 +182,7 @@ module _ ( map-isometry-Pseudometric-Space A B f x) ( map-isometry-Pseudometric-Space A B f y) → neighborhood-Pseudometric-Space A d x y - reflects-neighborhood-map-isometry-Pseudometric-Space d x y = + reflects-neighborhoods-map-isometry-Pseudometric-Space d x y = backward-implication ( is-isometry-map-isometry-Pseudometric-Space A B f d x y) ``` @@ -232,7 +232,7 @@ module _ left-unit-law-comp-isometry-Pseudometric-Space : ( comp-isometry-Pseudometric-Space A B B - (isometry-id-Pseudometric-Space B) + ( id-isometry-Pseudometric-Space B) ( f)) = ( f) left-unit-law-comp-isometry-Pseudometric-Space = @@ -243,7 +243,7 @@ module _ ( A) ( B) ( B) - (isometry-id-Pseudometric-Space B) + ( id-isometry-Pseudometric-Space B) ( f)) ( f) ( refl-htpy) @@ -251,7 +251,7 @@ module _ right-unit-law-comp-isometry-Pseudometric-Space : ( comp-isometry-Pseudometric-Space A A B ( f) - ( isometry-id-Pseudometric-Space A)) = + ( id-isometry-Pseudometric-Space A)) = ( f) right-unit-law-comp-isometry-Pseudometric-Space = eq-htpy-map-isometry-Pseudometric-Space @@ -263,7 +263,7 @@ module _ ( A) ( B) ( f) - ( isometry-id-Pseudometric-Space A)) + ( id-isometry-Pseudometric-Space A)) ( refl-htpy) ``` @@ -357,25 +357,25 @@ module _ ( comp-isometry-Pseudometric-Space B A B ( f) ( isometry-inv-is-equiv-isometry-Pseudometric-Space)) = - ( isometry-id-Pseudometric-Space B) + ( id-isometry-Pseudometric-Space B) is-section-isometry-inv-is-equiv-isometry-Pseudometric-Space = eq-htpy-map-isometry-Pseudometric-Space B B ( comp-isometry-Pseudometric-Space B A B ( f) ( isometry-inv-is-equiv-isometry-Pseudometric-Space)) - ( isometry-id-Pseudometric-Space B) + ( id-isometry-Pseudometric-Space B) ( is-section-map-inv-is-equiv E) is-retraction-isometry-inv-is-equiv-isometry-Pseudometric-Space : ( comp-isometry-Pseudometric-Space A B A ( isometry-inv-is-equiv-isometry-Pseudometric-Space) ( f)) = - ( isometry-id-Pseudometric-Space A) + ( id-isometry-Pseudometric-Space A) is-retraction-isometry-inv-is-equiv-isometry-Pseudometric-Space = eq-htpy-map-isometry-Pseudometric-Space A A ( comp-isometry-Pseudometric-Space A B A ( isometry-inv-is-equiv-isometry-Pseudometric-Space) ( f)) - ( isometry-id-Pseudometric-Space A) + ( id-isometry-Pseudometric-Space A) ( is-retraction-map-inv-is-equiv E) ``` diff --git a/src/metric-spaces/limits-of-cauchy-approximations-metric-spaces.lagda.md b/src/metric-spaces/limits-of-cauchy-approximations-metric-spaces.lagda.md index d9a5fe6ea14..84a29eb976c 100644 --- a/src/metric-spaces/limits-of-cauchy-approximations-metric-spaces.lagda.md +++ b/src/metric-spaces/limits-of-cauchy-approximations-metric-spaces.lagda.md @@ -10,12 +10,9 @@ module metric-spaces.limits-of-cauchy-approximations-metric-spaces where open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers -open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.propositions -open import foundation.subtypes -open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces diff --git a/src/metric-spaces/metric-extensions-of-pseudometric-spaces.lagda.md b/src/metric-spaces/metric-extensions-of-pseudometric-spaces.lagda.md new file mode 100644 index 00000000000..4868e97993a --- /dev/null +++ b/src/metric-spaces/metric-extensions-of-pseudometric-spaces.lagda.md @@ -0,0 +1,255 @@ +# Metric extensions of pseudometric spaces + +```agda +module metric-spaces.metric-extensions-of-pseudometric-spaces where +``` + +
Imports + +```agda +open import elementary-number-theory.addition-positive-rational-numbers +open import elementary-number-theory.positive-rational-numbers +open import elementary-number-theory.strict-inequality-positive-rational-numbers +open import elementary-number-theory.strict-inequality-rational-numbers + +open import foundation.action-on-identifications-binary-functions +open import foundation.action-on-identifications-functions +open import foundation.binary-relations +open import foundation.binary-transport +open import foundation.dependent-pair-types +open import foundation.equivalences +open import foundation.existential-quantification +open import foundation.function-types +open import foundation.homotopies +open import foundation.identity-types +open import foundation.logical-equivalences +open import foundation.propositional-truncations +open import foundation.propositions +open import foundation.set-quotients +open import foundation.sets +open import foundation.transport-along-identifications +open import foundation.universe-levels + +open import metric-spaces.cauchy-approximations-metric-quotients-of-pseudometric-spaces +open import metric-spaces.cauchy-approximations-metric-spaces +open import metric-spaces.cauchy-approximations-pseudometric-spaces +open import metric-spaces.cauchy-pseudocompletion-of-metric-spaces +open import metric-spaces.cauchy-pseudocompletion-of-pseudometric-spaces +open import metric-spaces.complete-metric-spaces +open import metric-spaces.convergent-cauchy-approximations-metric-spaces +open import metric-spaces.equality-of-metric-spaces +open import metric-spaces.functions-metric-spaces +open import metric-spaces.functions-pseudometric-spaces +open import metric-spaces.isometries-metric-spaces +open import metric-spaces.isometries-pseudometric-spaces +open import metric-spaces.limits-of-cauchy-approximations-metric-spaces +open import metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces +open import metric-spaces.metric-quotients-of-pseudometric-spaces +open import metric-spaces.metric-spaces +open import metric-spaces.precategory-of-metric-spaces-and-short-functions +open import metric-spaces.pseudometric-spaces +open import metric-spaces.rational-neighborhood-relations +open import metric-spaces.short-functions-metric-spaces +open import metric-spaces.short-functions-pseudometric-spaces +open import metric-spaces.similarity-of-elements-pseudometric-spaces +``` + +
+ +## Idea + +A +{{#concept "metric extension" Disambiguation="of a pseudometric space" Agda=Metric-Extension}} +of a [pseudometric space](metric-spaces.pseudometric-spaces.md) `P` is a +[metric space](metric-spaces.metric-spaces.md) `M` together with an +[isometry](metric-spaces.isometries-pseudometric-spaces.md) `f : P → M`. + +## Definition + +### Metric extensions of pseudometric spaces + +```agda +module _ + {l1 l2 : Level} (l3 l4 : Level) (P : Pseudometric-Space l1 l2) + where + + Metric-Extension : UU (l1 ⊔ l2 ⊔ lsuc l3 ⊔ lsuc l4) + Metric-Extension = + Σ ( Metric-Space l3 l4) + ( isometry-Pseudometric-Space P ∘ pseudometric-Metric-Space) +``` + +```agda +module _ + {l1 l2 l3 l4 : Level} (P : Pseudometric-Space l1 l2) + (M : Metric-Extension l3 l4 P) + where + + metric-space-Metric-Extension : Metric-Space l3 l4 + metric-space-Metric-Extension = pr1 M + + pseudometric-space-Metric-Extension : Pseudometric-Space l3 l4 + pseudometric-space-Metric-Extension = + pseudometric-Metric-Space metric-space-Metric-Extension + + type-metric-space-Metric-Extension : UU l3 + type-metric-space-Metric-Extension = + type-Metric-Space metric-space-Metric-Extension + + isometry-metric-space-Metric-Extension : + isometry-Pseudometric-Space P pseudometric-space-Metric-Extension + isometry-metric-space-Metric-Extension = pr2 M + + map-isometry-metric-space-Metric-Extension : + type-Pseudometric-Space P → type-metric-space-Metric-Extension + map-isometry-metric-space-Metric-Extension = + map-isometry-Pseudometric-Space + ( P) + ( pseudometric-space-Metric-Extension) + ( isometry-metric-space-Metric-Extension) +``` + +## Properties + +### The forgetful metric extension of a metric space into itself + +```agda +module _ + {l1 l2 : Level} (M : Metric-Space l1 l2) + where + + forgetful-Metric-Extension : + Metric-Extension l1 l2 (pseudometric-Metric-Space M) + forgetful-Metric-Extension = (M , id-isometry-Metric-Space M) +``` + +### Action of metric extensions on Cauchy approximations + +```agda +module _ + {l1 l2 l3 l4 : Level} (P : Pseudometric-Space l1 l2) + (M : Metric-Extension l3 l4 P) + where + + isometry-cauchy-pseudocompletion-Metric-Extension : + isometry-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space P) + ( cauchy-pseudocompletion-Metric-Space + ( metric-space-Metric-Extension P M)) + isometry-cauchy-pseudocompletion-Metric-Extension = + isometry-map-cauchy-approximation-isometry-Pseudometric-Space + ( P) + ( pseudometric-space-Metric-Extension P M) + ( isometry-metric-space-Metric-Extension P M) + + map-cauchy-pseudocompletion-Metric-Extension : + cauchy-approximation-Pseudometric-Space P → + cauchy-approximation-Metric-Space + ( metric-space-Metric-Extension P M) + map-cauchy-pseudocompletion-Metric-Extension = + map-isometry-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space P) + ( cauchy-pseudocompletion-Metric-Space + ( metric-space-Metric-Extension P M)) + ( isometry-cauchy-pseudocompletion-Metric-Extension) + + is-isometry-map-cauchy-pseudocompletion-Metric-Extension : + is-isometry-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space P) + ( cauchy-pseudocompletion-Metric-Space + ( metric-space-Metric-Extension P M)) + ( map-cauchy-pseudocompletion-Metric-Extension) + is-isometry-map-cauchy-pseudocompletion-Metric-Extension = + is-isometry-map-isometry-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space P) + ( cauchy-pseudocompletion-Metric-Space + ( metric-space-Metric-Extension P M)) + ( isometry-cauchy-pseudocompletion-Metric-Extension) +``` + +### Limit points in metric extensions + +```agda +module _ + {l1 l2 l3 l4 : Level} + (P : Pseudometric-Space l1 l2) + (M : Metric-Extension l3 l4 P) + (u : cauchy-approximation-Pseudometric-Space P) + (y : type-metric-space-Metric-Extension P M) + where + + is-limit-map-cauchy-pseudocompletion-prop-Metric-Extension : Prop l4 + is-limit-map-cauchy-pseudocompletion-prop-Metric-Extension = + is-limit-cauchy-approximation-prop-Metric-Space + ( metric-space-Metric-Extension P M) + ( map-cauchy-pseudocompletion-Metric-Extension P M u) + ( y) + + is-limit-map-cauchy-pseudocompletion-Metric-Extension : UU l4 + is-limit-map-cauchy-pseudocompletion-Metric-Extension = + type-Prop + is-limit-map-cauchy-pseudocompletion-prop-Metric-Extension + + is-prop-is-limit-map-cauchy-pseudocompletion-Metric-Extension : + is-prop is-limit-map-cauchy-pseudocompletion-Metric-Extension + is-prop-is-limit-map-cauchy-pseudocompletion-Metric-Extension = + is-prop-type-Prop + is-limit-map-cauchy-pseudocompletion-prop-Metric-Extension +``` + +### Similarity in the Cauchy pseudocompletion of a pseudometric space preserves and reflects limits in a metric extension + +```agda +module _ + {l1 l2 l3 l4 : Level} + (P : Pseudometric-Space l1 l2) + (M : Metric-Extension l3 l4 P) + (u v : cauchy-approximation-Pseudometric-Space P) + (y : type-metric-space-Metric-Extension P M) + where + + sim-has-same-limit-map-cauchy-pseudocompletion-Metric-Extension : + is-limit-map-cauchy-pseudocompletion-Metric-Extension P M u y → + is-limit-map-cauchy-pseudocompletion-Metric-Extension P M v y → + sim-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space P) + ( u) + ( v) + sim-has-same-limit-map-cauchy-pseudocompletion-Metric-Extension lim-u lim-v = + reflects-sim-map-isometry-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space P) + ( cauchy-pseudocompletion-Metric-Space + ( metric-space-Metric-Extension P M)) + ( isometry-cauchy-pseudocompletion-Metric-Extension P M) + ( u) + ( v) + ( sim-has-same-limit-cauchy-approximation-Pseudometric-Space + ( pseudometric-space-Metric-Extension P M) + ( map-cauchy-pseudocompletion-Metric-Extension P M u) + ( map-cauchy-pseudocompletion-Metric-Extension P M v) + ( y) + ( lim-u) + ( lim-v)) + + has-same-limit-map-cauchy-sim-pseudocompletion-Metric-Extension : + sim-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space P) + ( u) + ( v) → + is-limit-map-cauchy-pseudocompletion-Metric-Extension P M u y → + is-limit-map-cauchy-pseudocompletion-Metric-Extension P M v y + has-same-limit-map-cauchy-sim-pseudocompletion-Metric-Extension u~v = + has-same-limit-sim-cauchy-approximation-Pseudometric-Space + ( pseudometric-space-Metric-Extension P M) + ( map-cauchy-pseudocompletion-Metric-Extension P M u) + ( map-cauchy-pseudocompletion-Metric-Extension P M v) + ( y) + ( preserves-sim-map-isometry-Pseudometric-Space + ( cauchy-pseudocompletion-Pseudometric-Space P) + ( cauchy-pseudocompletion-Metric-Space + ( metric-space-Metric-Extension P M)) + ( isometry-cauchy-pseudocompletion-Metric-Extension P M) + ( u) + ( v) + ( u~v)) +``` diff --git a/src/metric-spaces/metric-quotients-of-pseudometric-spaces.lagda.md b/src/metric-spaces/metric-quotients-of-pseudometric-spaces.lagda.md index ffecd0aafca..d4228503f38 100644 --- a/src/metric-spaces/metric-quotients-of-pseudometric-spaces.lagda.md +++ b/src/metric-spaces/metric-quotients-of-pseudometric-spaces.lagda.md @@ -386,6 +386,17 @@ module _ map-subtype-metric-quotient-Pseudometric-Space = inhabitant-equivalence-class-quotient-map-set-quotient ( equivalence-relation-sim-Pseudometric-Space M) + + eq-map-is-in-class-metric-quotient-Pseudometric-Space : + (X : type-metric-quotient-Pseudometric-Space M) → + {x : type-Pseudometric-Space M} → + is-in-class-metric-quotient-Pseudometric-Space M X x → + map-metric-quotient-Pseudometric-Space x = X + eq-map-is-in-class-metric-quotient-Pseudometric-Space X {x} x∈X = + eq-set-quotient-equivalence-class-set-quotient + ( equivalence-relation-sim-Pseudometric-Space M) + ( X) + ( x∈X) ``` ### The mapping from a pseudometric space its quotient metric space is an isometry @@ -397,7 +408,7 @@ module _ where abstract - preserves-neighborhood-map-metric-quotient-Pseudometric-Space : + preserves-neighborhoods-map-metric-quotient-Pseudometric-Space : (d : ℚ⁺) (x y : type-Pseudometric-Space M) → neighborhood-Pseudometric-Space M d x y → neighborhood-metric-quotient-Pseudometric-Space @@ -405,7 +416,7 @@ module _ ( d) ( map-metric-quotient-Pseudometric-Space M x) ( map-metric-quotient-Pseudometric-Space M y) - preserves-neighborhood-map-metric-quotient-Pseudometric-Space + preserves-neighborhoods-map-metric-quotient-Pseudometric-Space d x y d⟨x,y⟩ (x' , x≈x') (y' , y≈y') = let x~x' = @@ -423,15 +434,15 @@ module _ ( y≈y') in - preserves-neighborhood-right-sim-Pseudometric-Space M y~y' d x' - ( preserves-neighborhood-left-sim-Pseudometric-Space + preserves-neighborhoods-right-sim-Pseudometric-Space M y~y' d x' + ( preserves-neighborhoods-left-sim-Pseudometric-Space ( M) ( x~x') ( d) ( y) ( d⟨x,y⟩)) - reflects-neighborhood-map-metric-quotient-Pseudometric-Space : + reflects-neighborhoods-map-metric-quotient-Pseudometric-Space : (d : ℚ⁺) (x y : type-Pseudometric-Space M) → neighborhood-metric-quotient-Pseudometric-Space ( M) @@ -439,7 +450,7 @@ module _ ( map-metric-quotient-Pseudometric-Space M x) ( map-metric-quotient-Pseudometric-Space M y) → neighborhood-Pseudometric-Space M d x y - reflects-neighborhood-map-metric-quotient-Pseudometric-Space + reflects-neighborhoods-map-metric-quotient-Pseudometric-Space d x y Nxy = Nxy ( map-subtype-metric-quotient-Pseudometric-Space M x) @@ -451,8 +462,8 @@ module _ ( pseudometric-metric-quotient-Pseudometric-Space M) ( map-metric-quotient-Pseudometric-Space M) is-isometry-map-metric-quotient-Pseudometric-Space d x y = - ( preserves-neighborhood-map-metric-quotient-Pseudometric-Space d x y , - reflects-neighborhood-map-metric-quotient-Pseudometric-Space d x y) + ( preserves-neighborhoods-map-metric-quotient-Pseudometric-Space d x y , + reflects-neighborhoods-map-metric-quotient-Pseudometric-Space d x y) ``` ### The isometry from a pseudometric space to its quotient metric space @@ -758,7 +769,7 @@ module _ ( f)) abstract - preserves-neighborhood-map-isometry-metric-quotient-Pseudometric-Space : + preserves-neighborhoods-map-isometry-metric-quotient-Pseudometric-Space : (d : ℚ⁺) → (x y : type-metric-quotient-Pseudometric-Space A) → neighborhood-metric-quotient-Pseudometric-Space @@ -771,7 +782,7 @@ module _ ( d) ( map-isometry-metric-quotient-Pseudometric-Space x) ( map-isometry-metric-quotient-Pseudometric-Space y) - preserves-neighborhood-map-isometry-metric-quotient-Pseudometric-Space = + preserves-neighborhoods-map-isometry-metric-quotient-Pseudometric-Space = is-short-map-short-function-metric-quotient-Pseudometric-Space ( A) ( B) @@ -780,7 +791,7 @@ module _ ( pseudometric-Metric-Space B) ( f)) - reflects-neighborhood-map-isometry-metric-quotient-Pseudometric-Space : + reflects-neighborhoods-map-isometry-metric-quotient-Pseudometric-Space : (d : ℚ⁺) → (x y : type-metric-quotient-Pseudometric-Space A) → neighborhood-Metric-Space @@ -793,9 +804,9 @@ module _ ( d) ( x) ( y) - reflects-neighborhood-map-isometry-metric-quotient-Pseudometric-Space + reflects-neighborhoods-map-isometry-metric-quotient-Pseudometric-Space d X Y N⟨fX,fY⟩ (x , x∈X) (y , y∈Y) = - reflects-neighborhood-map-isometry-Pseudometric-Space + reflects-neighborhoods-map-isometry-Pseudometric-Space ( A) ( pseudometric-Metric-Space B) ( f) @@ -814,11 +825,11 @@ module _ ( B) ( map-isometry-metric-quotient-Pseudometric-Space) is-isometry-map-isometry-metric-quotient-Pseudometric-Space d x y = - ( preserves-neighborhood-map-isometry-metric-quotient-Pseudometric-Space + ( preserves-neighborhoods-map-isometry-metric-quotient-Pseudometric-Space ( d) ( x) ( y) , - reflects-neighborhood-map-isometry-metric-quotient-Pseudometric-Space + reflects-neighborhoods-map-isometry-metric-quotient-Pseudometric-Space ( d) ( x) ( y)) diff --git a/src/metric-spaces/precategory-of-metric-spaces-and-isometries.lagda.md b/src/metric-spaces/precategory-of-metric-spaces-and-isometries.lagda.md index ba315c5ba83..04989c2beae 100644 --- a/src/metric-spaces/precategory-of-metric-spaces-and-isometries.lagda.md +++ b/src/metric-spaces/precategory-of-metric-spaces-and-isometries.lagda.md @@ -55,7 +55,7 @@ module _ ( Metric-Space l1 l2) ( set-isometry-Metric-Space) ( λ {A B C} → comp-isometry-Metric-Space A B C) - ( isometry-id-Metric-Space) + ( id-isometry-Metric-Space) ( λ {A B C D} → associative-comp-isometry-Metric-Space A B C D) ( λ {A B} → left-unit-law-comp-isometry-Metric-Space A B) ( λ {A B} → right-unit-law-comp-isometry-Metric-Space A B) diff --git a/src/metric-spaces/precategory-of-metric-spaces-and-short-functions.lagda.md b/src/metric-spaces/precategory-of-metric-spaces-and-short-functions.lagda.md index 6d3251395db..c494f32b3d5 100644 --- a/src/metric-spaces/precategory-of-metric-spaces-and-short-functions.lagda.md +++ b/src/metric-spaces/precategory-of-metric-spaces-and-short-functions.lagda.md @@ -56,7 +56,7 @@ module _ ( Metric-Space l1 l2) ( set-short-function-Metric-Space) ( λ {A B C} → comp-short-function-Metric-Space A B C) - ( short-id-Metric-Space) + ( id-short-function-Metric-Space) ( λ {A B C D} → associative-comp-short-function-Metric-Space A B C D) ( λ {A B} → left-unit-law-comp-short-function-Metric-Space A B) ( λ {A B} → right-unit-law-comp-short-function-Metric-Space A B) @@ -149,7 +149,7 @@ module _ ( B) ( f) ( short-inverse)) - ( short-id-Metric-Space B) + ( id-short-function-Metric-Space B) ( is-section-map-inv-is-equiv E)) , ( eq-htpy-map-short-function-Metric-Space ( A) @@ -160,7 +160,7 @@ module _ ( A) ( short-inverse) ( f)) - ( short-id-Metric-Space A) + ( id-short-function-Metric-Space A) ( is-retraction-map-inv-is-equiv E))) where diff --git a/src/metric-spaces/short-functions-metric-spaces.lagda.md b/src/metric-spaces/short-functions-metric-spaces.lagda.md index 64e55931bc5..e0cb7d72f27 100644 --- a/src/metric-spaces/short-functions-metric-spaces.lagda.md +++ b/src/metric-spaces/short-functions-metric-spaces.lagda.md @@ -140,9 +140,9 @@ module _ is-short-id-Pseudometric-Space ( pseudometric-Metric-Space A) - short-id-Metric-Space : short-function-Metric-Space A A - short-id-Metric-Space = - short-id-Pseudometric-Space (pseudometric-Metric-Space A) + id-short-function-Metric-Space : short-function-Metric-Space A A + id-short-function-Metric-Space = + id-short-function-Pseudometric-Space (pseudometric-Metric-Space A) ``` ### Equality of short functions between metric spaces is characterized by homotopy of their carrier maps @@ -216,7 +216,7 @@ module _ left-unit-law-comp-short-function-Metric-Space : ( comp-short-function-Metric-Space A B B - ( short-id-Metric-Space B) + ( id-short-function-Metric-Space B) ( f)) = ( f) left-unit-law-comp-short-function-Metric-Space = @@ -228,7 +228,7 @@ module _ right-unit-law-comp-short-function-Metric-Space : ( comp-short-function-Metric-Space A A B ( f) - ( short-id-Metric-Space A)) = + ( id-short-function-Metric-Space A)) = ( f) right-unit-law-comp-short-function-Metric-Space = right-unit-law-comp-short-function-Pseudometric-Space diff --git a/src/metric-spaces/short-functions-pseudometric-spaces.lagda.md b/src/metric-spaces/short-functions-pseudometric-spaces.lagda.md index 2075b6e1006..c4e262d3a3d 100644 --- a/src/metric-spaces/short-functions-pseudometric-spaces.lagda.md +++ b/src/metric-spaces/short-functions-pseudometric-spaces.lagda.md @@ -116,9 +116,10 @@ module _ is-short-function-Pseudometric-Space A A (id-Pseudometric-Space A) is-short-id-Pseudometric-Space d x y H = H - short-id-Pseudometric-Space : short-function-Pseudometric-Space A A - short-id-Pseudometric-Space = - id-Pseudometric-Space A , is-short-id-Pseudometric-Space + id-short-function-Pseudometric-Space : + short-function-Pseudometric-Space A A + id-short-function-Pseudometric-Space = + ( id-Pseudometric-Space A , is-short-id-Pseudometric-Space) ``` ### Equality of short functions between pseudometric spaces is characterized by homotopy of their carrier maps @@ -192,7 +193,7 @@ module _ left-unit-law-comp-short-function-Pseudometric-Space : ( comp-short-function-Pseudometric-Space A B B - ( short-id-Pseudometric-Space B) + ( id-short-function-Pseudometric-Space B) ( f)) = ( f) left-unit-law-comp-short-function-Pseudometric-Space = @@ -203,7 +204,7 @@ module _ ( A) ( B) ( B) - ( short-id-Pseudometric-Space B) + ( id-short-function-Pseudometric-Space B) ( f)) ( f) ( λ x → refl) @@ -211,7 +212,7 @@ module _ right-unit-law-comp-short-function-Pseudometric-Space : ( comp-short-function-Pseudometric-Space A A B ( f) - ( short-id-Pseudometric-Space A)) = + ( id-short-function-Pseudometric-Space A)) = ( f) right-unit-law-comp-short-function-Pseudometric-Space = eq-htpy-map-short-function-Pseudometric-Space @@ -223,7 +224,7 @@ module _ ( A) ( B) ( f) - ( short-id-Pseudometric-Space A)) + ( id-short-function-Pseudometric-Space A)) ( λ x → refl) ``` @@ -295,7 +296,7 @@ module _ is-isometry-Pseudometric-Space A B f → is-short-function-Pseudometric-Space A B f is-short-is-isometry-Pseudometric-Space I = - preserves-neighborhood-map-isometry-Pseudometric-Space A B (f , I) + preserves-neighborhoods-map-isometry-Pseudometric-Space A B (f , I) ``` ### The embedding of isometries of pseudometric spaces into short maps diff --git a/src/metric-spaces/similarity-of-elements-pseudometric-spaces.lagda.md b/src/metric-spaces/similarity-of-elements-pseudometric-spaces.lagda.md index f9caa041d21..6a249158e43 100644 --- a/src/metric-spaces/similarity-of-elements-pseudometric-spaces.lagda.md +++ b/src/metric-spaces/similarity-of-elements-pseudometric-spaces.lagda.md @@ -22,6 +22,7 @@ open import foundation.propositions open import foundation.transport-along-identifications open import foundation.universe-levels +open import metric-spaces.isometries-pseudometric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.rational-neighborhood-relations open import metric-spaces.short-functions-pseudometric-spaces @@ -172,13 +173,13 @@ module _ where abstract - preserves-neighborhood-left-sim-Pseudometric-Space : + preserves-neighborhoods-left-sim-Pseudometric-Space : { x y : type-Pseudometric-Space A} → ( sim-Pseudometric-Space A x y) → ( d : ℚ⁺) (z : type-Pseudometric-Space A) → neighborhood-Pseudometric-Space A d x z → neighborhood-Pseudometric-Space A d y z - preserves-neighborhood-left-sim-Pseudometric-Space {x} {y} x≍y d z Nxz = + preserves-neighborhoods-left-sim-Pseudometric-Space {x} {y} x≍y d z Nxz = saturated-neighborhood-Pseudometric-Space ( A) ( d) @@ -203,46 +204,46 @@ module _ ( y) ( x≍y δ)))) - preserves-neighborhood-right-sim-Pseudometric-Space : + preserves-neighborhoods-right-sim-Pseudometric-Space : { x y : type-Pseudometric-Space A} → ( sim-Pseudometric-Space A x y) → ( d : ℚ⁺) (z : type-Pseudometric-Space A) → neighborhood-Pseudometric-Space A d z x → neighborhood-Pseudometric-Space A d z y - preserves-neighborhood-right-sim-Pseudometric-Space {x} {y} x≍y d z Nzx = + preserves-neighborhoods-right-sim-Pseudometric-Space {x} {y} x≍y d z Nzx = symmetric-neighborhood-Pseudometric-Space A d y z - ( preserves-neighborhood-left-sim-Pseudometric-Space x≍y d z + ( preserves-neighborhoods-left-sim-Pseudometric-Space x≍y d z ( symmetric-neighborhood-Pseudometric-Space A d z x Nzx)) - preserves-neighborhood-sim-Pseudometric-Space : + preserves-neighborhoods-sim-Pseudometric-Space : {x x' y y' : type-Pseudometric-Space A} → sim-Pseudometric-Space A x x' → sim-Pseudometric-Space A y y' → (d : ℚ⁺) → neighborhood-Pseudometric-Space A d x y → neighborhood-Pseudometric-Space A d x' y' - preserves-neighborhood-sim-Pseudometric-Space + preserves-neighborhoods-sim-Pseudometric-Space {x} {x'} {y} {y'} x~x' y~y' d Nxy = - preserves-neighborhood-left-sim-Pseudometric-Space + preserves-neighborhoods-left-sim-Pseudometric-Space ( x~x') ( d) ( y') - ( preserves-neighborhood-right-sim-Pseudometric-Space + ( preserves-neighborhoods-right-sim-Pseudometric-Space ( y~y') ( d) ( x) ( Nxy)) - reflects-neighborhood-sim-Pseudometric-Space : + reflects-neighborhoods-sim-Pseudometric-Space : {x x' y y' : type-Pseudometric-Space A} → sim-Pseudometric-Space A x x' → sim-Pseudometric-Space A y y' → (d : ℚ⁺) → neighborhood-Pseudometric-Space A d x' y' → neighborhood-Pseudometric-Space A d x y - reflects-neighborhood-sim-Pseudometric-Space + reflects-neighborhoods-sim-Pseudometric-Space {x} {x'} {y} {y'} x~x' y~y' = - preserves-neighborhood-sim-Pseudometric-Space + preserves-neighborhoods-sim-Pseudometric-Space ( inv-sim-Pseudometric-Space A x~x') ( inv-sim-Pseudometric-Space A y~y') @@ -254,8 +255,8 @@ module _ neighborhood-Pseudometric-Space A d y z) same-neighbors-iff-sim-Pseudometric-Space = ( λ x≍y d z → - ( preserves-neighborhood-left-sim-Pseudometric-Space x≍y d z) , - ( preserves-neighborhood-left-sim-Pseudometric-Space + ( preserves-neighborhoods-left-sim-Pseudometric-Space x≍y d z) , + ( preserves-neighborhoods-left-sim-Pseudometric-Space ( inv-sim-Pseudometric-Space A x≍y) ( d) ( z))) , @@ -314,15 +315,46 @@ module _ ( A : Pseudometric-Space l1 l2) ( B : Pseudometric-Space l1' l2') ( f : short-function-Pseudometric-Space A B) - where + where abstract + + preserves-sim-map-short-function-Pseudometric-Space : + ( x y : type-Pseudometric-Space A) → + ( sim-Pseudometric-Space A x y) → + ( sim-Pseudometric-Space B + ( map-short-function-Pseudometric-Space A B f x) + ( map-short-function-Pseudometric-Space A B f y)) + preserves-sim-map-short-function-Pseudometric-Space x y x~y d = + is-short-map-short-function-Pseudometric-Space A B f d x y (x~y d) +``` - abstract - preserves-sim-map-short-function-Pseudometric-Space : - ( x y : type-Pseudometric-Space A) → - ( sim-Pseudometric-Space A x y) → - ( sim-Pseudometric-Space B - ( map-short-function-Pseudometric-Space A B f x) - ( map-short-function-Pseudometric-Space A B f y)) - preserves-sim-map-short-function-Pseudometric-Space x y x~y d = - is-short-map-short-function-Pseudometric-Space A B f d x y (x~y d) +### Isometries between pseudometric spaces preserve and reflect similarity + +```agda +module _ + { l1 l2 l1' l2' : Level} + ( A : Pseudometric-Space l1 l2) + ( B : Pseudometric-Space l1' l2') + ( f : isometry-Pseudometric-Space A B) + where abstract + + preserves-sim-map-isometry-Pseudometric-Space : + ( x y : type-Pseudometric-Space A) → + ( sim-Pseudometric-Space A x y) → + ( sim-Pseudometric-Space B + ( map-isometry-Pseudometric-Space A B f x) + ( map-isometry-Pseudometric-Space A B f y)) + preserves-sim-map-isometry-Pseudometric-Space = + preserves-sim-map-short-function-Pseudometric-Space + ( A) + ( B) + ( short-isometry-Pseudometric-Space A B f) + + reflects-sim-map-isometry-Pseudometric-Space : + ( x y : type-Pseudometric-Space A) → + ( sim-Pseudometric-Space B + ( map-isometry-Pseudometric-Space A B f x) + ( map-isometry-Pseudometric-Space A B f y)) → + ( sim-Pseudometric-Space A x y) + reflects-sim-map-isometry-Pseudometric-Space x y fx~fy d = + reflects-neighborhoods-map-isometry-Pseudometric-Space A B f d x y (fx~fy d) ```