diff --git a/src/metric-spaces.lagda.md b/src/metric-spaces.lagda.md
index bc48c2ee7e7..ee5c43ff9ae 100644
--- a/src/metric-spaces.lagda.md
+++ b/src/metric-spaces.lagda.md
@@ -97,6 +97,7 @@ open import metric-spaces.images-uniformly-continuous-functions-metric-spaces pu
open import metric-spaces.indexed-sums-metric-spaces public
open import metric-spaces.inhabited-totally-bounded-subspaces-metric-spaces public
open import metric-spaces.interior-subsets-metric-spaces public
+open import metric-spaces.isometries-between-metric-extensions-of-pseudometric-spaces public
open import metric-spaces.isometries-metric-spaces public
open import metric-spaces.isometries-pseudometric-spaces public
open import metric-spaces.limits-of-cauchy-approximations-metric-spaces public
@@ -106,6 +107,7 @@ open import metric-spaces.limits-of-sequences-metric-spaces public
open import metric-spaces.lipschitz-functions-metric-spaces public
open import metric-spaces.locally-constant-functions-metric-spaces public
open import metric-spaces.located-metric-spaces public
+open import metric-spaces.metric-extensions-of-pseudometric-spaces public
open import metric-spaces.metric-quotients-of-pseudometric-spaces public
open import metric-spaces.metric-space-of-cauchy-approximations-complete-metric-spaces public
open import metric-spaces.metric-space-of-cauchy-approximations-metric-spaces public
diff --git a/src/metric-spaces/bounded-distance-decompositions-of-metric-spaces.lagda.md b/src/metric-spaces/bounded-distance-decompositions-of-metric-spaces.lagda.md
index ea2bf3aa077..57bdd01bc5a 100644
--- a/src/metric-spaces/bounded-distance-decompositions-of-metric-spaces.lagda.md
+++ b/src/metric-spaces/bounded-distance-decompositions-of-metric-spaces.lagda.md
@@ -213,7 +213,7 @@ module _
{l1 l2 : Level} (A : Metric-Space l1 l2)
where
- preserves-neighborhood-map-equiv-bounded-distance-decomposition-Metric-Space :
+ preserves-neighborhoods-map-equiv-bounded-distance-decomposition-Metric-Space :
( d : ℚ⁺)
( x y : type-bounded-distance-decomposition-Metric-Space A) →
neighborhood-Metric-Space
@@ -224,7 +224,7 @@ module _
neighborhood-Metric-Space A d
( map-equiv-bounded-distance-decomposition-Metric-Space A x)
( map-equiv-bounded-distance-decomposition-Metric-Space A y)
- preserves-neighborhood-map-equiv-bounded-distance-decomposition-Metric-Space
+ preserves-neighborhoods-map-equiv-bounded-distance-decomposition-Metric-Space
d (X , x , x∈X) (Y , y , y∈Y) (X=Y , Nxy) =
forward-implication
( lemma-iff-neighborhood-bounded-distance-decomposition-Metric-Space
@@ -237,7 +237,7 @@ module _
( y , y∈Y))
( Nxy)
- reflects-neighborhood-map-equiv-bounded-distance-decomposition-Metric-Space :
+ reflects-neighborhoods-map-equiv-bounded-distance-decomposition-Metric-Space :
( d : ℚ⁺)
( x y : type-bounded-distance-decomposition-Metric-Space A) →
neighborhood-Metric-Space A d
@@ -248,7 +248,7 @@ module _
( d)
( x)
( y)
- reflects-neighborhood-map-equiv-bounded-distance-decomposition-Metric-Space
+ reflects-neighborhoods-map-equiv-bounded-distance-decomposition-Metric-Space
d (X , x , x∈X) (Y , y , y∈Y) Nxy =
( lemma-eq ,
backward-implication
@@ -280,11 +280,11 @@ module _
( map-equiv-bounded-distance-decomposition-Metric-Space A)
is-isometry-map-equiv-bounded-distance-decomposition-Metric-Space
d x y =
- ( ( preserves-neighborhood-map-equiv-bounded-distance-decomposition-Metric-Space
+ ( ( preserves-neighborhoods-map-equiv-bounded-distance-decomposition-Metric-Space
( d)
( x)
( y)) ,
- ( reflects-neighborhood-map-equiv-bounded-distance-decomposition-Metric-Space
+ ( reflects-neighborhoods-map-equiv-bounded-distance-decomposition-Metric-Space
( d)
( x)
( y)))
diff --git a/src/metric-spaces/cauchy-approximations-metric-quotients-of-pseudometric-spaces.lagda.md b/src/metric-spaces/cauchy-approximations-metric-quotients-of-pseudometric-spaces.lagda.md
index 9184f29af6a..b5ce744455e 100644
--- a/src/metric-spaces/cauchy-approximations-metric-quotients-of-pseudometric-spaces.lagda.md
+++ b/src/metric-spaces/cauchy-approximations-metric-quotients-of-pseudometric-spaces.lagda.md
@@ -107,7 +107,7 @@ module _
( cauchy-pseudocompletion-Metric-Space
( metric-quotient-Pseudometric-Space M))
short-map-metric-quotient-cauchy-apprtoximation-Pseudometric-Space =
- short-map-short-function-cauchy-approximation-Pseudometric-Space
+ short-map-cauchy-approximation-short-function-Pseudometric-Space
( M)
( pseudometric-metric-quotient-Pseudometric-Space M)
( short-map-metric-quotient-Pseudometric-Space M)
@@ -233,7 +233,7 @@ module _
( x)
( x∈uε)
in
- preserves-neighborhood-sim-Pseudometric-Space
+ preserves-neighborhoods-sim-Pseudometric-Space
( M)
( uε~x)
( lim~y)
diff --git a/src/metric-spaces/cauchy-approximations-metric-spaces.lagda.md b/src/metric-spaces/cauchy-approximations-metric-spaces.lagda.md
index caf5ee3d31c..e48cfc33262 100644
--- a/src/metric-spaces/cauchy-approximations-metric-spaces.lagda.md
+++ b/src/metric-spaces/cauchy-approximations-metric-spaces.lagda.md
@@ -10,9 +10,6 @@ module metric-spaces.cauchy-approximations-metric-spaces where
open import elementary-number-theory.addition-positive-rational-numbers
open import elementary-number-theory.positive-rational-numbers
-open import foundation.constant-maps
-open import foundation.dependent-pair-types
-open import foundation.function-extensionality
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
@@ -20,7 +17,6 @@ open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels
-open import metric-spaces.cartesian-products-metric-spaces
open import metric-spaces.cauchy-approximations-pseudometric-spaces
open import metric-spaces.metric-spaces
open import metric-spaces.short-functions-metric-spaces
@@ -123,7 +119,7 @@ module _
cauchy-approximation-Metric-Space A →
cauchy-approximation-Metric-Space B
map-short-function-cauchy-approximation-Metric-Space =
- map-short-function-cauchy-approximation-Pseudometric-Space
+ map-cauchy-approximation-short-function-Pseudometric-Space
( pseudometric-Metric-Space A)
( pseudometric-Metric-Space B)
( f)
@@ -137,7 +133,7 @@ module _
map-short-function-cauchy-approximation-Metric-Space
( A)
( A)
- ( short-id-Metric-Space A) =
+ ( id-short-function-Metric-Space A) =
id
eq-id-map-short-function-cauchy-approximation-Metric-Space = refl
diff --git a/src/metric-spaces/cauchy-approximations-pseudometric-spaces.lagda.md b/src/metric-spaces/cauchy-approximations-pseudometric-spaces.lagda.md
index 3f7b863d422..b6b0b62a391 100644
--- a/src/metric-spaces/cauchy-approximations-pseudometric-spaces.lagda.md
+++ b/src/metric-spaces/cauchy-approximations-pseudometric-spaces.lagda.md
@@ -19,6 +19,7 @@ open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels
+open import metric-spaces.isometries-pseudometric-spaces
open import metric-spaces.pseudometric-spaces
open import metric-spaces.short-functions-pseudometric-spaces
```
@@ -112,10 +113,10 @@ module _
(f : short-function-Pseudometric-Space A B)
where
- map-short-function-cauchy-approximation-Pseudometric-Space :
+ map-cauchy-approximation-short-function-Pseudometric-Space :
cauchy-approximation-Pseudometric-Space A →
cauchy-approximation-Pseudometric-Space B
- map-short-function-cauchy-approximation-Pseudometric-Space (u , H) =
+ map-cauchy-approximation-short-function-Pseudometric-Space (u , H) =
( map-short-function-Pseudometric-Space A B f ∘ u ,
λ ε δ →
is-short-map-short-function-Pseudometric-Space
@@ -128,6 +129,25 @@ module _
( H ε δ))
```
+### The action of isometries on Cauchy approximations
+
+```agda
+module _
+ {l1 l2 l1' l2' : Level}
+ (A : Pseudometric-Space l1 l2) (B : Pseudometric-Space l1' l2')
+ (f : isometry-Pseudometric-Space A B)
+ where
+
+ map-cauchy-approximation-isometry-Pseudometric-Space :
+ cauchy-approximation-Pseudometric-Space A →
+ cauchy-approximation-Pseudometric-Space B
+ map-cauchy-approximation-isometry-Pseudometric-Space =
+ map-cauchy-approximation-short-function-Pseudometric-Space
+ ( A)
+ ( B)
+ ( short-isometry-Pseudometric-Space A B f)
+```
+
### Homotopic Cauchy approximations are equal
```agda
diff --git a/src/metric-spaces/cauchy-pseudocompletion-of-metric-spaces.lagda.md b/src/metric-spaces/cauchy-pseudocompletion-of-metric-spaces.lagda.md
index 9dad3ad6549..802663a17b7 100644
--- a/src/metric-spaces/cauchy-pseudocompletion-of-metric-spaces.lagda.md
+++ b/src/metric-spaces/cauchy-pseudocompletion-of-metric-spaces.lagda.md
@@ -9,17 +9,13 @@ module metric-spaces.cauchy-pseudocompletion-of-metric-spaces where
```agda
open import elementary-number-theory.addition-positive-rational-numbers
open import elementary-number-theory.positive-rational-numbers
-open import elementary-number-theory.strict-inequality-rational-numbers
-open import foundation.action-on-identifications-binary-functions
open import foundation.action-on-identifications-functions
open import foundation.binary-relations
-open import foundation.binary-transport
open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
-open import foundation.propositions
open import foundation.transport-along-identifications
open import foundation.universe-levels
@@ -27,7 +23,6 @@ open import metric-spaces.cauchy-approximations-metric-spaces
open import metric-spaces.cauchy-approximations-pseudometric-spaces
open import metric-spaces.cauchy-pseudocompletion-of-pseudometric-spaces
open import metric-spaces.complete-metric-spaces
-open import metric-spaces.convergent-cauchy-approximations-metric-spaces
open import metric-spaces.functions-pseudometric-spaces
open import metric-spaces.isometries-pseudometric-spaces
open import metric-spaces.limits-of-cauchy-approximations-metric-spaces
@@ -354,7 +349,7 @@ module _
( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space))
is-short-const-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space
d x y =
- preserves-neighborhood-sim-Pseudometric-Space
+ preserves-neighborhoods-sim-Pseudometric-Space
( cauchy-pseudocompletion-Metric-Space M)
{ x}
{ const-cauchy-approximation-Metric-Space
@@ -437,3 +432,103 @@ module _
( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space u)
( is-limit-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space u)
```
+
+### The isometry from the Cauchy pseudocompletion of a complete metric space to its limit
+
+```agda
+module _
+ {l1 l2 : Level} (M : Metric-Space l1 l2)
+ (is-complete-M : is-complete-Metric-Space M)
+ where
+
+ abstract
+ reflects-neighborhoods-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space :
+ (δ : ℚ⁺) →
+ (u v : cauchy-approximation-Metric-Space M) →
+ neighborhood-Metric-Space
+ ( M)
+ ( δ)
+ ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space
+ ( M)
+ ( is-complete-M)
+ ( u))
+ ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space
+ ( M)
+ ( is-complete-M)
+ ( v)) →
+ neighborhood-Pseudometric-Space
+ ( cauchy-pseudocompletion-Metric-Space M)
+ ( δ)
+ ( u)
+ ( v)
+ reflects-neighborhoods-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space
+ δ x y Nδ =
+ reflects-neighborhoods-sim-Pseudometric-Space
+ ( cauchy-pseudocompletion-Metric-Space M)
+ { x}
+ { const-cauchy-approximation-Metric-Space
+ ( M)
+ ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space
+ ( M)
+ ( is-complete-M)
+ ( x))}
+ { y}
+ { const-cauchy-approximation-Metric-Space
+ ( M)
+ ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space
+ ( M)
+ ( is-complete-M)
+ ( y))}
+ ( sim-const-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space
+ ( M)
+ ( is-complete-M)
+ ( x))
+ ( sim-const-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space
+ ( M)
+ ( is-complete-M)
+ ( y))
+ ( δ)
+ ( preserves-neighborhoods-map-isometry-Pseudometric-Space
+ ( pseudometric-Metric-Space M)
+ ( cauchy-pseudocompletion-Metric-Space M)
+ ( isometry-cauchy-pseudocompletion-Metric-Space M)
+ ( δ)
+ ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space
+ ( M)
+ ( is-complete-M)
+ ( x))
+ ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space
+ ( M)
+ ( is-complete-M)
+ ( y))
+ ( Nδ))
+
+ is-isometry-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space :
+ is-isometry-Pseudometric-Space
+ ( cauchy-pseudocompletion-Metric-Space M)
+ ( pseudometric-Metric-Space M)
+ ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space
+ ( M)
+ ( is-complete-M))
+ is-isometry-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space d x y =
+ ( ( is-short-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space
+ ( M)
+ ( is-complete-M)
+ ( d)
+ ( x)
+ ( y)) ,
+ ( reflects-neighborhoods-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space
+ ( d)
+ ( x)
+ ( y)))
+
+ isometry-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space :
+ isometry-Pseudometric-Space
+ ( cauchy-pseudocompletion-Metric-Space M)
+ ( pseudometric-Metric-Space M)
+ isometry-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space =
+ ( ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space
+ ( M)
+ ( is-complete-M)) ,
+ ( is-isometry-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space))
+```
diff --git a/src/metric-spaces/cauchy-pseudocompletion-of-pseudometric-spaces.lagda.md b/src/metric-spaces/cauchy-pseudocompletion-of-pseudometric-spaces.lagda.md
index 5bc301fcc11..41506234ff6 100644
--- a/src/metric-spaces/cauchy-pseudocompletion-of-pseudometric-spaces.lagda.md
+++ b/src/metric-spaces/cauchy-pseudocompletion-of-pseudometric-spaces.lagda.md
@@ -17,24 +17,16 @@ open import elementary-number-theory.strict-inequality-rational-numbers
open import foundation.action-on-identifications-binary-functions
open import foundation.action-on-identifications-functions
open import foundation.binary-relations
-open import foundation.binary-transport
open import foundation.dependent-pair-types
open import foundation.function-types
-open import foundation.homotopies
open import foundation.identity-types
open import foundation.propositions
open import foundation.transport-along-identifications
open import foundation.universe-levels
-open import metric-spaces.cauchy-approximations-metric-spaces
open import metric-spaces.cauchy-approximations-pseudometric-spaces
-open import metric-spaces.complete-metric-spaces
-open import metric-spaces.convergent-cauchy-approximations-metric-spaces
-open import metric-spaces.functions-pseudometric-spaces
open import metric-spaces.isometries-pseudometric-spaces
-open import metric-spaces.limits-of-cauchy-approximations-metric-spaces
open import metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces
-open import metric-spaces.metric-spaces
open import metric-spaces.pseudometric-spaces
open import metric-spaces.rational-neighborhood-relations
open import metric-spaces.short-functions-pseudometric-spaces
@@ -303,7 +295,7 @@ module _
const-cauchy-approximation-Pseudometric-Space M
abstract
- preserves-neighborhood-map-cauchy-pseudocompletion-Pseudometric-Space :
+ preserves-neighborhoods-map-cauchy-pseudocompletion-Pseudometric-Space :
(d : ℚ⁺) (x y : type-Pseudometric-Space M) →
neighborhood-Pseudometric-Space M d x y →
neighborhood-cauchy-pseudocompletion-Pseudometric-Space
@@ -311,13 +303,13 @@ module _
( d)
( map-cauchy-pseudocompletion-Pseudometric-Space x)
( map-cauchy-pseudocompletion-Pseudometric-Space y)
- preserves-neighborhood-map-cauchy-pseudocompletion-Pseudometric-Space
+ preserves-neighborhoods-map-cauchy-pseudocompletion-Pseudometric-Space
d x y Nxy δ ε =
monotonic-neighborhood-Pseudometric-Space M x y d (δ +ℚ⁺ ε +ℚ⁺ d)
( le-right-add-ℚ⁺ (δ +ℚ⁺ ε) d)
( Nxy)
- reflects-neighborhood-map-cauchy-pseudocompletion-Pseudometric-Space :
+ reflects-neighborhoods-map-cauchy-pseudocompletion-Pseudometric-Space :
(d : ℚ⁺) (x y : type-Pseudometric-Space M) →
neighborhood-cauchy-pseudocompletion-Pseudometric-Space
( M)
@@ -325,7 +317,7 @@ module _
( map-cauchy-pseudocompletion-Pseudometric-Space x)
( map-cauchy-pseudocompletion-Pseudometric-Space y) →
neighborhood-Pseudometric-Space M d x y
- reflects-neighborhood-map-cauchy-pseudocompletion-Pseudometric-Space
+ reflects-neighborhoods-map-cauchy-pseudocompletion-Pseudometric-Space
d x y Nxy =
saturated-neighborhood-Pseudometric-Space M d x y
( λ δ →
@@ -343,11 +335,11 @@ module _
( cauchy-pseudocompletion-Pseudometric-Space M)
( map-cauchy-pseudocompletion-Pseudometric-Space)
is-isometry-map-cauchy-pseudocompletion-Pseudometric-Space d x y =
- ( ( preserves-neighborhood-map-cauchy-pseudocompletion-Pseudometric-Space
+ ( ( preserves-neighborhoods-map-cauchy-pseudocompletion-Pseudometric-Space
( d)
( x)
( y)) ,
- (reflects-neighborhood-map-cauchy-pseudocompletion-Pseudometric-Space
+ (reflects-neighborhoods-map-cauchy-pseudocompletion-Pseudometric-Space
( d)
( x)
( y)))
@@ -412,6 +404,64 @@ module _
( λ d → H d α β)
```
+### Similarity in the Cauchy pseudocompletion preserves and reflects limits
+
+```agda
+module _
+ {l1 l2 : Level} (M : Pseudometric-Space l1 l2)
+ (u v : cauchy-approximation-Pseudometric-Space M)
+ (x : type-Pseudometric-Space M)
+ where
+
+ has-same-limit-sim-cauchy-approximation-Pseudometric-Space :
+ sim-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space M)
+ ( u)
+ ( v) →
+ is-limit-cauchy-approximation-Pseudometric-Space M u x →
+ is-limit-cauchy-approximation-Pseudometric-Space M v x
+ has-same-limit-sim-cauchy-approximation-Pseudometric-Space u~v lim-u =
+ is-limit-sim-const-cauchy-approximation-Pseudometric-Space
+ ( M)
+ ( v)
+ ( x)
+ ( transitive-sim-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space M)
+ ( v)
+ ( u)
+ ( const-cauchy-approximation-Pseudometric-Space M x)
+ ( sim-const-is-limit-cauchy-approximation-Pseudometric-Space
+ ( M)
+ ( u)
+ ( x)
+ ( lim-u))
+ ( inv-sim-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space M)
+ ( u~v)))
+
+ sim-has-same-limit-cauchy-approximation-Pseudometric-Space :
+ is-limit-cauchy-approximation-Pseudometric-Space M u x →
+ is-limit-cauchy-approximation-Pseudometric-Space M v x →
+ sim-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space M)
+ ( u)
+ ( v)
+ sim-has-same-limit-cauchy-approximation-Pseudometric-Space lim-u lim-v =
+ transitive-sim-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space M)
+ ( u)
+ ( const-cauchy-approximation-Pseudometric-Space M x)
+ ( v)
+ ( inv-sim-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space M)
+ ( sim-const-is-limit-cauchy-approximation-Pseudometric-Space
+ ( M)
+ ( v)
+ ( x)
+ ( lim-v)))
+ ( sim-const-is-limit-cauchy-approximation-Pseudometric-Space M u x lim-u)
+```
+
### Any Cauchy approximation in the Cauchy pseudocompletion of a pseudometric space has a limit
```agda
@@ -616,7 +666,7 @@ module _
( M)))
is-short-function-const-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space
d u v =
- preserves-neighborhood-sim-Pseudometric-Space
+ preserves-neighborhoods-sim-Pseudometric-Space
( cauchy-pseudocompletion-Pseudometric-Space
( cauchy-pseudocompletion-Pseudometric-Space M))
{ u}
@@ -647,7 +697,7 @@ module _
( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space M)
is-short-function-lim-cauchy-approximation-pseudocompletion-Pseudometric-Space
d u v Nuv =
- reflects-neighborhood-map-cauchy-pseudocompletion-Pseudometric-Space
+ reflects-neighborhoods-map-cauchy-pseudocompletion-Pseudometric-Space
( cauchy-pseudocompletion-Pseudometric-Space M)
( d)
( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space
@@ -680,7 +730,7 @@ module _
where
abstract
- reflects-neighborhood-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space :
+ reflects-neighborhoods-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space :
( d : ℚ⁺) →
( u v :
cauchy-approximation-Pseudometric-Space
@@ -700,9 +750,9 @@ module _
( d)
( u)
( v)
- reflects-neighborhood-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space
+ reflects-neighborhoods-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space
d u v N-lim =
- reflects-neighborhood-sim-Pseudometric-Space
+ reflects-neighborhoods-sim-Pseudometric-Space
( cauchy-pseudocompletion-Pseudometric-Space
( cauchy-pseudocompletion-Pseudometric-Space M))
{ u}
@@ -724,7 +774,7 @@ module _
( M)
( v))
( d)
- ( preserves-neighborhood-map-cauchy-pseudocompletion-Pseudometric-Space
+ ( preserves-neighborhoods-map-cauchy-pseudocompletion-Pseudometric-Space
( cauchy-pseudocompletion-Pseudometric-Space M)
( d)
( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space
@@ -748,7 +798,7 @@ module _
( d)
( x)
( y)) ,
- ( reflects-neighborhood-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space
+ ( reflects-neighborhoods-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space
( d)
( x)
( y)))
@@ -772,12 +822,12 @@ module _
(f : short-function-Pseudometric-Space A B)
where
- is-short-map-short-function-cauchy-approximation-Pseudometric-Space :
+ is-short-map-cauchy-approximation-short-function-Pseudometric-Space :
is-short-function-Pseudometric-Space
( cauchy-pseudocompletion-Pseudometric-Space A)
( cauchy-pseudocompletion-Pseudometric-Space B)
- ( map-short-function-cauchy-approximation-Pseudometric-Space A B f)
- is-short-map-short-function-cauchy-approximation-Pseudometric-Space
+ ( map-cauchy-approximation-short-function-Pseudometric-Space A B f)
+ is-short-map-cauchy-approximation-short-function-Pseudometric-Space
d x y Nxy α β =
is-short-map-short-function-Pseudometric-Space A B f
( α +ℚ⁺ β +ℚ⁺ d)
@@ -785,13 +835,95 @@ module _
( map-cauchy-approximation-Pseudometric-Space A y β)
( Nxy α β)
- short-map-short-function-cauchy-approximation-Pseudometric-Space :
+ short-map-cauchy-approximation-short-function-Pseudometric-Space :
short-function-Pseudometric-Space
( cauchy-pseudocompletion-Pseudometric-Space A)
( cauchy-pseudocompletion-Pseudometric-Space B)
- short-map-short-function-cauchy-approximation-Pseudometric-Space =
- ( map-short-function-cauchy-approximation-Pseudometric-Space A B f ,
- is-short-map-short-function-cauchy-approximation-Pseudometric-Space)
+ short-map-cauchy-approximation-short-function-Pseudometric-Space =
+ ( map-cauchy-approximation-short-function-Pseudometric-Space A B f ,
+ is-short-map-cauchy-approximation-short-function-Pseudometric-Space)
+```
+
+### The action of isometries on Cauchy approximations is an isometry
+
+```agda
+module _
+ {l1 l2 l1' l2' : Level}
+ (A : Pseudometric-Space l1 l2) (B : Pseudometric-Space l1' l2')
+ (f : isometry-Pseudometric-Space A B)
+ where abstract
+
+ preserves-neighborhoods-map-cauchy-approximation-isometry-Pseudometric-Space :
+ (d : ℚ⁺) →
+ (x y : cauchy-approximation-Pseudometric-Space A) →
+ neighborhood-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space A)
+ ( d)
+ ( x)
+ ( y) →
+ neighborhood-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space B)
+ ( d)
+ ( map-cauchy-approximation-isometry-Pseudometric-Space A B f x)
+ ( map-cauchy-approximation-isometry-Pseudometric-Space A B f y)
+ preserves-neighborhoods-map-cauchy-approximation-isometry-Pseudometric-Space =
+ is-short-map-cauchy-approximation-short-function-Pseudometric-Space
+ ( A)
+ ( B)
+ ( short-isometry-Pseudometric-Space A B f)
+
+ reflects-neighborhoods-map-cauchy-approximation-isometry-Pseudometric-Space :
+ (d : ℚ⁺) →
+ (x y : cauchy-approximation-Pseudometric-Space A) →
+ neighborhood-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space B)
+ ( d)
+ ( map-cauchy-approximation-isometry-Pseudometric-Space A B f x)
+ ( map-cauchy-approximation-isometry-Pseudometric-Space A B f y) →
+ neighborhood-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space A)
+ ( d)
+ ( x)
+ ( y)
+ reflects-neighborhoods-map-cauchy-approximation-isometry-Pseudometric-Space
+ d x y Nxy α β =
+ reflects-neighborhoods-map-isometry-Pseudometric-Space
+ ( A)
+ ( B)
+ ( f)
+ ( α +ℚ⁺ β +ℚ⁺ d)
+ ( map-cauchy-approximation-Pseudometric-Space A x α)
+ ( map-cauchy-approximation-Pseudometric-Space A y β)
+ ( Nxy α β)
+
+ is-isometry-map-cauchy-approximation-isometry-Pseudometric-Space :
+ is-isometry-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space A)
+ ( cauchy-pseudocompletion-Pseudometric-Space B)
+ ( map-cauchy-approximation-isometry-Pseudometric-Space A B f)
+ is-isometry-map-cauchy-approximation-isometry-Pseudometric-Space d x y =
+ ( ( preserves-neighborhoods-map-cauchy-approximation-isometry-Pseudometric-Space
+ ( d)
+ ( x)
+ ( y)) ,
+ ( reflects-neighborhoods-map-cauchy-approximation-isometry-Pseudometric-Space
+ ( d)
+ ( x)
+ ( y)))
+
+module _
+ {l1 l2 l1' l2' : Level}
+ (A : Pseudometric-Space l1 l2) (B : Pseudometric-Space l1' l2')
+ (f : isometry-Pseudometric-Space A B)
+ where
+
+ isometry-map-cauchy-approximation-isometry-Pseudometric-Space :
+ isometry-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space A)
+ ( cauchy-pseudocompletion-Pseudometric-Space B)
+ isometry-map-cauchy-approximation-isometry-Pseudometric-Space =
+ ( map-cauchy-approximation-isometry-Pseudometric-Space A B f ,
+ is-isometry-map-cauchy-approximation-isometry-Pseudometric-Space A B f)
```
### The image of a Cauchy approximation in the Cauchy pseudocompletion is convergent
@@ -805,7 +937,7 @@ module _
is-limit-map-cauchy-approximation-cauchy-pseudocompletion-Ppseudometric-Space :
is-limit-cauchy-approximation-Pseudometric-Space
( cauchy-pseudocompletion-Pseudometric-Space M)
- ( map-short-function-cauchy-approximation-Pseudometric-Space
+ ( map-cauchy-approximation-short-function-Pseudometric-Space
( M)
( cauchy-pseudocompletion-Pseudometric-Space M)
( short-map-cauchy-pseudocompletion-Pseudometric-Space M)
@@ -839,7 +971,7 @@ module _
sim-Pseudometric-Space
( cauchy-pseudocompletion-Pseudometric-Space
( cauchy-pseudocompletion-Pseudometric-Space M))
- ( map-short-function-cauchy-approximation-Pseudometric-Space
+ ( map-cauchy-approximation-short-function-Pseudometric-Space
( M)
( cauchy-pseudocompletion-Pseudometric-Space M)
( short-map-cauchy-pseudocompletion-Pseudometric-Space M)
@@ -850,7 +982,7 @@ module _
sim-map-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space =
sim-const-is-limit-cauchy-approximation-Pseudometric-Space
( cauchy-pseudocompletion-Pseudometric-Space M)
- ( map-short-function-cauchy-approximation-Pseudometric-Space
+ ( map-cauchy-approximation-short-function-Pseudometric-Space
( M)
( cauchy-pseudocompletion-Pseudometric-Space M)
( short-map-cauchy-pseudocompletion-Pseudometric-Space M)
diff --git a/src/metric-spaces/indexed-sums-metric-spaces.lagda.md b/src/metric-spaces/indexed-sums-metric-spaces.lagda.md
index 4ed15b71da2..c07e513fe37 100644
--- a/src/metric-spaces/indexed-sums-metric-spaces.lagda.md
+++ b/src/metric-spaces/indexed-sums-metric-spaces.lagda.md
@@ -295,7 +295,7 @@ module _
( map-emb-fiber-indexed-sum-Metric-Space A P x ,
is-short-emb-fiber-indexed-sum-Metric-Space)
- reflects-neighborhood-emb-fiber-indexed-sum-Metric-Space :
+ reflects-neighborhoods-emb-fiber-indexed-sum-Metric-Space :
(d : ℚ⁺) (px px' : type-Metric-Space (P x)) →
neighborhood-Metric-Space
( indexed-sum-Metric-Space A P)
@@ -307,7 +307,8 @@ module _
( d)
( px)
( px')
- reflects-neighborhood-emb-fiber-indexed-sum-Metric-Space d px px' (e , Nxx') =
+ reflects-neighborhoods-emb-fiber-indexed-sum-Metric-Space
+ d px px' (e , Nxx') =
inv-tr
( λ e' →
neighborhood-Metric-Space
@@ -328,7 +329,7 @@ module _
( map-emb-fiber-indexed-sum-Metric-Space A P x)
is-isometry-emb-fiber-indexed-sum-Metric-Space d px px' =
( is-short-emb-fiber-indexed-sum-Metric-Space d px px' ,
- reflects-neighborhood-emb-fiber-indexed-sum-Metric-Space d px px')
+ reflects-neighborhoods-emb-fiber-indexed-sum-Metric-Space d px px')
isometry-emb-fiber-indexed-Metric-Space :
isometry-Metric-Space (P x) (indexed-sum-Metric-Space A P)
diff --git a/src/metric-spaces/isometries-between-metric-extensions-of-pseudometric-spaces.lagda.md b/src/metric-spaces/isometries-between-metric-extensions-of-pseudometric-spaces.lagda.md
new file mode 100644
index 00000000000..411d45fc060
--- /dev/null
+++ b/src/metric-spaces/isometries-between-metric-extensions-of-pseudometric-spaces.lagda.md
@@ -0,0 +1,299 @@
+# Isometries between metric extensions of a pseudometric space
+
+```agda
+{-# OPTIONS --lossy-unification #-}
+
+module metric-spaces.isometries-between-metric-extensions-of-pseudometric-spaces where
+```
+
+Imports
+
+```agda
+open import elementary-number-theory.addition-positive-rational-numbers
+open import elementary-number-theory.positive-rational-numbers
+open import elementary-number-theory.strict-inequality-positive-rational-numbers
+open import elementary-number-theory.strict-inequality-rational-numbers
+
+open import foundation.action-on-identifications-binary-functions
+open import foundation.action-on-identifications-functions
+open import foundation.binary-relations
+open import foundation.binary-transport
+open import foundation.dependent-pair-types
+open import foundation.equivalences
+open import foundation.existential-quantification
+open import foundation.function-types
+open import foundation.homotopies
+open import foundation.identity-types
+open import foundation.logical-equivalences
+open import foundation.propositional-truncations
+open import foundation.propositions
+open import foundation.set-quotients
+open import foundation.sets
+open import foundation.subtypes
+open import foundation.transport-along-identifications
+open import foundation.universe-levels
+open import foundation.whiskering-homotopies-composition
+
+open import metric-spaces.cauchy-approximations-metric-quotients-of-pseudometric-spaces
+open import metric-spaces.cauchy-approximations-metric-spaces
+open import metric-spaces.cauchy-approximations-pseudometric-spaces
+open import metric-spaces.cauchy-pseudocompletion-of-metric-spaces
+open import metric-spaces.cauchy-pseudocompletion-of-pseudometric-spaces
+open import metric-spaces.complete-metric-spaces
+open import metric-spaces.convergent-cauchy-approximations-metric-spaces
+open import metric-spaces.equality-of-metric-spaces
+open import metric-spaces.functions-metric-spaces
+open import metric-spaces.functions-pseudometric-spaces
+open import metric-spaces.isometries-metric-spaces
+open import metric-spaces.isometries-pseudometric-spaces
+open import metric-spaces.limits-of-cauchy-approximations-metric-spaces
+open import metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces
+open import metric-spaces.metric-extensions-of-pseudometric-spaces
+open import metric-spaces.metric-quotients-of-pseudometric-spaces
+open import metric-spaces.metric-spaces
+open import metric-spaces.precategory-of-metric-spaces-and-short-functions
+open import metric-spaces.pseudometric-spaces
+open import metric-spaces.rational-neighborhood-relations
+open import metric-spaces.short-functions-metric-spaces
+open import metric-spaces.short-functions-pseudometric-spaces
+open import metric-spaces.similarity-of-elements-pseudometric-spaces
+```
+
+
+
+## Idea
+
+An
+{{#concept "isometry" Disambiguation="between metric extensions of a pseudometric space" Agda=isometry-Metric-Extension}}
+between two
+[metric extensions](metric-spaces.metric-extensions-of-pseudometric-spaces.md)
+of a [pseudometric space](metric-spaces.pseudometric-spaces.md) `P`, `i : P → M`
+and `j : P → N`, is an [isometry](metric-spaces.isometries-metric-spaces.md)
+`f : M → N` such that
+
+```text
+ f ∘ i ~ j.
+```
+
+## Definitions
+
+### The property of being an isometry between metric extensions
+
+```agda
+module _
+ { l1 l2 l3 l4 l5 l6 : Level}
+ ( P : Pseudometric-Space l1 l2)
+ ( M : Metric-Extension l3 l4 P)
+ ( N : Metric-Extension l5 l6 P)
+ ( f :
+ isometry-Metric-Space
+ ( metric-space-Metric-Extension P M)
+ ( metric-space-Metric-Extension P N))
+ where
+
+ coherence-triangle-prop-isometry-metric-space-Metric-Extension :
+ Prop (l1 ⊔ l5)
+ coherence-triangle-prop-isometry-metric-space-Metric-Extension =
+ Π-Prop
+ ( type-Pseudometric-Space P)
+ ( λ x →
+ Id-Prop
+ ( set-Metric-Space
+ ( metric-space-Metric-Extension P N))
+ ( map-isometry-Pseudometric-Space
+ ( P)
+ ( pseudometric-space-Metric-Extension P N)
+ ( comp-isometry-Pseudometric-Space
+ ( P)
+ ( pseudometric-space-Metric-Extension P M)
+ ( pseudometric-space-Metric-Extension P N)
+ ( f)
+ ( isometry-metric-space-Metric-Extension P M))
+ ( x))
+ ( map-isometry-metric-space-Metric-Extension P N x))
+
+ coherence-triangle-isometry-metric-space-Metric-Extension : UU (l1 ⊔ l5)
+ coherence-triangle-isometry-metric-space-Metric-Extension =
+ type-Prop
+ coherence-triangle-prop-isometry-metric-space-Metric-Extension
+
+ is-prop-coherence-triangle-isometry-metric-space-Metric-Extension :
+ is-prop coherence-triangle-isometry-metric-space-Metric-Extension
+ is-prop-coherence-triangle-isometry-metric-space-Metric-Extension =
+ is-prop-type-Prop
+ coherence-triangle-prop-isometry-metric-space-Metric-Extension
+```
+
+### The type of isometries between metric extensions of a pseudometric space
+
+```agda
+module _
+ { l1 l2 l3 l4 l5 l6 : Level}
+ ( P : Pseudometric-Space l1 l2)
+ ( M : Metric-Extension l3 l4 P)
+ ( N : Metric-Extension l5 l6 P)
+ where
+
+ isometry-Metric-Extension : UU (l1 ⊔ l3 ⊔ l4 ⊔ l5 ⊔ l6)
+ isometry-Metric-Extension =
+ type-subtype
+ ( coherence-triangle-prop-isometry-metric-space-Metric-Extension P M N)
+
+module _
+ { l1 l2 l3 l4 l5 l6 : Level}
+ ( P : Pseudometric-Space l1 l2)
+ ( M : Metric-Extension l3 l4 P)
+ ( N : Metric-Extension l5 l6 P)
+ ( f : isometry-Metric-Extension P M N)
+ where
+
+ isometry-metric-space-isometry-Metric-Extension :
+ isometry-Metric-Space
+ ( metric-space-Metric-Extension P M)
+ ( metric-space-Metric-Extension P N)
+ isometry-metric-space-isometry-Metric-Extension = pr1 f
+
+ map-metric-space-isometry-Metric-Extension :
+ type-metric-space-Metric-Extension P M →
+ type-metric-space-Metric-Extension P N
+ map-metric-space-isometry-Metric-Extension =
+ map-isometry-Metric-Space
+ ( metric-space-Metric-Extension P M)
+ ( metric-space-Metric-Extension P N)
+ ( isometry-metric-space-isometry-Metric-Extension)
+
+ is-isometry-map-metric-space-isometry-Metric-Extension :
+ is-isometry-Metric-Space
+ ( metric-space-Metric-Extension P M)
+ ( metric-space-Metric-Extension P N)
+ ( map-metric-space-isometry-Metric-Extension)
+ is-isometry-map-metric-space-isometry-Metric-Extension =
+ is-isometry-map-isometry-Metric-Space
+ ( metric-space-Metric-Extension P M)
+ ( metric-space-Metric-Extension P N)
+ ( isometry-metric-space-isometry-Metric-Extension)
+
+ coh-isometry-Metric-Extension :
+ coherence-triangle-isometry-metric-space-Metric-Extension
+ ( P)
+ ( M)
+ ( N)
+ ( isometry-metric-space-isometry-Metric-Extension)
+ coh-isometry-Metric-Extension = pr2 f
+```
+
+## Properties
+
+### Isometries of metric spaces are isometries of metric extensions
+
+```agda
+module _
+ {l1 l2 l3 l4 : Level}
+ (M : Metric-Space l1 l2)
+ (N : Metric-Space l3 l4)
+ (f : isometry-Metric-Space M N)
+ where
+
+ forgetful-isometry-Metric-Extension :
+ isometry-Metric-Extension
+ ( pseudometric-Metric-Space M)
+ ( forgetful-Metric-Extension M)
+ ( N , f)
+ forgetful-isometry-Metric-Extension = (f , refl-htpy)
+```
+
+### The identity isometry of a metric extension
+
+```agda
+module _
+ {l1 l2 l3 l4 : Level}
+ (P : Pseudometric-Space l1 l2)
+ (M : Metric-Extension l3 l4 P)
+ where
+
+ id-isometry-Metric-Extension : isometry-Metric-Extension P M M
+ pr1 id-isometry-Metric-Extension =
+ id-isometry-Metric-Space (metric-space-Metric-Extension P M)
+ pr2 id-isometry-Metric-Extension = refl-htpy
+```
+
+### Composition of isometries between metric extensions
+
+```agda
+module _
+ {l l' lu lu' lv lv' lw lw' : Level}
+ (P : Pseudometric-Space l l')
+ (U : Metric-Extension lu lu' P)
+ (V : Metric-Extension lv lv' P)
+ (W : Metric-Extension lw lw' P)
+ (g : isometry-Metric-Extension P V W)
+ (f : isometry-Metric-Extension P U V)
+ where
+
+ abstract
+ coh-comp-isometry-Metric-Extension :
+ coherence-triangle-isometry-metric-space-Metric-Extension P U W
+ ( comp-isometry-Metric-Space
+ ( metric-space-Metric-Extension P U)
+ ( metric-space-Metric-Extension P V)
+ ( metric-space-Metric-Extension P W)
+ ( isometry-metric-space-isometry-Metric-Extension P V W g)
+ ( isometry-metric-space-isometry-Metric-Extension P U V f))
+ coh-comp-isometry-Metric-Extension =
+ ( ( map-metric-space-isometry-Metric-Extension P V W g) ·l
+ ( coh-isometry-Metric-Extension P U V f)) ∙h
+ ( coh-isometry-Metric-Extension P V W g)
+
+ comp-isometry-Metric-Extension : isometry-Metric-Extension P U W
+ pr1 comp-isometry-Metric-Extension =
+ comp-isometry-Metric-Space
+ ( metric-space-Metric-Extension P U)
+ ( metric-space-Metric-Extension P V)
+ ( metric-space-Metric-Extension P W)
+ ( isometry-metric-space-isometry-Metric-Extension P V W g)
+ ( isometry-metric-space-isometry-Metric-Extension P U V f)
+ pr2 comp-isometry-Metric-Extension = coh-comp-isometry-Metric-Extension
+```
+
+### Homotopic isometries between metric extensions are equal
+
+```agda
+module _
+ { l1 l2 l3 l4 l5 l6 : Level}
+ ( P : Pseudometric-Space l1 l2)
+ ( M : Metric-Extension l3 l4 P)
+ ( N : Metric-Extension l5 l6 P)
+ ( f g : isometry-Metric-Extension P M N)
+ where
+
+ htpy-isometry-Metric-Extension : UU (l3 ⊔ l5)
+ htpy-isometry-Metric-Extension =
+ ( map-metric-space-isometry-Metric-Extension P M N f ~
+ map-metric-space-isometry-Metric-Extension P M N g)
+
+ is-prop-htpy-isometry-Metric-Extension :
+ is-prop htpy-isometry-Metric-Extension
+ is-prop-htpy-isometry-Metric-Extension =
+ is-prop-Π
+ ( λ x →
+ is-set-type-Metric-Space
+ ( metric-space-Metric-Extension P N)
+ ( map-metric-space-isometry-Metric-Extension P M N f x)
+ ( map-metric-space-isometry-Metric-Extension P M N g x))
+
+ htpy-prop-isometry-Metric-Extension : Prop (l3 ⊔ l5)
+ htpy-prop-isometry-Metric-Extension =
+ ( htpy-isometry-Metric-Extension , is-prop-htpy-isometry-Metric-Extension)
+
+ eq-htpy-isometry-Metric-Extension :
+ htpy-isometry-Metric-Extension → f = g
+ eq-htpy-isometry-Metric-Extension f~g =
+ eq-type-subtype
+ ( coherence-triangle-prop-isometry-metric-space-Metric-Extension P M N)
+ ( eq-htpy-map-isometry-Metric-Space
+ ( metric-space-Metric-Extension P M)
+ ( metric-space-Metric-Extension P N)
+ ( isometry-metric-space-isometry-Metric-Extension P M N f)
+ ( isometry-metric-space-isometry-Metric-Extension P M N g)
+ ( f~g))
+```
diff --git a/src/metric-spaces/isometries-metric-spaces.lagda.md b/src/metric-spaces/isometries-metric-spaces.lagda.md
index 3fee4dcad8f..92c1c0a3e88 100644
--- a/src/metric-spaces/isometries-metric-spaces.lagda.md
+++ b/src/metric-spaces/isometries-metric-spaces.lagda.md
@@ -125,8 +125,8 @@ module _
is-isometry-Metric-Space A A (id-Metric-Space A)
is-isometry-id-Metric-Space d x y = id-iff
- isometry-id-Metric-Space : isometry-Metric-Space A A
- isometry-id-Metric-Space =
+ id-isometry-Metric-Space : isometry-Metric-Space A A
+ id-isometry-Metric-Space =
id-Metric-Space A , is-isometry-id-Metric-Space
```
@@ -171,7 +171,7 @@ module _
(f : isometry-Metric-Space A B)
where
- preserves-neighborhood-map-isometry-Metric-Space :
+ preserves-neighborhoods-map-isometry-Metric-Space :
(d : ℚ⁺) (x y : type-Metric-Space A) →
neighborhood-Metric-Space A d x y →
neighborhood-Metric-Space
@@ -179,11 +179,11 @@ module _
( d)
( map-isometry-Metric-Space A B f x)
( map-isometry-Metric-Space A B f y)
- preserves-neighborhood-map-isometry-Metric-Space d x y =
+ preserves-neighborhoods-map-isometry-Metric-Space d x y =
forward-implication
( is-isometry-map-isometry-Metric-Space A B f d x y)
- reflects-neighborhood-map-isometry-Metric-Space :
+ reflects-neighborhoods-map-isometry-Metric-Space :
(d : ℚ⁺) (x y : type-Metric-Space A) →
neighborhood-Metric-Space
( B)
@@ -191,7 +191,7 @@ module _
( map-isometry-Metric-Space A B f x)
( map-isometry-Metric-Space A B f y) →
neighborhood-Metric-Space A d x y
- reflects-neighborhood-map-isometry-Metric-Space d x y =
+ reflects-neighborhoods-map-isometry-Metric-Space d x y =
backward-implication
( is-isometry-map-isometry-Metric-Space A B f d x y)
```
@@ -238,7 +238,7 @@ module _
left-unit-law-comp-isometry-Metric-Space :
( comp-isometry-Metric-Space A B B
- (isometry-id-Metric-Space B)
+ ( id-isometry-Metric-Space B)
( f)) =
( f)
left-unit-law-comp-isometry-Metric-Space =
@@ -250,7 +250,7 @@ module _
right-unit-law-comp-isometry-Metric-Space :
( comp-isometry-Metric-Space A A B
( f)
- ( isometry-id-Metric-Space A)) =
+ ( id-isometry-Metric-Space A)) =
( f)
right-unit-law-comp-isometry-Metric-Space =
right-unit-law-comp-isometry-Pseudometric-Space
@@ -335,7 +335,7 @@ module _
B
f
isometry-inv-is-equiv-isometry-Metric-Space) =
- ( isometry-id-Metric-Space B)
+ ( id-isometry-Metric-Space B)
is-section-isometry-inv-is-equiv-isometry-Metric-Space =
is-section-isometry-inv-is-equiv-isometry-Pseudometric-Space
( pseudometric-Metric-Space A)
@@ -350,7 +350,7 @@ module _
A
isometry-inv-is-equiv-isometry-Metric-Space
f) =
- ( isometry-id-Metric-Space A)
+ ( id-isometry-Metric-Space A)
is-retraction-isometry-inv-is-equiv-isometry-Metric-Space =
is-retraction-isometry-inv-is-equiv-isometry-Pseudometric-Space
( pseudometric-Metric-Space A)
diff --git a/src/metric-spaces/isometries-pseudometric-spaces.lagda.md b/src/metric-spaces/isometries-pseudometric-spaces.lagda.md
index 35d81a521c0..7147daf5c02 100644
--- a/src/metric-spaces/isometries-pseudometric-spaces.lagda.md
+++ b/src/metric-spaces/isometries-pseudometric-spaces.lagda.md
@@ -113,8 +113,8 @@ module _
is-isometry-Pseudometric-Space A A (id-Pseudometric-Space A)
is-isometry-id-Pseudometric-Space d x y = id-iff
- isometry-id-Pseudometric-Space : isometry-Pseudometric-Space A A
- isometry-id-Pseudometric-Space =
+ id-isometry-Pseudometric-Space : isometry-Pseudometric-Space A A
+ id-isometry-Pseudometric-Space =
( id-Pseudometric-Space A , is-isometry-id-Pseudometric-Space)
```
@@ -162,7 +162,7 @@ module _
(f : isometry-Pseudometric-Space A B)
where
- preserves-neighborhood-map-isometry-Pseudometric-Space :
+ preserves-neighborhoods-map-isometry-Pseudometric-Space :
(d : ℚ⁺) (x y : type-Pseudometric-Space A) →
neighborhood-Pseudometric-Space A d x y →
neighborhood-Pseudometric-Space
@@ -170,11 +170,11 @@ module _
( d)
( map-isometry-Pseudometric-Space A B f x)
( map-isometry-Pseudometric-Space A B f y)
- preserves-neighborhood-map-isometry-Pseudometric-Space d x y =
+ preserves-neighborhoods-map-isometry-Pseudometric-Space d x y =
forward-implication
( is-isometry-map-isometry-Pseudometric-Space A B f d x y)
- reflects-neighborhood-map-isometry-Pseudometric-Space :
+ reflects-neighborhoods-map-isometry-Pseudometric-Space :
(d : ℚ⁺) (x y : type-Pseudometric-Space A) →
neighborhood-Pseudometric-Space
( B)
@@ -182,7 +182,7 @@ module _
( map-isometry-Pseudometric-Space A B f x)
( map-isometry-Pseudometric-Space A B f y) →
neighborhood-Pseudometric-Space A d x y
- reflects-neighborhood-map-isometry-Pseudometric-Space d x y =
+ reflects-neighborhoods-map-isometry-Pseudometric-Space d x y =
backward-implication
( is-isometry-map-isometry-Pseudometric-Space A B f d x y)
```
@@ -232,7 +232,7 @@ module _
left-unit-law-comp-isometry-Pseudometric-Space :
( comp-isometry-Pseudometric-Space A B B
- (isometry-id-Pseudometric-Space B)
+ ( id-isometry-Pseudometric-Space B)
( f)) =
( f)
left-unit-law-comp-isometry-Pseudometric-Space =
@@ -243,7 +243,7 @@ module _
( A)
( B)
( B)
- (isometry-id-Pseudometric-Space B)
+ ( id-isometry-Pseudometric-Space B)
( f))
( f)
( refl-htpy)
@@ -251,7 +251,7 @@ module _
right-unit-law-comp-isometry-Pseudometric-Space :
( comp-isometry-Pseudometric-Space A A B
( f)
- ( isometry-id-Pseudometric-Space A)) =
+ ( id-isometry-Pseudometric-Space A)) =
( f)
right-unit-law-comp-isometry-Pseudometric-Space =
eq-htpy-map-isometry-Pseudometric-Space
@@ -263,7 +263,7 @@ module _
( A)
( B)
( f)
- ( isometry-id-Pseudometric-Space A))
+ ( id-isometry-Pseudometric-Space A))
( refl-htpy)
```
@@ -357,25 +357,25 @@ module _
( comp-isometry-Pseudometric-Space B A B
( f)
( isometry-inv-is-equiv-isometry-Pseudometric-Space)) =
- ( isometry-id-Pseudometric-Space B)
+ ( id-isometry-Pseudometric-Space B)
is-section-isometry-inv-is-equiv-isometry-Pseudometric-Space =
eq-htpy-map-isometry-Pseudometric-Space B B
( comp-isometry-Pseudometric-Space B A B
( f)
( isometry-inv-is-equiv-isometry-Pseudometric-Space))
- ( isometry-id-Pseudometric-Space B)
+ ( id-isometry-Pseudometric-Space B)
( is-section-map-inv-is-equiv E)
is-retraction-isometry-inv-is-equiv-isometry-Pseudometric-Space :
( comp-isometry-Pseudometric-Space A B A
( isometry-inv-is-equiv-isometry-Pseudometric-Space)
( f)) =
- ( isometry-id-Pseudometric-Space A)
+ ( id-isometry-Pseudometric-Space A)
is-retraction-isometry-inv-is-equiv-isometry-Pseudometric-Space =
eq-htpy-map-isometry-Pseudometric-Space A A
( comp-isometry-Pseudometric-Space A B A
( isometry-inv-is-equiv-isometry-Pseudometric-Space)
( f))
- ( isometry-id-Pseudometric-Space A)
+ ( id-isometry-Pseudometric-Space A)
( is-retraction-map-inv-is-equiv E)
```
diff --git a/src/metric-spaces/limits-of-cauchy-approximations-metric-spaces.lagda.md b/src/metric-spaces/limits-of-cauchy-approximations-metric-spaces.lagda.md
index d9a5fe6ea14..84a29eb976c 100644
--- a/src/metric-spaces/limits-of-cauchy-approximations-metric-spaces.lagda.md
+++ b/src/metric-spaces/limits-of-cauchy-approximations-metric-spaces.lagda.md
@@ -10,12 +10,9 @@ module metric-spaces.limits-of-cauchy-approximations-metric-spaces where
open import elementary-number-theory.addition-positive-rational-numbers
open import elementary-number-theory.positive-rational-numbers
-open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.identity-types
open import foundation.propositions
-open import foundation.subtypes
-open import foundation.transport-along-identifications
open import foundation.universe-levels
open import metric-spaces.cauchy-approximations-metric-spaces
diff --git a/src/metric-spaces/metric-extensions-of-pseudometric-spaces.lagda.md b/src/metric-spaces/metric-extensions-of-pseudometric-spaces.lagda.md
new file mode 100644
index 00000000000..4868e97993a
--- /dev/null
+++ b/src/metric-spaces/metric-extensions-of-pseudometric-spaces.lagda.md
@@ -0,0 +1,255 @@
+# Metric extensions of pseudometric spaces
+
+```agda
+module metric-spaces.metric-extensions-of-pseudometric-spaces where
+```
+
+Imports
+
+```agda
+open import elementary-number-theory.addition-positive-rational-numbers
+open import elementary-number-theory.positive-rational-numbers
+open import elementary-number-theory.strict-inequality-positive-rational-numbers
+open import elementary-number-theory.strict-inequality-rational-numbers
+
+open import foundation.action-on-identifications-binary-functions
+open import foundation.action-on-identifications-functions
+open import foundation.binary-relations
+open import foundation.binary-transport
+open import foundation.dependent-pair-types
+open import foundation.equivalences
+open import foundation.existential-quantification
+open import foundation.function-types
+open import foundation.homotopies
+open import foundation.identity-types
+open import foundation.logical-equivalences
+open import foundation.propositional-truncations
+open import foundation.propositions
+open import foundation.set-quotients
+open import foundation.sets
+open import foundation.transport-along-identifications
+open import foundation.universe-levels
+
+open import metric-spaces.cauchy-approximations-metric-quotients-of-pseudometric-spaces
+open import metric-spaces.cauchy-approximations-metric-spaces
+open import metric-spaces.cauchy-approximations-pseudometric-spaces
+open import metric-spaces.cauchy-pseudocompletion-of-metric-spaces
+open import metric-spaces.cauchy-pseudocompletion-of-pseudometric-spaces
+open import metric-spaces.complete-metric-spaces
+open import metric-spaces.convergent-cauchy-approximations-metric-spaces
+open import metric-spaces.equality-of-metric-spaces
+open import metric-spaces.functions-metric-spaces
+open import metric-spaces.functions-pseudometric-spaces
+open import metric-spaces.isometries-metric-spaces
+open import metric-spaces.isometries-pseudometric-spaces
+open import metric-spaces.limits-of-cauchy-approximations-metric-spaces
+open import metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces
+open import metric-spaces.metric-quotients-of-pseudometric-spaces
+open import metric-spaces.metric-spaces
+open import metric-spaces.precategory-of-metric-spaces-and-short-functions
+open import metric-spaces.pseudometric-spaces
+open import metric-spaces.rational-neighborhood-relations
+open import metric-spaces.short-functions-metric-spaces
+open import metric-spaces.short-functions-pseudometric-spaces
+open import metric-spaces.similarity-of-elements-pseudometric-spaces
+```
+
+
+
+## Idea
+
+A
+{{#concept "metric extension" Disambiguation="of a pseudometric space" Agda=Metric-Extension}}
+of a [pseudometric space](metric-spaces.pseudometric-spaces.md) `P` is a
+[metric space](metric-spaces.metric-spaces.md) `M` together with an
+[isometry](metric-spaces.isometries-pseudometric-spaces.md) `f : P → M`.
+
+## Definition
+
+### Metric extensions of pseudometric spaces
+
+```agda
+module _
+ {l1 l2 : Level} (l3 l4 : Level) (P : Pseudometric-Space l1 l2)
+ where
+
+ Metric-Extension : UU (l1 ⊔ l2 ⊔ lsuc l3 ⊔ lsuc l4)
+ Metric-Extension =
+ Σ ( Metric-Space l3 l4)
+ ( isometry-Pseudometric-Space P ∘ pseudometric-Metric-Space)
+```
+
+```agda
+module _
+ {l1 l2 l3 l4 : Level} (P : Pseudometric-Space l1 l2)
+ (M : Metric-Extension l3 l4 P)
+ where
+
+ metric-space-Metric-Extension : Metric-Space l3 l4
+ metric-space-Metric-Extension = pr1 M
+
+ pseudometric-space-Metric-Extension : Pseudometric-Space l3 l4
+ pseudometric-space-Metric-Extension =
+ pseudometric-Metric-Space metric-space-Metric-Extension
+
+ type-metric-space-Metric-Extension : UU l3
+ type-metric-space-Metric-Extension =
+ type-Metric-Space metric-space-Metric-Extension
+
+ isometry-metric-space-Metric-Extension :
+ isometry-Pseudometric-Space P pseudometric-space-Metric-Extension
+ isometry-metric-space-Metric-Extension = pr2 M
+
+ map-isometry-metric-space-Metric-Extension :
+ type-Pseudometric-Space P → type-metric-space-Metric-Extension
+ map-isometry-metric-space-Metric-Extension =
+ map-isometry-Pseudometric-Space
+ ( P)
+ ( pseudometric-space-Metric-Extension)
+ ( isometry-metric-space-Metric-Extension)
+```
+
+## Properties
+
+### The forgetful metric extension of a metric space into itself
+
+```agda
+module _
+ {l1 l2 : Level} (M : Metric-Space l1 l2)
+ where
+
+ forgetful-Metric-Extension :
+ Metric-Extension l1 l2 (pseudometric-Metric-Space M)
+ forgetful-Metric-Extension = (M , id-isometry-Metric-Space M)
+```
+
+### Action of metric extensions on Cauchy approximations
+
+```agda
+module _
+ {l1 l2 l3 l4 : Level} (P : Pseudometric-Space l1 l2)
+ (M : Metric-Extension l3 l4 P)
+ where
+
+ isometry-cauchy-pseudocompletion-Metric-Extension :
+ isometry-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space P)
+ ( cauchy-pseudocompletion-Metric-Space
+ ( metric-space-Metric-Extension P M))
+ isometry-cauchy-pseudocompletion-Metric-Extension =
+ isometry-map-cauchy-approximation-isometry-Pseudometric-Space
+ ( P)
+ ( pseudometric-space-Metric-Extension P M)
+ ( isometry-metric-space-Metric-Extension P M)
+
+ map-cauchy-pseudocompletion-Metric-Extension :
+ cauchy-approximation-Pseudometric-Space P →
+ cauchy-approximation-Metric-Space
+ ( metric-space-Metric-Extension P M)
+ map-cauchy-pseudocompletion-Metric-Extension =
+ map-isometry-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space P)
+ ( cauchy-pseudocompletion-Metric-Space
+ ( metric-space-Metric-Extension P M))
+ ( isometry-cauchy-pseudocompletion-Metric-Extension)
+
+ is-isometry-map-cauchy-pseudocompletion-Metric-Extension :
+ is-isometry-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space P)
+ ( cauchy-pseudocompletion-Metric-Space
+ ( metric-space-Metric-Extension P M))
+ ( map-cauchy-pseudocompletion-Metric-Extension)
+ is-isometry-map-cauchy-pseudocompletion-Metric-Extension =
+ is-isometry-map-isometry-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space P)
+ ( cauchy-pseudocompletion-Metric-Space
+ ( metric-space-Metric-Extension P M))
+ ( isometry-cauchy-pseudocompletion-Metric-Extension)
+```
+
+### Limit points in metric extensions
+
+```agda
+module _
+ {l1 l2 l3 l4 : Level}
+ (P : Pseudometric-Space l1 l2)
+ (M : Metric-Extension l3 l4 P)
+ (u : cauchy-approximation-Pseudometric-Space P)
+ (y : type-metric-space-Metric-Extension P M)
+ where
+
+ is-limit-map-cauchy-pseudocompletion-prop-Metric-Extension : Prop l4
+ is-limit-map-cauchy-pseudocompletion-prop-Metric-Extension =
+ is-limit-cauchy-approximation-prop-Metric-Space
+ ( metric-space-Metric-Extension P M)
+ ( map-cauchy-pseudocompletion-Metric-Extension P M u)
+ ( y)
+
+ is-limit-map-cauchy-pseudocompletion-Metric-Extension : UU l4
+ is-limit-map-cauchy-pseudocompletion-Metric-Extension =
+ type-Prop
+ is-limit-map-cauchy-pseudocompletion-prop-Metric-Extension
+
+ is-prop-is-limit-map-cauchy-pseudocompletion-Metric-Extension :
+ is-prop is-limit-map-cauchy-pseudocompletion-Metric-Extension
+ is-prop-is-limit-map-cauchy-pseudocompletion-Metric-Extension =
+ is-prop-type-Prop
+ is-limit-map-cauchy-pseudocompletion-prop-Metric-Extension
+```
+
+### Similarity in the Cauchy pseudocompletion of a pseudometric space preserves and reflects limits in a metric extension
+
+```agda
+module _
+ {l1 l2 l3 l4 : Level}
+ (P : Pseudometric-Space l1 l2)
+ (M : Metric-Extension l3 l4 P)
+ (u v : cauchy-approximation-Pseudometric-Space P)
+ (y : type-metric-space-Metric-Extension P M)
+ where
+
+ sim-has-same-limit-map-cauchy-pseudocompletion-Metric-Extension :
+ is-limit-map-cauchy-pseudocompletion-Metric-Extension P M u y →
+ is-limit-map-cauchy-pseudocompletion-Metric-Extension P M v y →
+ sim-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space P)
+ ( u)
+ ( v)
+ sim-has-same-limit-map-cauchy-pseudocompletion-Metric-Extension lim-u lim-v =
+ reflects-sim-map-isometry-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space P)
+ ( cauchy-pseudocompletion-Metric-Space
+ ( metric-space-Metric-Extension P M))
+ ( isometry-cauchy-pseudocompletion-Metric-Extension P M)
+ ( u)
+ ( v)
+ ( sim-has-same-limit-cauchy-approximation-Pseudometric-Space
+ ( pseudometric-space-Metric-Extension P M)
+ ( map-cauchy-pseudocompletion-Metric-Extension P M u)
+ ( map-cauchy-pseudocompletion-Metric-Extension P M v)
+ ( y)
+ ( lim-u)
+ ( lim-v))
+
+ has-same-limit-map-cauchy-sim-pseudocompletion-Metric-Extension :
+ sim-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space P)
+ ( u)
+ ( v) →
+ is-limit-map-cauchy-pseudocompletion-Metric-Extension P M u y →
+ is-limit-map-cauchy-pseudocompletion-Metric-Extension P M v y
+ has-same-limit-map-cauchy-sim-pseudocompletion-Metric-Extension u~v =
+ has-same-limit-sim-cauchy-approximation-Pseudometric-Space
+ ( pseudometric-space-Metric-Extension P M)
+ ( map-cauchy-pseudocompletion-Metric-Extension P M u)
+ ( map-cauchy-pseudocompletion-Metric-Extension P M v)
+ ( y)
+ ( preserves-sim-map-isometry-Pseudometric-Space
+ ( cauchy-pseudocompletion-Pseudometric-Space P)
+ ( cauchy-pseudocompletion-Metric-Space
+ ( metric-space-Metric-Extension P M))
+ ( isometry-cauchy-pseudocompletion-Metric-Extension P M)
+ ( u)
+ ( v)
+ ( u~v))
+```
diff --git a/src/metric-spaces/metric-quotients-of-pseudometric-spaces.lagda.md b/src/metric-spaces/metric-quotients-of-pseudometric-spaces.lagda.md
index ffecd0aafca..d4228503f38 100644
--- a/src/metric-spaces/metric-quotients-of-pseudometric-spaces.lagda.md
+++ b/src/metric-spaces/metric-quotients-of-pseudometric-spaces.lagda.md
@@ -386,6 +386,17 @@ module _
map-subtype-metric-quotient-Pseudometric-Space =
inhabitant-equivalence-class-quotient-map-set-quotient
( equivalence-relation-sim-Pseudometric-Space M)
+
+ eq-map-is-in-class-metric-quotient-Pseudometric-Space :
+ (X : type-metric-quotient-Pseudometric-Space M) →
+ {x : type-Pseudometric-Space M} →
+ is-in-class-metric-quotient-Pseudometric-Space M X x →
+ map-metric-quotient-Pseudometric-Space x = X
+ eq-map-is-in-class-metric-quotient-Pseudometric-Space X {x} x∈X =
+ eq-set-quotient-equivalence-class-set-quotient
+ ( equivalence-relation-sim-Pseudometric-Space M)
+ ( X)
+ ( x∈X)
```
### The mapping from a pseudometric space its quotient metric space is an isometry
@@ -397,7 +408,7 @@ module _
where
abstract
- preserves-neighborhood-map-metric-quotient-Pseudometric-Space :
+ preserves-neighborhoods-map-metric-quotient-Pseudometric-Space :
(d : ℚ⁺) (x y : type-Pseudometric-Space M) →
neighborhood-Pseudometric-Space M d x y →
neighborhood-metric-quotient-Pseudometric-Space
@@ -405,7 +416,7 @@ module _
( d)
( map-metric-quotient-Pseudometric-Space M x)
( map-metric-quotient-Pseudometric-Space M y)
- preserves-neighborhood-map-metric-quotient-Pseudometric-Space
+ preserves-neighborhoods-map-metric-quotient-Pseudometric-Space
d x y d⟨x,y⟩ (x' , x≈x') (y' , y≈y') =
let
x~x' =
@@ -423,15 +434,15 @@ module _
( y≈y')
in
- preserves-neighborhood-right-sim-Pseudometric-Space M y~y' d x'
- ( preserves-neighborhood-left-sim-Pseudometric-Space
+ preserves-neighborhoods-right-sim-Pseudometric-Space M y~y' d x'
+ ( preserves-neighborhoods-left-sim-Pseudometric-Space
( M)
( x~x')
( d)
( y)
( d⟨x,y⟩))
- reflects-neighborhood-map-metric-quotient-Pseudometric-Space :
+ reflects-neighborhoods-map-metric-quotient-Pseudometric-Space :
(d : ℚ⁺) (x y : type-Pseudometric-Space M) →
neighborhood-metric-quotient-Pseudometric-Space
( M)
@@ -439,7 +450,7 @@ module _
( map-metric-quotient-Pseudometric-Space M x)
( map-metric-quotient-Pseudometric-Space M y) →
neighborhood-Pseudometric-Space M d x y
- reflects-neighborhood-map-metric-quotient-Pseudometric-Space
+ reflects-neighborhoods-map-metric-quotient-Pseudometric-Space
d x y Nxy =
Nxy
( map-subtype-metric-quotient-Pseudometric-Space M x)
@@ -451,8 +462,8 @@ module _
( pseudometric-metric-quotient-Pseudometric-Space M)
( map-metric-quotient-Pseudometric-Space M)
is-isometry-map-metric-quotient-Pseudometric-Space d x y =
- ( preserves-neighborhood-map-metric-quotient-Pseudometric-Space d x y ,
- reflects-neighborhood-map-metric-quotient-Pseudometric-Space d x y)
+ ( preserves-neighborhoods-map-metric-quotient-Pseudometric-Space d x y ,
+ reflects-neighborhoods-map-metric-quotient-Pseudometric-Space d x y)
```
### The isometry from a pseudometric space to its quotient metric space
@@ -758,7 +769,7 @@ module _
( f))
abstract
- preserves-neighborhood-map-isometry-metric-quotient-Pseudometric-Space :
+ preserves-neighborhoods-map-isometry-metric-quotient-Pseudometric-Space :
(d : ℚ⁺) →
(x y : type-metric-quotient-Pseudometric-Space A) →
neighborhood-metric-quotient-Pseudometric-Space
@@ -771,7 +782,7 @@ module _
( d)
( map-isometry-metric-quotient-Pseudometric-Space x)
( map-isometry-metric-quotient-Pseudometric-Space y)
- preserves-neighborhood-map-isometry-metric-quotient-Pseudometric-Space =
+ preserves-neighborhoods-map-isometry-metric-quotient-Pseudometric-Space =
is-short-map-short-function-metric-quotient-Pseudometric-Space
( A)
( B)
@@ -780,7 +791,7 @@ module _
( pseudometric-Metric-Space B)
( f))
- reflects-neighborhood-map-isometry-metric-quotient-Pseudometric-Space :
+ reflects-neighborhoods-map-isometry-metric-quotient-Pseudometric-Space :
(d : ℚ⁺) →
(x y : type-metric-quotient-Pseudometric-Space A) →
neighborhood-Metric-Space
@@ -793,9 +804,9 @@ module _
( d)
( x)
( y)
- reflects-neighborhood-map-isometry-metric-quotient-Pseudometric-Space
+ reflects-neighborhoods-map-isometry-metric-quotient-Pseudometric-Space
d X Y N⟨fX,fY⟩ (x , x∈X) (y , y∈Y) =
- reflects-neighborhood-map-isometry-Pseudometric-Space
+ reflects-neighborhoods-map-isometry-Pseudometric-Space
( A)
( pseudometric-Metric-Space B)
( f)
@@ -814,11 +825,11 @@ module _
( B)
( map-isometry-metric-quotient-Pseudometric-Space)
is-isometry-map-isometry-metric-quotient-Pseudometric-Space d x y =
- ( preserves-neighborhood-map-isometry-metric-quotient-Pseudometric-Space
+ ( preserves-neighborhoods-map-isometry-metric-quotient-Pseudometric-Space
( d)
( x)
( y) ,
- reflects-neighborhood-map-isometry-metric-quotient-Pseudometric-Space
+ reflects-neighborhoods-map-isometry-metric-quotient-Pseudometric-Space
( d)
( x)
( y))
diff --git a/src/metric-spaces/precategory-of-metric-spaces-and-isometries.lagda.md b/src/metric-spaces/precategory-of-metric-spaces-and-isometries.lagda.md
index ba315c5ba83..04989c2beae 100644
--- a/src/metric-spaces/precategory-of-metric-spaces-and-isometries.lagda.md
+++ b/src/metric-spaces/precategory-of-metric-spaces-and-isometries.lagda.md
@@ -55,7 +55,7 @@ module _
( Metric-Space l1 l2)
( set-isometry-Metric-Space)
( λ {A B C} → comp-isometry-Metric-Space A B C)
- ( isometry-id-Metric-Space)
+ ( id-isometry-Metric-Space)
( λ {A B C D} → associative-comp-isometry-Metric-Space A B C D)
( λ {A B} → left-unit-law-comp-isometry-Metric-Space A B)
( λ {A B} → right-unit-law-comp-isometry-Metric-Space A B)
diff --git a/src/metric-spaces/precategory-of-metric-spaces-and-short-functions.lagda.md b/src/metric-spaces/precategory-of-metric-spaces-and-short-functions.lagda.md
index 6d3251395db..c494f32b3d5 100644
--- a/src/metric-spaces/precategory-of-metric-spaces-and-short-functions.lagda.md
+++ b/src/metric-spaces/precategory-of-metric-spaces-and-short-functions.lagda.md
@@ -56,7 +56,7 @@ module _
( Metric-Space l1 l2)
( set-short-function-Metric-Space)
( λ {A B C} → comp-short-function-Metric-Space A B C)
- ( short-id-Metric-Space)
+ ( id-short-function-Metric-Space)
( λ {A B C D} → associative-comp-short-function-Metric-Space A B C D)
( λ {A B} → left-unit-law-comp-short-function-Metric-Space A B)
( λ {A B} → right-unit-law-comp-short-function-Metric-Space A B)
@@ -149,7 +149,7 @@ module _
( B)
( f)
( short-inverse))
- ( short-id-Metric-Space B)
+ ( id-short-function-Metric-Space B)
( is-section-map-inv-is-equiv E)) ,
( eq-htpy-map-short-function-Metric-Space
( A)
@@ -160,7 +160,7 @@ module _
( A)
( short-inverse)
( f))
- ( short-id-Metric-Space A)
+ ( id-short-function-Metric-Space A)
( is-retraction-map-inv-is-equiv E)))
where
diff --git a/src/metric-spaces/short-functions-metric-spaces.lagda.md b/src/metric-spaces/short-functions-metric-spaces.lagda.md
index 64e55931bc5..e0cb7d72f27 100644
--- a/src/metric-spaces/short-functions-metric-spaces.lagda.md
+++ b/src/metric-spaces/short-functions-metric-spaces.lagda.md
@@ -140,9 +140,9 @@ module _
is-short-id-Pseudometric-Space
( pseudometric-Metric-Space A)
- short-id-Metric-Space : short-function-Metric-Space A A
- short-id-Metric-Space =
- short-id-Pseudometric-Space (pseudometric-Metric-Space A)
+ id-short-function-Metric-Space : short-function-Metric-Space A A
+ id-short-function-Metric-Space =
+ id-short-function-Pseudometric-Space (pseudometric-Metric-Space A)
```
### Equality of short functions between metric spaces is characterized by homotopy of their carrier maps
@@ -216,7 +216,7 @@ module _
left-unit-law-comp-short-function-Metric-Space :
( comp-short-function-Metric-Space A B B
- ( short-id-Metric-Space B)
+ ( id-short-function-Metric-Space B)
( f)) =
( f)
left-unit-law-comp-short-function-Metric-Space =
@@ -228,7 +228,7 @@ module _
right-unit-law-comp-short-function-Metric-Space :
( comp-short-function-Metric-Space A A B
( f)
- ( short-id-Metric-Space A)) =
+ ( id-short-function-Metric-Space A)) =
( f)
right-unit-law-comp-short-function-Metric-Space =
right-unit-law-comp-short-function-Pseudometric-Space
diff --git a/src/metric-spaces/short-functions-pseudometric-spaces.lagda.md b/src/metric-spaces/short-functions-pseudometric-spaces.lagda.md
index 2075b6e1006..c4e262d3a3d 100644
--- a/src/metric-spaces/short-functions-pseudometric-spaces.lagda.md
+++ b/src/metric-spaces/short-functions-pseudometric-spaces.lagda.md
@@ -116,9 +116,10 @@ module _
is-short-function-Pseudometric-Space A A (id-Pseudometric-Space A)
is-short-id-Pseudometric-Space d x y H = H
- short-id-Pseudometric-Space : short-function-Pseudometric-Space A A
- short-id-Pseudometric-Space =
- id-Pseudometric-Space A , is-short-id-Pseudometric-Space
+ id-short-function-Pseudometric-Space :
+ short-function-Pseudometric-Space A A
+ id-short-function-Pseudometric-Space =
+ ( id-Pseudometric-Space A , is-short-id-Pseudometric-Space)
```
### Equality of short functions between pseudometric spaces is characterized by homotopy of their carrier maps
@@ -192,7 +193,7 @@ module _
left-unit-law-comp-short-function-Pseudometric-Space :
( comp-short-function-Pseudometric-Space A B B
- ( short-id-Pseudometric-Space B)
+ ( id-short-function-Pseudometric-Space B)
( f)) =
( f)
left-unit-law-comp-short-function-Pseudometric-Space =
@@ -203,7 +204,7 @@ module _
( A)
( B)
( B)
- ( short-id-Pseudometric-Space B)
+ ( id-short-function-Pseudometric-Space B)
( f))
( f)
( λ x → refl)
@@ -211,7 +212,7 @@ module _
right-unit-law-comp-short-function-Pseudometric-Space :
( comp-short-function-Pseudometric-Space A A B
( f)
- ( short-id-Pseudometric-Space A)) =
+ ( id-short-function-Pseudometric-Space A)) =
( f)
right-unit-law-comp-short-function-Pseudometric-Space =
eq-htpy-map-short-function-Pseudometric-Space
@@ -223,7 +224,7 @@ module _
( A)
( B)
( f)
- ( short-id-Pseudometric-Space A))
+ ( id-short-function-Pseudometric-Space A))
( λ x → refl)
```
@@ -295,7 +296,7 @@ module _
is-isometry-Pseudometric-Space A B f →
is-short-function-Pseudometric-Space A B f
is-short-is-isometry-Pseudometric-Space I =
- preserves-neighborhood-map-isometry-Pseudometric-Space A B (f , I)
+ preserves-neighborhoods-map-isometry-Pseudometric-Space A B (f , I)
```
### The embedding of isometries of pseudometric spaces into short maps
diff --git a/src/metric-spaces/similarity-of-elements-pseudometric-spaces.lagda.md b/src/metric-spaces/similarity-of-elements-pseudometric-spaces.lagda.md
index f9caa041d21..6a249158e43 100644
--- a/src/metric-spaces/similarity-of-elements-pseudometric-spaces.lagda.md
+++ b/src/metric-spaces/similarity-of-elements-pseudometric-spaces.lagda.md
@@ -22,6 +22,7 @@ open import foundation.propositions
open import foundation.transport-along-identifications
open import foundation.universe-levels
+open import metric-spaces.isometries-pseudometric-spaces
open import metric-spaces.pseudometric-spaces
open import metric-spaces.rational-neighborhood-relations
open import metric-spaces.short-functions-pseudometric-spaces
@@ -172,13 +173,13 @@ module _
where
abstract
- preserves-neighborhood-left-sim-Pseudometric-Space :
+ preserves-neighborhoods-left-sim-Pseudometric-Space :
{ x y : type-Pseudometric-Space A} →
( sim-Pseudometric-Space A x y) →
( d : ℚ⁺) (z : type-Pseudometric-Space A) →
neighborhood-Pseudometric-Space A d x z →
neighborhood-Pseudometric-Space A d y z
- preserves-neighborhood-left-sim-Pseudometric-Space {x} {y} x≍y d z Nxz =
+ preserves-neighborhoods-left-sim-Pseudometric-Space {x} {y} x≍y d z Nxz =
saturated-neighborhood-Pseudometric-Space
( A)
( d)
@@ -203,46 +204,46 @@ module _
( y)
( x≍y δ))))
- preserves-neighborhood-right-sim-Pseudometric-Space :
+ preserves-neighborhoods-right-sim-Pseudometric-Space :
{ x y : type-Pseudometric-Space A} →
( sim-Pseudometric-Space A x y) →
( d : ℚ⁺) (z : type-Pseudometric-Space A) →
neighborhood-Pseudometric-Space A d z x →
neighborhood-Pseudometric-Space A d z y
- preserves-neighborhood-right-sim-Pseudometric-Space {x} {y} x≍y d z Nzx =
+ preserves-neighborhoods-right-sim-Pseudometric-Space {x} {y} x≍y d z Nzx =
symmetric-neighborhood-Pseudometric-Space A d y z
- ( preserves-neighborhood-left-sim-Pseudometric-Space x≍y d z
+ ( preserves-neighborhoods-left-sim-Pseudometric-Space x≍y d z
( symmetric-neighborhood-Pseudometric-Space A d z x Nzx))
- preserves-neighborhood-sim-Pseudometric-Space :
+ preserves-neighborhoods-sim-Pseudometric-Space :
{x x' y y' : type-Pseudometric-Space A} →
sim-Pseudometric-Space A x x' →
sim-Pseudometric-Space A y y' →
(d : ℚ⁺) →
neighborhood-Pseudometric-Space A d x y →
neighborhood-Pseudometric-Space A d x' y'
- preserves-neighborhood-sim-Pseudometric-Space
+ preserves-neighborhoods-sim-Pseudometric-Space
{x} {x'} {y} {y'} x~x' y~y' d Nxy =
- preserves-neighborhood-left-sim-Pseudometric-Space
+ preserves-neighborhoods-left-sim-Pseudometric-Space
( x~x')
( d)
( y')
- ( preserves-neighborhood-right-sim-Pseudometric-Space
+ ( preserves-neighborhoods-right-sim-Pseudometric-Space
( y~y')
( d)
( x)
( Nxy))
- reflects-neighborhood-sim-Pseudometric-Space :
+ reflects-neighborhoods-sim-Pseudometric-Space :
{x x' y y' : type-Pseudometric-Space A} →
sim-Pseudometric-Space A x x' →
sim-Pseudometric-Space A y y' →
(d : ℚ⁺) →
neighborhood-Pseudometric-Space A d x' y' →
neighborhood-Pseudometric-Space A d x y
- reflects-neighborhood-sim-Pseudometric-Space
+ reflects-neighborhoods-sim-Pseudometric-Space
{x} {x'} {y} {y'} x~x' y~y' =
- preserves-neighborhood-sim-Pseudometric-Space
+ preserves-neighborhoods-sim-Pseudometric-Space
( inv-sim-Pseudometric-Space A x~x')
( inv-sim-Pseudometric-Space A y~y')
@@ -254,8 +255,8 @@ module _
neighborhood-Pseudometric-Space A d y z)
same-neighbors-iff-sim-Pseudometric-Space =
( λ x≍y d z →
- ( preserves-neighborhood-left-sim-Pseudometric-Space x≍y d z) ,
- ( preserves-neighborhood-left-sim-Pseudometric-Space
+ ( preserves-neighborhoods-left-sim-Pseudometric-Space x≍y d z) ,
+ ( preserves-neighborhoods-left-sim-Pseudometric-Space
( inv-sim-Pseudometric-Space A x≍y)
( d)
( z))) ,
@@ -314,15 +315,46 @@ module _
( A : Pseudometric-Space l1 l2)
( B : Pseudometric-Space l1' l2')
( f : short-function-Pseudometric-Space A B)
- where
+ where abstract
+
+ preserves-sim-map-short-function-Pseudometric-Space :
+ ( x y : type-Pseudometric-Space A) →
+ ( sim-Pseudometric-Space A x y) →
+ ( sim-Pseudometric-Space B
+ ( map-short-function-Pseudometric-Space A B f x)
+ ( map-short-function-Pseudometric-Space A B f y))
+ preserves-sim-map-short-function-Pseudometric-Space x y x~y d =
+ is-short-map-short-function-Pseudometric-Space A B f d x y (x~y d)
+```
- abstract
- preserves-sim-map-short-function-Pseudometric-Space :
- ( x y : type-Pseudometric-Space A) →
- ( sim-Pseudometric-Space A x y) →
- ( sim-Pseudometric-Space B
- ( map-short-function-Pseudometric-Space A B f x)
- ( map-short-function-Pseudometric-Space A B f y))
- preserves-sim-map-short-function-Pseudometric-Space x y x~y d =
- is-short-map-short-function-Pseudometric-Space A B f d x y (x~y d)
+### Isometries between pseudometric spaces preserve and reflect similarity
+
+```agda
+module _
+ { l1 l2 l1' l2' : Level}
+ ( A : Pseudometric-Space l1 l2)
+ ( B : Pseudometric-Space l1' l2')
+ ( f : isometry-Pseudometric-Space A B)
+ where abstract
+
+ preserves-sim-map-isometry-Pseudometric-Space :
+ ( x y : type-Pseudometric-Space A) →
+ ( sim-Pseudometric-Space A x y) →
+ ( sim-Pseudometric-Space B
+ ( map-isometry-Pseudometric-Space A B f x)
+ ( map-isometry-Pseudometric-Space A B f y))
+ preserves-sim-map-isometry-Pseudometric-Space =
+ preserves-sim-map-short-function-Pseudometric-Space
+ ( A)
+ ( B)
+ ( short-isometry-Pseudometric-Space A B f)
+
+ reflects-sim-map-isometry-Pseudometric-Space :
+ ( x y : type-Pseudometric-Space A) →
+ ( sim-Pseudometric-Space B
+ ( map-isometry-Pseudometric-Space A B f x)
+ ( map-isometry-Pseudometric-Space A B f y)) →
+ ( sim-Pseudometric-Space A x y)
+ reflects-sim-map-isometry-Pseudometric-Space x y fx~fy d =
+ reflects-neighborhoods-map-isometry-Pseudometric-Space A B f d x y (fx~fy d)
```