Skip to content

Commit 8426d98

Browse files
committed
Fixed RFX prior mean for python interface
1 parent 6ee1a9b commit 8426d98

File tree

2 files changed

+5
-15
lines changed

2 files changed

+5
-15
lines changed

stochtree/bart.py

Lines changed: 2 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1003,14 +1003,9 @@ def sample(
10031003
# Prior parameters
10041004
if rfx_working_parameter_prior_mean is None:
10051005
if num_rfx_components == 1:
1006-
alpha_init = np.array([1])
1006+
alpha_init = np.array([0.0], dtype=float)
10071007
elif num_rfx_components > 1:
1008-
alpha_init = np.concatenate(
1009-
(
1010-
np.ones(1, dtype=float),
1011-
np.zeros(num_rfx_components - 1, dtype=float),
1012-
)
1013-
)
1008+
alpha_init = np.zeros(num_rfx_components, dtype=float)
10141009
else:
10151010
raise ValueError("There must be at least 1 random effect component")
10161011
else:

stochtree/bcf.py

Lines changed: 3 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1391,14 +1391,9 @@ def sample(
13911391
# Prior parameters
13921392
if rfx_working_parameter_prior_mean is None:
13931393
if num_rfx_components == 1:
1394-
alpha_init = np.array([1])
1394+
alpha_init = np.array([0.0], dtype=float)
13951395
elif num_rfx_components > 1:
1396-
alpha_init = np.concatenate(
1397-
(
1398-
np.ones(1, dtype=float),
1399-
np.zeros(num_rfx_components - 1, dtype=float),
1400-
)
1401-
)
1396+
alpha_init = np.zeros(num_rfx_components, dtype=float)
14021397
else:
14031398
raise ValueError("There must be at least 1 random effect component")
14041399
else:
@@ -2763,7 +2758,7 @@ def compute_posterior_interval(
27632758
raise ValueError(
27642759
"'treatment' must have the same number of rows as 'covariates'"
27652760
)
2766-
uses_propensity = self.propensity_covariate is not "none"
2761+
uses_propensity = self.propensity_covariate != "none"
27672762
internal_propensity_model = self.internal_propensity_model
27682763
needs_propensity = (
27692764
needs_covariates and uses_propensity and not internal_propensity_model

0 commit comments

Comments
 (0)