You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
\mathrm{derivative}\left( \mathrm{x}\left( t \right), t \right) =& \frac{\sigma \cdot \left( \mathrm{y}\left( t \right) - \mathrm{x}\left( t \right) \right) \cdot \mathrm{derivative}\left(\mathrm{x}\left( t \right) - \mathrm{y}\left( t \right), t \right)}{\mathrm{derivative}\left( \mathrm{z}\left( t \right), t \right)} \\
33
-
0 =& \frac{\sigma \cdot \mathrm{x}\left( t \right)\cdot\left( \rho - \mathrm{z}\left( t \right) \right)}{10} - \mathrm{y}\left( t \right) \\
34
-
\mathrm{derivative}\left( \mathrm{z}\left( t \right), t \right) =& \mathrm{x}\left( t \right) \cdot \left( \mathrm{y}\left( t \right) \right)^{\frac{2}{3}} - \beta\cdot\mathrm{z}\left( t \right)
31
+
\frac{dx(t)}{dt} =& \frac{\sigma \left( \mathrm{y}\left( t \right) - \mathrm{x}\left( t \right) \right) \frac{d\left(\mathrm{x}\left( t \right) - \mathrm{y}\left( t \right)\right)}{dt}}{\frac{dz(t)}{dt}} \\
32
+
0 =& \frac{\sigma \mathrm{x}\left( t \right) \left( \rho - \mathrm{z}\left( t \right) \right)}{10} - \mathrm{y}\left( t \right) \\
33
+
\frac{dz(t)}{dt} =& \mathrm{x}\left( t \right) \left( \mathrm{y}\left( t \right) \right)^{\frac{2}{3}} - \beta \mathrm{z}\left( t \right)
\mathrm{derivative}\left( \mathrm{u_1}\left( t \right), t \right) =& p_3\cdot\left( \mathrm{u_2}\left( t \right) - \mathrm{u_1}\left( t \right) \right) \\
49
-
0 =& \frac{p_2 \cdot p_3 \cdot \mathrm{u_1}\left( t \right)\cdot\left( p_1 - \mathrm{u_1}\left( t \right) \right)}{10} - \mathrm{u_2}\left( t \right) \\
50
-
\mathrm{derivative}\left( \mathrm{u_3}\left( t \right), t \right) =& \mathrm{u_1}\left( t \right) \cdot \left( \mathrm{u_2}\left( t \right) \right)^{\frac{2}{3}} - p_3\cdot\mathrm{u_3}\left( t \right)
47
+
\frac{du_1(t)}{dt} =& p_3 \left( \mathrm{u_2}\left( t \right) - \mathrm{u_1}\left( t \right) \right) \\
48
+
0 =& \frac{p_2 p_3 \mathrm{u_1}\left( t \right) \left( p_1 - \mathrm{u_1}\left( t \right) \right)}{10} - \mathrm{u_2}\left( t \right) \\
49
+
\frac{du_3(t)}{dt} =& \mathrm{u_1}\left( t \right) \left( \mathrm{u_2}\left( t \right) \right)^{\frac{2}{3}} - p_3 \mathrm{u_3}\left( t \right)
51
50
\end{align}
52
51
"
53
52
@@ -59,16 +58,16 @@ sys = ODESystem(eqs)
59
58
60
59
@testlatexify(sys.eqs) ==
61
60
raw"\begin{align}
62
-
\frac{du_{1}}{dt} =& p_3\cdot\left( \mathrm{u_2}\left( t \right) - \mathrm{u_1}\left( t \right) \right) \\
63
-
\frac{du_{2}}{dt} =& \frac{p_2 \cdot p_3 \cdot \mathrm{u_1}\left( t \right)\cdot\left( p_1 - \mathrm{u_1}\left( t \right) \right)}{10} - \mathrm{u_2}\left( t \right) \\
64
-
\frac{du_{3}}{dt} =& \mathrm{u_1}\left( t \right) \cdot \left( \mathrm{u_2}\left( t \right) \right)^{\frac{2}{3}} - p_3\cdot\mathrm{u_3}\left( t \right)
61
+
\frac{du_1(t)}{dt} =& p_3 \left( \mathrm{u_2}\left( t \right) - \mathrm{u_1}\left( t \right) \right) \\
62
+
\frac{du_2(t)}{dt} =& \frac{p_2 p_3 \mathrm{u_1}\left( t \right) \left( p_1 - \mathrm{u_1}\left( t \right) \right)}{10} - \mathrm{u_2}\left( t \right) \\
63
+
\frac{du_3(t)}{dt} =& \mathrm{u_1}\left( t \right) \left( \mathrm{u_2}\left( t \right) \right)^{\frac{2}{3}} - p_3 \mathrm{u_3}\left( t \right)
65
64
\end{align}
66
65
"
67
66
68
67
@testlatexify(sys) ==
69
68
raw"$\begin{align}
70
-
\frac{du_{1}}{dt} =& p_3\cdot\left( \mathrm{u_2}\left( t \right) - \mathrm{u_1}\left( t \right) \right) \\
71
-
\frac{du_{2}}{dt} =& \frac{p_2 \cdot p_3 \cdot \mathrm{u_1}\left( t \right)\cdot\left( p_1 - \mathrm{u_1}\left( t \right) \right)}{10} - \mathrm{u_2}\left( t \right) \\
72
-
\frac{du_{3}}{dt} =& \mathrm{u_1}\left( t \right) \cdot \left( \mathrm{u_2}\left( t \right) \right)^{\frac{2}{3}} - p_3\cdot\mathrm{u_3}\left( t \right)
69
+
\frac{du_1(t)}{dt} =& p_3 \left( \mathrm{u_2}\left( t \right) - \mathrm{u_1}\left( t \right) \right) \\
70
+
\frac{du_2(t)}{dt} =& \frac{p_2 p_3 \mathrm{u_1}\left( t \right) \left( p_1 - \mathrm{u_1}\left( t \right) \right)}{10} - \mathrm{u_2}\left( t \right) \\
71
+
\frac{du_3(t)}{dt} =& \mathrm{u_1}\left( t \right) \left( \mathrm{u_2}\left( t \right) \right)^{\frac{2}{3}} - p_3 \mathrm{u_3}\left( t \right)
0 commit comments