diff --git a/CMakeLists.txt b/CMakeLists.txt index c328a88..6f24ea3 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -53,14 +53,11 @@ file(WRITE ${CONFIG_TARGET_H} #define TARGET_SHORT_ALIGNMENT 2 #define TARGET_INT_ALIGNMENT 4 #define TARGET_LLONG_ALIGNMENT 8 -#define TARGET_I386 1 -#define TARGET_PHYS_ADDR_BITS 64 #define CONFIG_SOFTMMU 1 -#define CONFIG_I386_DIS 1 " ) -if (S2EGUEST_INCLUDE_DIR) +if(S2EGUEST_INCLUDE_DIR) file(APPEND ${CONFIG_TARGET_H} "#define CONFIG_SYMBEX_OPCODES 1\n") endif() @@ -72,13 +69,25 @@ message(STATUS "WITH_TARGET: ${WITH_TARGET}") if(WITH_TARGET MATCHES "i386") file(APPEND ${CONFIG_TARGET_H} "#define TARGET_ARCH \"i386\"\n") + file(APPEND ${CONFIG_TARGET_H} "#define TARGET_I386 1\n") file(APPEND ${CONFIG_TARGET_H} "#define TARGET_LONG_ALIGNMENT 4\n") file(APPEND ${CONFIG_TARGET_H} "#define TARGET_INSN_START_EXTRA_WORDS 1\n") + + set(TARGET_DIR "target-i386") elseif(WITH_TARGET MATCHES "x86_64") file(APPEND ${CONFIG_TARGET_H} "#define TARGET_ARCH \"x86_64\"\n") file(APPEND ${CONFIG_TARGET_H} "#define TARGET_X86_64 1\n") file(APPEND ${CONFIG_TARGET_H} "#define TARGET_LONG_ALIGNMENT 8\n") file(APPEND ${CONFIG_TARGET_H} "#define TARGET_INSN_START_EXTRA_WORDS 1\n") + + set(TARGET_DIR "target-i386") +elseif(WITH_TARGET MATCHES "arm") + file(APPEND ${CONFIG_TARGET_H} "#define TARGET_ARCH \"arm\"\n") + file(APPEND ${CONFIG_TARGET_H} "#define TARGET_ARM 1\n") + file(APPEND ${CONFIG_TARGET_H} "#define TARGET_LONG_ALIGNMENT 4\n") + file(APPEND ${CONFIG_TARGET_H} "#define TARGET_INSN_START_EXTRA_WORDS 2\n") + + set(TARGET_DIR "target-arm") else() message(FATAL_ERROR "Incorrect target ${WITH_TARGET}") endif() @@ -93,15 +102,13 @@ if(WITH_TARGET MATCHES "s2e") endif() # We want to keep NDEBUG in all builds -foreach (flags_var_to_scrub - CMAKE_CXX_FLAGS_RELEASE - CMAKE_CXX_FLAGS_RELWITHDEBINFO - CMAKE_CXX_FLAGS_MINSIZEREL - CMAKE_C_FLAGS_RELEASE - CMAKE_C_FLAGS_RELWITHDEBINFO - CMAKE_C_FLAGS_MINSIZEREL) -string (REGEX REPLACE "(^| )[/-]D *NDEBUG($| )" " " - "${flags_var_to_scrub}" "${${flags_var_to_scrub}}") +foreach(flags_var_to_scrub CMAKE_CXX_FLAGS_RELEASE + CMAKE_CXX_FLAGS_RELWITHDEBINFO + CMAKE_CXX_FLAGS_MINSIZEREL + CMAKE_C_FLAGS_RELEASE + CMAKE_C_FLAGS_RELWITHDEBINFO + CMAKE_C_FLAGS_MINSIZEREL) + string(REGEX REPLACE "(^| )[/-]D *NDEBUG($| )" " " "${flags_var_to_scrub}" "${${flags_var_to_scrub}}") endforeach() include_directories(${GLIB_PKG_INCLUDE_DIRS} diff --git a/include/cpu/apic.h b/include/cpu/apic.h index b2e5ec2..a5a8d43 100644 --- a/include/cpu/apic.h +++ b/include/cpu/apic.h @@ -19,7 +19,15 @@ #ifndef APIC_H #define APIC_H +#include + +#if defined(TARGET_I386) || defined(TARGET_X86_64) #include +#elif defined(TARGET_ARM) +#include +#else +#error unsupported target CPU +#endif #include #include diff --git a/include/cpu/arm/cpu.h b/include/cpu/arm/cpu.h new file mode 100644 index 0000000..4d4950e --- /dev/null +++ b/include/cpu/arm/cpu.h @@ -0,0 +1,265 @@ +/// Copyright (C) 2003 Fabrice Bellard +/// Copyright (C) 2010 Dependable Systems Laboratory, EPFL +/// Copyright (C) 2017 Adrian Herrera +/// Copyrights of all contributions belong to their respective owners. +/// +/// This library is free software; you can redistribute it and/or +/// modify it under the terms of the GNU Library General Public +/// License as published by the Free Software Foundation; either +/// version 2 of the License, or (at your option) any later version. +/// +/// This library is distributed in the hope that it will be useful, +/// but WITHOUT ANY WARRANTY; without even the implied warranty of +/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +/// Library General Public License for more details. +/// +/// You should have received a copy of the GNU Library General Public +/// License along with this library; if not, see . + +#ifndef __LIBCPU_ARM_CPU_H__ +#define __LIBCPU_ARM_CPU_H__ + +#include + +#include +#include +#include +#include + +//#define CPUState struct CPUARMState + +#define CPUArchState struct CPUARMState + +#include "defs.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef void ARMWriteCPFunc(void *opaque, int cp_info, int srcreg, int operand, uint32_t value); +typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info, int dstreg, int operand); + +/* + * We currently assume float and double are IEEE single and double precision respectively. Doing runtime conversions is + * tricky because VFP registers may contain integer values (eg. as the result of a FTOSI instruction). + * + * s<2n> maps to the least significant half of d + * s<2n+1> maps to the most significant half of d + */ + +typedef struct CPUARMState { + uint32_t spsr; + + /* Banked registers. */ + uint32_t banked_spsr[6]; + uint32_t banked_r13[6]; + uint32_t banked_r14[6]; + + /* These hold r8-r12. */ + uint32_t usr_regs[5]; + uint32_t fiq_regs[5]; + + /* cpsr flag cache for faster execution */ + uint32_t CF; /* 0 or 1 */ + uint32_t VF; /* V is the bit 31. All other bits are undefined */ + uint32_t NF; /* N is bit 31. All other bits are undefined. */ + uint32_t ZF; /* Z set if zero. */ + + /* + * Regs for current mode. + * + * regs[15] is the border between concrete and symbolic area, i.e., regs[15] is in concrete-only-area + */ + uint32_t regs[16]; + + uint32_t QF; /* 0 or 1 */ + uint32_t GE; /* cpsr[19:16] */ + uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ + uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ + + /* + * Frequently accessed CPSR bits are stored separately for efficiently. This contains all the other bits. Use + * cpsr_{read,write} to access the whole CPSR. + */ + uint32_t uncached_cpsr; + + /* System control coprocessor (cp15) */ + struct { + uint32_t c0_cpuid; + uint32_t c0_cachetype; + uint32_t c0_ccsid[16]; /* Cache size. */ + uint32_t c0_clid; /* Cache level. */ + uint32_t c0_cssel; /* Cache size selection. */ + uint32_t c0_c1[8]; /* Feature registers. */ + uint32_t c0_c2[8]; /* Instruction set registers. */ + uint32_t c1_sys; /* System control register. */ + uint32_t c1_coproc; /* Coprocessor access register. */ + uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ + uint32_t c1_scr; /* secure config register. */ + uint32_t c2_base0; /* MMU translation table base 0. */ + uint32_t c2_base1; /* MMU translation table base 1. */ + uint32_t c2_control; /* MMU translation table base control. */ + uint32_t c2_mask; /* MMU translation table base selection mask. */ + uint32_t c2_base_mask; /* MMU translation table base 0 mask. */ + uint32_t c2_data; /* MPU data cachable bits. */ + uint32_t c2_insn; /* MPU instruction cachable bits. */ + uint32_t c3; /* MMU domain access control register + MPU write buffer control. */ + uint32_t c5_insn; /* Fault status registers. */ + uint32_t c5_data; + uint32_t c6_region[8]; /* MPU base/size registers. */ + uint32_t c6_insn; /* Fault address registers. */ + uint32_t c6_data; + uint32_t c7_par; /* Translation result. */ + uint32_t c9_insn; /* Cache lockdown registers. */ + uint32_t c9_data; + uint32_t c9_pmcr; /* performance monitor control register */ + uint32_t c9_pmcnten; /* perf monitor counter enables */ + uint32_t c9_pmovsr; /* perf monitor overflow status */ + uint32_t c9_pmxevtyper; /* perf monitor event type */ + uint32_t c9_pmuserenr; /* perf monitor user enable */ + uint32_t c9_pminten; /* perf monitor interrupt enables */ + uint32_t c13_fcse; /* FCSE PID. */ + uint32_t c13_context; /* Context ID. */ + uint32_t c13_tls1; /* User RW Thread register. */ + uint32_t c13_tls2; /* User RO Thread register. */ + uint32_t c13_tls3; /* Privileged Thread register. */ + uint32_t c15_cpar; /* XScale Coprocessor Access Register */ + uint32_t c15_ticonfig; /* TI925T configuration byte. */ + uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ + uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ + uint32_t c15_threadid; /* TI debugger thread-ID. */ + uint32_t c15_config_base_address; /* SCU base address. */ + uint32_t c15_diagnostic; /* diagnostic register */ + uint32_t c15_power_diagnostic; + uint32_t c15_power_control; /* power control */ + } cp15; + + struct { + uint32_t other_sp; + uint32_t vecbase; + uint32_t basepri; + uint32_t control; + int current_sp; + int exception; + int pending_exception; + } v7m; + + /* Thumb-2 EE state. */ + uint32_t teecr; + uint32_t teehbr; + + /* VFP coprocessor state. */ + struct { + float64 regs[32]; + + uint32_t xregs[16]; + /* We store these fpcsr fields separately for convenience. */ + int vec_len; + int vec_stride; + + /* scratch space when Tn are not sufficient. */ + uint32_t scratch[8]; + + /* fp_status is the "normal" fp status. standard_fp_status retains + * values corresponding to the ARM "Standard FPSCR Value", ie + * default-NaN, flush-to-zero, round-to-nearest and is used by + * any operations (generally Neon) which the architecture defines + * as controlled by the standard FPSCR value rather than the FPSCR. + * + * To avoid having to transfer exception bits around, we simply + * say that the FPSCR cumulative exception flags are the logical + * OR of the flags in the two fp statuses. This relies on the + * only thing which needs to read the exception flags being + * an explicit FPSCR read. + */ + float_status fp_status; + float_status standard_fp_status; + } vfp; + uint32_t exclusive_addr; + uint32_t exclusive_val; + uint32_t exclusive_high; + + /* iwMMXt coprocessor state. */ + struct { + uint64_t regs[16]; + uint64_t val; + + uint32_t cregs[16]; + } iwmmxt; + + /* For mixed endian mode. */ + bool bswap_code; + + CPU_COMMON + + /* These fields after the common ones so they are preserved on reset. */ + + /* Internal CPU feature flags. */ + uint32_t features; + /* Coprocessor IO used by peripherals */ + struct { + ARMReadCPFunc *cp_read; + ARMWriteCPFunc *cp_write; + void *opaque; + } cp[15]; + void *nvic; + const struct arm_boot_info *boot_info; + + /* For KVM */ + int kvm_request_interrupt_window; + int kvm_irq; + uint8_t timer_interrupt_disabled; + int interrupt_flag; //indicate in interrupt or not + +} CPUARMState; +CPUARMState *cpu_arm_init(const char *cpu_model); +void do_cpu_arm_init(CPUARMState *env); +int cpu_arm_exec(CPUARMState *s); + +void arm_cpu_set_irq(CPUARMState *env, int level); + +int cpu_arm_handle_mmu_fault(CPUARMState *env, target_ulong addr, int is_write, int mmu_idx); + +enum arm_cpu_mode { + ARM_CPU_MODE_USR = 0x10, + ARM_CPU_MODE_FIQ = 0x11, + ARM_CPU_MODE_IRQ = 0x12, + ARM_CPU_MODE_SVC = 0x13, + ARM_CPU_MODE_ABT = 0x17, + ARM_CPU_MODE_UND = 0x1b, + ARM_CPU_MODE_SYS = 0x1f +}; +#define CPSR_M (0x1f) +#define CPSR_T (1 << 5) +#define CPSR_F (1 << 6) +#define CPSR_I (1 << 7) +#define CPSR_A (1 << 8) +#define CPSR_E (1 << 9) +#define CPSR_IT_2_7 (0xfc00) +#define CPSR_GE (0xf << 16) +#define CPSR_RESERVED (0xf << 20) +#define CPSR_J (1 << 24) +#define CPSR_IT_0_1 (3 << 25) +#define CPSR_Q (1 << 27) +#define CPSR_V (1 << 28) +#define CPSR_C (1 << 29) +#define CPSR_Z (1 << 30) +#define CPSR_N (1 << 31) +#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) + +#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) +#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV) +/* Bits writable in user mode. */ +#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) +/* Execution state bits. MRS read as zero, MSR writes ignored. */ +#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J) + +static inline int cpu_mmu_index(CPUARMState *env) { + return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0; +} +#ifdef __cplusplus +} +#endif + +#endif diff --git a/include/cpu/arm/defs.h b/include/cpu/arm/defs.h new file mode 100644 index 0000000..d7dd2b0 --- /dev/null +++ b/include/cpu/arm/defs.h @@ -0,0 +1,41 @@ +/// Copyright (C) 2003 Fabrice Bellard +/// Copyright (C) 2010 Dependable Systems Laboratory, EPFL +/// Copyright (C) 2017 Adrian Herrera +/// Copyrights of all contributions belong to their respective owners. +/// +/// This library is free software; you can redistribute it and/or +/// modify it under the terms of the GNU Library General Public +/// License as published by the Free Software Foundation; either +/// version 2 of the License, or (at your option) any later version. +/// +/// This library is distributed in the hope that it will be useful, +/// but WITHOUT ANY WARRANTY; without even the implied warranty of +/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +/// Library General Public License for more details. +/// +/// You should have received a copy of the GNU Library General Public +/// License along with this library; if not, see . + +#ifndef __CPU_ARM_DEFS__ +#define __CPU_ARM_DEFS__ + +#ifdef __cplusplus +extern "C" { +#endif +// clang-format off + +/*******************************************/ + +#define NB_MMU_MODES 2 +/* The ARM MMU allows 1k pages. */ +/* ??? Linux doesn't actually use these, and they're deprecated in recent + architecture revisions. Maybe a configure option to disable them. */ +#define TARGET_PAGE_BITS 10 + +#define TARGET_HAS_ICE 1 + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/include/cpu/arm/helper.h b/include/cpu/arm/helper.h new file mode 100644 index 0000000..fb618f8 --- /dev/null +++ b/include/cpu/arm/helper.h @@ -0,0 +1,47 @@ +/// Copyright (C) 2010 Dependable Systems Laboratory, EPFL +/// Copyright (C) 2016 Cyberhaven +/// Copyrights of all contributions belong to their respective owners. +/// +/// This library is free software; you can redistribute it and/or +/// modify it under the terms of the GNU Library General Public +/// License as published by the Free Software Foundation; either +/// version 2 of the License, or (at your option) any later version. +/// +/// This library is distributed in the hope that it will be useful, +/// but WITHOUT ANY WARRANTY; without even the implied warranty of +/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +/// Library General Public License for more details. +/// +/// You should have received a copy of the GNU Library General Public +/// License along with this library; if not, see . +/// +#ifndef __LIBCPU_ARM_HELPER_H__ + +#define __LIBCPU_ARM_HELPER_H__ +#define _M_CF (1 << 1) +#define _M_VF (1 << 2) +#define _M_NF (1 << 3) +#define _M_ZF (1 << 4) +#define _M_R0 (1 << 5) +#define _M_R1 (1 << 6) +#define _M_R2 (1 << 7) +#define _M_R3 (1 << 8) +#define _M_R4 (1 << 9) +#define _M_R5 (1 << 10) +#define _M_R6 (1 << 11) +#define _M_R7 (1 << 12) +#define _M_R8 (1 << 13) +#define _M_R9 (1 << 14) +#define _M_R10 (1 << 15) +#define _M_R11 (1 << 16) +#define _M_R12 (1 << 17) +#define _M_R13 (1 << 18) +#define _M_R14 (1 << 19) +#define _M_SPSR (1 << 20) +#define _M_BANKED_SPSR ((unsigned long int) (63) << 21) +#define _M_BANKED_R13 ((unsigned long int) (63) << 27) +#define _M_BANKED_R14 ((unsigned long int) (63) << 33) +#define _M_USR_REGS ((unsigned long int) (32) << 39) +#define _M_REGS (32768 << 5) +#define _M_ALL ~((unsigned long int) (0) << 39) +#endif diff --git a/include/cpu/arm/kvm_arm.h b/include/cpu/arm/kvm_arm.h new file mode 100644 index 0000000..9cb7ec6 --- /dev/null +++ b/include/cpu/arm/kvm_arm.h @@ -0,0 +1,307 @@ +/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ +/* + * Copyright (C) 2012 - Virtual Open Systems and Columbia University + * Author: Christoffer Dall + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License, version 2, as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. + */ + +#ifndef __ARM_KVM_H__ +#define __ARM_KVM_H__ + +#include +#include +#include + +#define __KVM_HAVE_GUEST_DEBUG +#define __KVM_HAVE_IRQ_LINE +#define __KVM_HAVE_READONLY_MEM +#define __KVM_HAVE_VCPU_EVENTS + +#define KVM_COALESCED_MMIO_PAGE_OFFSET 1 + +#define KVM_REG_SIZE(id) (1U << (((id) &KVM_REG_SIZE_MASK) >> KVM_REG_SIZE_SHIFT)) + +/* Valid for svc_regs, abt_regs, und_regs, irq_regs in struct kvm_regs */ +#define KVM_ARM_SVC_sp svc_regs[0] +#define KVM_ARM_SVC_lr svc_regs[1] +#define KVM_ARM_SVC_spsr svc_regs[2] +#define KVM_ARM_ABT_sp abt_regs[0] +#define KVM_ARM_ABT_lr abt_regs[1] +#define KVM_ARM_ABT_spsr abt_regs[2] +#define KVM_ARM_UND_sp und_regs[0] +#define KVM_ARM_UND_lr und_regs[1] +#define KVM_ARM_UND_spsr und_regs[2] +#define KVM_ARM_IRQ_sp irq_regs[0] +#define KVM_ARM_IRQ_lr irq_regs[1] +#define KVM_ARM_IRQ_spsr irq_regs[2] + +/* Valid only for fiq_regs in struct kvm_regs */ +#define KVM_ARM_FIQ_r8 fiq_regs[0] +#define KVM_ARM_FIQ_r9 fiq_regs[1] +#define KVM_ARM_FIQ_r10 fiq_regs[2] +#define KVM_ARM_FIQ_fp fiq_regs[3] +#define KVM_ARM_FIQ_ip fiq_regs[4] +#define KVM_ARM_FIQ_sp fiq_regs[5] +#define KVM_ARM_FIQ_lr fiq_regs[6] +#define KVM_ARM_FIQ_spsr fiq_regs[7] + +struct kvm_regs { + struct pt_regs usr_regs; /* R0_usr - R14_usr, PC, CPSR */ + unsigned long svc_regs[3]; /* SP_svc, LR_svc, SPSR_svc */ + unsigned long abt_regs[3]; /* SP_abt, LR_abt, SPSR_abt */ + unsigned long und_regs[3]; /* SP_und, LR_und, SPSR_und */ + unsigned long irq_regs[3]; /* SP_irq, LR_irq, SPSR_irq */ + unsigned long fiq_regs[8]; /* R8_fiq - R14_fiq, SPSR_fiq */ +}; + +struct kvm_m_regs { + __u32 regs[16]; +}; + +struct kvm_m_sregs { + __u32 other_sp; + __u32 vecbase; + __u32 basepri; + __u32 control; + int current_sp; + int exception; + int pending_exception; + __u32 thumb; + void *nvic; +}; + +struct kvm_m_vcpu_init { + __u32 entry; + __u32 msp_init; + __u32 vtor; +}; + +/* Supported Processor Types */ +#define KVM_ARM_TARGET_CORTEX_A15 0 +#define KVM_ARM_TARGET_CORTEX_A7 1 +#define KVM_ARM_NUM_TARGETS 2 + +/* KVM_ARM_SET_DEVICE_ADDR ioctl id encoding */ +#define KVM_ARM_DEVICE_TYPE_SHIFT 0 +#define KVM_ARM_DEVICE_TYPE_MASK (0xffff << KVM_ARM_DEVICE_TYPE_SHIFT) +#define KVM_ARM_DEVICE_ID_SHIFT 16 +#define KVM_ARM_DEVICE_ID_MASK (0xffff << KVM_ARM_DEVICE_ID_SHIFT) + +/* Supported device IDs */ +#define KVM_ARM_DEVICE_VGIC_V2 0 + +/* Supported VGIC address types */ +#define KVM_VGIC_V2_ADDR_TYPE_DIST 0 +#define KVM_VGIC_V2_ADDR_TYPE_CPU 1 + +#define KVM_VGIC_V2_DIST_SIZE 0x1000 +#define KVM_VGIC_V2_CPU_SIZE 0x2000 + +/* Supported VGICv3 address types */ +#define KVM_VGIC_V3_ADDR_TYPE_DIST 2 +#define KVM_VGIC_V3_ADDR_TYPE_REDIST 3 +#define KVM_VGIC_ITS_ADDR_TYPE 4 +#define KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION 5 + +#define KVM_VGIC_V3_DIST_SIZE SZ_64K +#define KVM_VGIC_V3_REDIST_SIZE (2 * SZ_64K) +#define KVM_VGIC_V3_ITS_SIZE (2 * SZ_64K) + +#define KVM_ARM_VCPU_POWER_OFF 0 /* CPU is started in OFF state */ +#define KVM_ARM_VCPU_PSCI_0_2 1 /* CPU uses PSCI v0.2 */ + +struct kvm_vcpu_init { + __u32 target; + __u32 features[7]; +}; + +struct kvm_sregs {}; + +struct kvm_fpu {}; + +struct kvm_guest_debug_arch {}; + +struct kvm_debug_exit_arch {}; + +struct kvm_sync_regs { + /* Used with KVM_CAP_ARM_USER_IRQ */ + __u64 device_irq_level; +}; + +struct kvm_arch_memory_slot {}; + +/* for KVM_GET/SET_VCPU_EVENTS */ +struct kvm_vcpu_events { + struct { + __u8 serror_pending; + __u8 serror_has_esr; + /* Align it to 8 bytes */ + __u8 pad[6]; + __u64 serror_esr; + } exception; + __u32 reserved[12]; +}; + +/* If you need to interpret the index values, here is the key: */ +#define KVM_REG_ARM_COPROC_MASK 0x000000000FFF0000 +#define KVM_REG_ARM_COPROC_SHIFT 16 +#define KVM_REG_ARM_32_OPC2_MASK 0x0000000000000007 +#define KVM_REG_ARM_32_OPC2_SHIFT 0 +#define KVM_REG_ARM_OPC1_MASK 0x0000000000000078 +#define KVM_REG_ARM_OPC1_SHIFT 3 +#define KVM_REG_ARM_CRM_MASK 0x0000000000000780 +#define KVM_REG_ARM_CRM_SHIFT 7 +#define KVM_REG_ARM_32_CRN_MASK 0x0000000000007800 +#define KVM_REG_ARM_32_CRN_SHIFT 11 +/* + * For KVM currently all guest registers are nonsecure, but we reserve a bit + * in the encoding to distinguish secure from nonsecure for AArch32 system + * registers that are banked by security. This is 1 for the secure banked + * register, and 0 for the nonsecure banked register or if the register is + * not banked by security. + */ +#define KVM_REG_ARM_SECURE_MASK 0x0000000010000000 +#define KVM_REG_ARM_SECURE_SHIFT 28 + +#define ARM_CP15_REG_SHIFT_MASK(x, n) (((x) << KVM_REG_ARM_##n##_SHIFT) & KVM_REG_ARM_##n##_MASK) + +#define __ARM_CP15_REG(op1, crn, crm, op2) \ + (KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT) | ARM_CP15_REG_SHIFT_MASK(op1, OPC1) | \ + ARM_CP15_REG_SHIFT_MASK(crn, 32_CRN) | ARM_CP15_REG_SHIFT_MASK(crm, CRM) | ARM_CP15_REG_SHIFT_MASK(op2, 32_OPC2)) + +#define ARM_CP15_REG32(...) (__ARM_CP15_REG(__VA_ARGS__) | KVM_REG_SIZE_U32) + +#define __ARM_CP15_REG64(op1, crm) (__ARM_CP15_REG(op1, 0, crm, 0) | KVM_REG_SIZE_U64) +#define ARM_CP15_REG64(...) __ARM_CP15_REG64(__VA_ARGS__) + +/* PL1 Physical Timer Registers */ +#define KVM_REG_ARM_PTIMER_CTL ARM_CP15_REG32(0, 14, 2, 1) +#define KVM_REG_ARM_PTIMER_CNT ARM_CP15_REG64(0, 14) +#define KVM_REG_ARM_PTIMER_CVAL ARM_CP15_REG64(2, 14) + +/* Virtual Timer Registers */ +#define KVM_REG_ARM_TIMER_CTL ARM_CP15_REG32(0, 14, 3, 1) +#define KVM_REG_ARM_TIMER_CNT ARM_CP15_REG64(1, 14) +#define KVM_REG_ARM_TIMER_CVAL ARM_CP15_REG64(3, 14) + +/* Normal registers are mapped as coprocessor 16. */ +#define KVM_REG_ARM_CORE (0x0010 << KVM_REG_ARM_COPROC_SHIFT) +#define KVM_REG_ARM_CORE_REG(name) (offsetof(struct kvm_regs, name) / 4) + +/* Some registers need more space to represent values. */ +#define KVM_REG_ARM_DEMUX (0x0011 << KVM_REG_ARM_COPROC_SHIFT) +#define KVM_REG_ARM_DEMUX_ID_MASK 0x000000000000FF00 +#define KVM_REG_ARM_DEMUX_ID_SHIFT 8 +#define KVM_REG_ARM_DEMUX_ID_CCSIDR (0x00 << KVM_REG_ARM_DEMUX_ID_SHIFT) +#define KVM_REG_ARM_DEMUX_VAL_MASK 0x00000000000000FF +#define KVM_REG_ARM_DEMUX_VAL_SHIFT 0 + +/* VFP registers: we could overload CP10 like ARM does, but that's ugly. */ +#define KVM_REG_ARM_VFP (0x0012 << KVM_REG_ARM_COPROC_SHIFT) +#define KVM_REG_ARM_VFP_MASK 0x000000000000FFFF +#define KVM_REG_ARM_VFP_BASE_REG 0x0 +#define KVM_REG_ARM_VFP_FPSID 0x1000 +#define KVM_REG_ARM_VFP_FPSCR 0x1001 +#define KVM_REG_ARM_VFP_MVFR1 0x1006 +#define KVM_REG_ARM_VFP_MVFR0 0x1007 +#define KVM_REG_ARM_VFP_FPEXC 0x1008 +#define KVM_REG_ARM_VFP_FPINST 0x1009 +#define KVM_REG_ARM_VFP_FPINST2 0x100A + +/* KVM-as-firmware specific pseudo-registers */ +#define KVM_REG_ARM_FW (0x0014 << KVM_REG_ARM_COPROC_SHIFT) +#define KVM_REG_ARM_FW_REG(r) (KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_FW | ((r) &0xffff)) +#define KVM_REG_ARM_PSCI_VERSION KVM_REG_ARM_FW_REG(0) + +/* Device Control API: ARM VGIC */ +#define KVM_DEV_ARM_VGIC_GRP_ADDR 0 +#define KVM_DEV_ARM_VGIC_GRP_DIST_REGS 1 +#define KVM_DEV_ARM_VGIC_GRP_CPU_REGS 2 +#define KVM_DEV_ARM_VGIC_CPUID_SHIFT 32 +#define KVM_DEV_ARM_VGIC_CPUID_MASK (0xffULL << KVM_DEV_ARM_VGIC_CPUID_SHIFT) +#define KVM_DEV_ARM_VGIC_V3_MPIDR_SHIFT 32 +#define KVM_DEV_ARM_VGIC_V3_MPIDR_MASK (0xffffffffULL << KVM_DEV_ARM_VGIC_V3_MPIDR_SHIFT) +#define KVM_DEV_ARM_VGIC_OFFSET_SHIFT 0 +#define KVM_DEV_ARM_VGIC_OFFSET_MASK (0xffffffffULL << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) +#define KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK (0xffff) +#define KVM_DEV_ARM_VGIC_GRP_NR_IRQS 3 +#define KVM_DEV_ARM_VGIC_GRP_CTRL 4 +#define KVM_DEV_ARM_VGIC_GRP_REDIST_REGS 5 +#define KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS 6 +#define KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO 7 +#define KVM_DEV_ARM_VGIC_GRP_ITS_REGS 8 +#define KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT 10 +#define KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK (0x3fffffULL << KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT) +#define KVM_DEV_ARM_VGIC_LINE_LEVEL_INTID_MASK 0x3ff +#define VGIC_LEVEL_INFO_LINE_LEVEL 0 + +/* Device Control API on vcpu fd */ +#define KVM_ARM_VCPU_PMU_V3_CTRL 0 +#define KVM_ARM_VCPU_PMU_V3_IRQ 0 +#define KVM_ARM_VCPU_PMU_V3_INIT 1 +#define KVM_ARM_VCPU_TIMER_CTRL 1 +#define KVM_ARM_VCPU_TIMER_IRQ_VTIMER 0 +#define KVM_ARM_VCPU_TIMER_IRQ_PTIMER 1 + +#define KVM_DEV_ARM_VGIC_CTRL_INIT 0 +#define KVM_DEV_ARM_ITS_SAVE_TABLES 1 +#define KVM_DEV_ARM_ITS_RESTORE_TABLES 2 +#define KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES 3 +#define KVM_DEV_ARM_ITS_CTRL_RESET 4 + +/* KVM_IRQ_LINE irq field index values */ +#define KVM_ARM_IRQ_TYPE_SHIFT 24 +#define KVM_ARM_IRQ_TYPE_MASK 0xff +#define KVM_ARM_IRQ_VCPU_SHIFT 16 +#define KVM_ARM_IRQ_VCPU_MASK 0xff +#define KVM_ARM_IRQ_NUM_SHIFT 0 +#define KVM_ARM_IRQ_NUM_MASK 0xffff + +/* irq_type field */ +#define KVM_ARM_IRQ_TYPE_CPU 0 +#define KVM_ARM_IRQ_TYPE_SPI 1 +#define KVM_ARM_IRQ_TYPE_PPI 2 + +/* out-of-kernel GIC cpu interrupt injection irq_number field */ +#define KVM_ARM_IRQ_CPU_IRQ 0 +#define KVM_ARM_IRQ_CPU_FIQ 1 + +/* + * This used to hold the highest supported SPI, but it is now obsolete + * and only here to provide source code level compatibility with older + * userland. The highest SPI number can be set via KVM_DEV_ARM_VGIC_GRP_NR_IRQS. + */ +#ifndef __KERNEL__ +#define KVM_ARM_IRQ_GIC_MAX 127 +#endif + +/* One single KVM irqchip, ie. the VGIC */ +#define KVM_NR_IRQCHIPS 1 + +/* PSCI interface */ +#define KVM_PSCI_FN_BASE 0x95c1ba5e +#define KVM_PSCI_FN(n) (KVM_PSCI_FN_BASE + (n)) + +#define KVM_PSCI_FN_CPU_SUSPEND KVM_PSCI_FN(0) +#define KVM_PSCI_FN_CPU_OFF KVM_PSCI_FN(1) +#define KVM_PSCI_FN_CPU_ON KVM_PSCI_FN(2) +#define KVM_PSCI_FN_MIGRATE KVM_PSCI_FN(3) + +#define KVM_PSCI_RET_SUCCESS PSCI_RET_SUCCESS +#define KVM_PSCI_RET_NI PSCI_RET_NOT_SUPPORTED +#define KVM_PSCI_RET_INVAL PSCI_RET_INVALID_PARAMS +#define KVM_PSCI_RET_DENIED PSCI_RET_DENIED + +#endif /* __ARM_KVM_H__ */ diff --git a/include/cpu/exec.h b/include/cpu/exec.h index de971b0..50d5160 100644 --- a/include/cpu/exec.h +++ b/include/cpu/exec.h @@ -17,11 +17,18 @@ /// License along with this library; if not, see . #ifndef __LIBCPU_EXEC_H__ - #define __LIBCPU_EXEC_H__ #include + +#if defined(TARGET_I386) || defined(TARGET_X86_64) #include +#elif defined(TARGET_ARM) +#include +#else +#error unsupported target CPU +#endif + #include #include #include diff --git a/include/cpu/kvm.h b/include/cpu/kvm.h index f91492c..24e23a1 100644 --- a/include/cpu/kvm.h +++ b/include/cpu/kvm.h @@ -13,7 +13,15 @@ #define BIT(n) (1 << (n)) #endif +#include +#if defined(TARGET_I386) || defined(TARGET_X86_64) #include +#elif defined(TARGET_ARM) +#include +#else +#error unsupported target CPU +#endif + #include #define KVM_API_VERSION 12 @@ -180,6 +188,8 @@ struct kvm_pit_config { #define KVM_EXIT_RESTORE_DEV_STATE 102 #define KVM_EXIT_CLONE_PROCESS 103 +#define KVM_EXIT_SYNC_SREGS 110 + /* For KVM_EXIT_INTERNAL_ERROR */ /* Emulate instruction failed. */ #define KVM_INTERNAL_ERROR_EMULATION 1 @@ -314,6 +324,7 @@ struct kvm_run { struct { #define KVM_SYSTEM_EVENT_SHUTDOWN 1 #define KVM_SYSTEM_EVENT_RESET 2 +#define KVM_SYSTEM_EVENT_CRASH 3 __u32 type; __u64 flags; } system_event; @@ -786,6 +797,9 @@ struct kvm_ppc_smmu_info { /* Indicates that the KVM provided uses DBT instead of actual KVM */ #define KVM_CAP_DBT 259 +/* This capability allows user to customize memory regions */ +#define KVM_CAP_USER_CUSTOM_MEM_REGION 301 + /****************************************/ #ifdef KVM_CAP_IRQ_ROUTING @@ -933,6 +947,8 @@ struct kvm_dirty_tlb { #define KVM_REG_SIZE_U512 0x0060000000000000ULL #define KVM_REG_SIZE_U1024 0x0070000000000000ULL +#define KVM_REG_SIZE(id) (1U << (((id) &KVM_REG_SIZE_MASK) >> KVM_REG_SIZE_SHIFT)) + struct kvm_reg_list { __u64 n; /* number of regs */ __u64 reg[0]; @@ -1088,10 +1104,18 @@ struct kvm_s390_ucas_mapping { * ioctls for vcpu fds */ #define KVM_RUN _IO(KVMIO, 0x80) + #define KVM_GET_REGS _IOR(KVMIO, 0x81, struct kvm_regs) #define KVM_SET_REGS _IOW(KVMIO, 0x82, struct kvm_regs) #define KVM_GET_SREGS _IOR(KVMIO, 0x83, struct kvm_sregs) #define KVM_SET_SREGS _IOW(KVMIO, 0x84, struct kvm_sregs) + +#define KVM_GET_M_REGS _IOR(KVMIO, 0xc0, struct kvm_m_regs) +#define KVM_SET_M_REGS _IOW(KVMIO, 0xc1, struct kvm_m_regs) +#define KVM_GET_M_SREGS _IOR(KVMIO, 0xc2, struct kvm_m_sregs) +#define KVM_SET_M_SREGS _IOW(KVMIO, 0xc3, struct kvm_m_sregs) +#define KVM_CUSTOM_M_INIT _IOR(KVMIO, 0xc4, struct kvm_m_vcpu_init) + #define KVM_TRANSLATE _IOWR(KVMIO, 0x85, struct kvm_translation) #define KVM_INTERRUPT _IOW(KVMIO, 0x86, struct kvm_interrupt) /* KVM_DEBUG_GUEST is no longer supported, use KVM_SET_GUEST_DEBUG instead */ @@ -1212,6 +1236,17 @@ struct kvm_dev_snapshot { #define KVM_SET_CLOCK_SCALE _IOWR(KVMIO, 0xf8, unsigned *) +/* Available with KVM_CAP_USER_CUSTOM_MEM_REGION */ +struct kvm_mem_init { + __u32 baseaddr; + __u32 size; + __u8 num; + /* If is_rom == 0, indicates expected memoy region is ram */ + __u8 is_rom; +}; + +#define KVM_MEM_REGION_INIT _IOWR(KVMIO, 0xf9, struct kvm_mem_init) + #define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0) #define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1) #define KVM_DEV_ASSIGN_MASK_INTX (1 << 2) diff --git a/include/cpu/memdbg.h b/include/cpu/memdbg.h index 28f272a..d81893a 100644 --- a/include/cpu/memdbg.h +++ b/include/cpu/memdbg.h @@ -19,7 +19,13 @@ #define __LIBCPU_MEMDBG_H__ #include +#if defined(TARGET_I386) || defined(TARGET_X86_64) #include +#elif defined(TARGET_ARM) +#include +#else +#error unsupported target CPU +#endif #include #ifdef __cplusplus diff --git a/include/cpu/se_libcpu.h b/include/cpu/se_libcpu.h index 48ca101..5b5d3c6 100644 --- a/include/cpu/se_libcpu.h +++ b/include/cpu/se_libcpu.h @@ -30,12 +30,43 @@ extern "C" { #endif struct TranslationBlock; + +#if defined(TARGET_I386) || defined(TARGET_X86_64) struct CPUX86State; +#define CPUArchState struct CPUX86State +#elif defined(TARGET_ARM) +struct CPUARMState; +#define CPUArchState struct CPUARMState +#else +#error Unsupported target architecture +#endif -typedef uintptr_t (*se_libcpu_tb_exec_t)(struct CPUX86State *env1, struct TranslationBlock *tb); +typedef uintptr_t (*se_libcpu_tb_exec_t)(CPUArchState *env1, struct TranslationBlock *tb); +#if defined(TARGET_I386) || defined(TARGET_X86_64) typedef void (*se_do_interrupt_all_t)(int intno, int is_int, int error_code, uintptr_t next_eip, int is_hw); +#elif defined(TARGET_ARM) +typedef void (*se_do_interrupt_arm_t)(void); +#else +#error Unsupported target architecture +#endif +#if defined(TARGET_I386) || defined(TARGET_X86_64) void se_do_interrupt_all(int intno, int is_int, int error_code, target_ulong next_eip, int is_hw); +#elif defined(TARGET_ARM) +void se_do_interrupt_arm(void); +void se_set_armv7m_external_irq(int irq_num); +void se_enable_all_armv7m_external_irq(int serial); +void se_enable_systick_irq(int mode); +uint32_t se_get_active_armv7m_external_irq(int serial); + +void se_helper_do_interrupt_arm(CPUArchState *env); +void se_helper_set_armv7m_external_irq(CPUArchState *env, int irq_num); +void se_helper_enable_all_armv7m_external_irq(CPUArchState *env, int serial); +void se_helper_enable_systick_irq(CPUArchState *env, int mode); +uint32_t se_helper_get_active_armv7m_external_irq(CPUArchState *env, int serial); +#else +#error Unsupported target architecture +#endif #define MEM_TRACE_FLAG_IO 1 #define MEM_TRACE_FLAG_WRITE 2 @@ -57,6 +88,7 @@ struct se_libcpu_interface_t { const int *allow_custom_instructions; const int *concretize_io_writes; const int *concretize_io_addresses; + const int *allow_interrupt; } mode; struct exec { @@ -74,8 +106,13 @@ struct se_libcpu_interface_t { void (*switch_to_symbolic)(void *retaddr) __attribute__((noreturn)); se_libcpu_tb_exec_t tb_exec; +#if defined(TARGET_I386) || defined(TARGET_X86_64) se_do_interrupt_all_t do_interrupt_all; - +#elif defined(TARGET_ARM) + se_do_interrupt_arm_t do_interrupt_arm; +#else +#error Unsupported target architecture +#endif unsigned *clock_scaling_factor; } exec; @@ -92,14 +129,14 @@ struct se_libcpu_interface_t { struct tlb { void (*flush_tlb_cache)(void); void (*flush_tlb_cache_page)(void *objectState, int mmu_idx, int index); - void (*update_tlb_entry)(struct CPUX86State *env, int mmu_idx, uint64_t virtAddr, uint64_t hostAddr); + void (*update_tlb_entry)(CPUArchState *env, int mmu_idx, uint64_t virtAddr, uint64_t hostAddr); } tlb; /* Register access */ struct regs { void (*read_concrete)(unsigned offset, uint8_t *buf, unsigned size); void (*write_concrete)(unsigned offset, uint8_t *buf, unsigned size); - void (*set_cc_op_eflags)(struct CPUX86State *state); + void (*set_cc_op_eflags)(CPUArchState *state); } regs; /* Memory accessors */ @@ -148,8 +185,15 @@ struct se_libcpu_interface_t { /* Internal functions in libcpu. */ struct libcpu { +#if defined(TARGET_I386) || defined(TARGET_X86_64) uint32_t (*ldub_code)(struct CPUX86State *env, target_ulong virtual_address); uint32_t (*ldl_code)(struct CPUX86State *env, target_ulong virtual_address); +#elif defined(TARGET_ARM) + uint32_t (*ldub_code)(struct CPUARMState *env, target_ulong virtual_address); + uint32_t (*ldl_code)(struct CPUARMState *env, target_ulong virtual_address); +#else +#error Unsupported target architecture +#endif } libcpu; /* Core plugin interface */ @@ -167,12 +211,14 @@ struct se_libcpu_interface_t { unsigned *on_translate_instruction_end_signals_count; unsigned *on_translate_register_access_signals_count; unsigned *on_exception_signals_count; + unsigned *on_exception_exit_signals_count; unsigned *on_page_fault_signals_count; unsigned *on_tlb_miss_signals_count; unsigned *on_port_access_signals_count; unsigned *on_privilege_change_signals_count; unsigned *on_page_directory_change_signals_count; unsigned *on_call_return_signals_count; + unsigned *on_invalid_pc_access_signals_count; void (*on_privilege_change)(unsigned previous, unsigned current); void (*on_page_directory_change)(uint64_t previous, uint64_t current); @@ -224,6 +270,10 @@ struct se_libcpu_interface_t { uint64_t writeMask, int isMemoryAccess); int (*on_call_return_translate)(uint64_t pc, int isCall); + + void (*on_invalid_pc_access)(uint64_t addr); + + void (*on_armv7m_interrupt_exit)(uint64_t irqNo); } events; struct { @@ -246,15 +296,17 @@ void tcg_llvm_before_memory_access(target_ulong vaddr, uint64_t value, unsigned void tcg_llvm_after_memory_access(target_ulong vaddr, uint64_t value, unsigned size, unsigned flags, uintptr_t retaddr); -// XXX: change bits to bytes -uint64_t tcg_llvm_trace_port_access(uint64_t port, uint64_t value, unsigned bits, int isWrite); - uint64_t tcg_llvm_trace_mmio_access(uint64_t physaddr, uint64_t value, unsigned bytes, int isWrite); void tcg_llvm_write_mem_io_vaddr(uint64_t value, int reset); +#if defined(TARGET_I386) || defined(TARGET_X86_64) +// XXX: change bits to bytes +uint64_t tcg_llvm_trace_port_access(uint64_t port, uint64_t value, unsigned bits, int isWrite); void tcg_llvm_get_value(void *addr, unsigned nbytes, bool addConstraint); #endif +#endif + #ifdef __cplusplus } #endif diff --git a/include/cpu/se_libcpu_config.h b/include/cpu/se_libcpu_config.h index 5655668..964eef4 100644 --- a/include/cpu/se_libcpu_config.h +++ b/include/cpu/se_libcpu_config.h @@ -32,10 +32,15 @@ extern "C" { /** This defines the size of each MemoryObject that represents physical RAM. Larger values save some memory, smaller (exponentially) decrease solving time for constraints with symbolic addresses */ - #ifdef SE_ENABLE_TLB // XXX: Use TARGET_PAGE_BITS somehow... +#if defined(TARGET_I386) || defined(TARGET_X86_64) #define SE_RAM_OBJECT_BITS 12 +#elif defined(TARGET_ARM) +#define SE_RAM_OBJECT_BITS 10 +#else +#error Unsupported target architecture +#endif #else /* Do not touch this */ #define SE_RAM_OBJECT_BITS TARGET_PAGE_BITS @@ -43,9 +48,9 @@ extern "C" { /** Force page sizes to be the native size. A symbex engine could perform dynamic page splitting in case of symbolic addresses, so there is no need to tweak this value anymore. */ -#if SE_RAM_OBJECT_BITS != 12 || !defined(SE_ENABLE_TLB) -#error Incorrect TLB configuration -#endif +//#if SE_RAM_OBJECT_BITS != 12 || !defined(SE_ENABLE_TLB) +//#error Incorrect TLB configuration +//#endif #define SE_RAM_OBJECT_SIZE (1 << SE_RAM_OBJECT_BITS) #define SE_RAM_OBJECT_MASK (~(SE_RAM_OBJECT_SIZE - 1)) diff --git a/include/fpu/softfloat.h b/include/fpu/softfloat.h index 238a6ef..0ab9884 100644 --- a/include/fpu/softfloat.h +++ b/include/fpu/softfloat.h @@ -77,11 +77,19 @@ typedef int64_t int64; #define STATUS_VAR , status #if defined(CONFIG_SYMBEX) && !defined(SYMBEX_LLVM_LIB) +#if defined(TARGET_I386) || defined(TARGET_X86_64) uint8_t RR_cpu_float_status(void *p, unsigned size); void WR_cpu_float_status(void *p, unsigned size, int v); #define STATUS(field) RR_cpu_float_status(&status->field, sizeof(status->field)) #define STATUS_W(field, v) WR_cpu_float_status(&status->field, sizeof(status->field), v) +#elif defined(TARGET_ARM) +#define STATUS(field) status->field +#define STATUS_W(field, v) status->field = v +#else +#error Unsupported target architecture +#endif + #else #define STATUS(field) status->field #define STATUS_W(field, v) status->field = v diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index fca27c9..a84b01d 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -1,53 +1,66 @@ # Copyright 2016 - Cyberhaven # This work is licensed under the terms of the GNU LGPL, version 2.1 or later. -add_library( - cpu cpu-exec.c cpus.c exec.c exec-bp.c exec-log.c exec-memdbg.c exec-phys.c exec-phystb.c exec-ram.c exec-tb.c exec-tlb.c ioport.c memory.c timer.c translate-all.c - fpu/softfloat.c precise-pc.c - target-i386/cpuid.c target-i386/helper.c target-i386/op_helper.c target-i386/translate.c disas.c -) +# Make sure we include any source files in the target-specific directory +file(GLOB TARGET_SRC_FILES ${TARGET_DIR}/*.c) +add_library(cpu cpu-exec.c + cpus.c + exec.c + exec-bp.c + exec-log.c + exec-memdbg.c + exec-phys.c + exec-phystb.c + exec-ram.c + exec-tb.c + exec-tlb.c + ioport.c + memory.c + timer.c + translate-all.c + disas.c + fpu/softfloat.c + precise-pc.c + ${TARGET_SRC_FILES}) -target_include_directories (cpu PUBLIC - ${CMAKE_CURRENT_SOURCE_DIR} - ${CMAKE_CURRENT_SOURCE_DIR}/../include - ${CMAKE_CURRENT_SOURCE_DIR}/target-i386 - ${CMAKE_CURRENT_SOURCE_DIR}/../include/fpu - ${CMAKE_BINARY_DIR}/include -) +target_include_directories(cpu PUBLIC ${CMAKE_CURRENT_SOURCE_DIR} + ${CMAKE_SOURCE_DIR}/include + ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET_DIR} + ${CMAKE_BINARY_DIR}/include + ${CMAKE_SOURCE_DIR}/../qemu/include/nvic) set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -D__STDC_FORMAT_MACROS -D_GNU_SOURCE -DNEED_CPU_H -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE -DTARGET_PHYS_ADDR_BITS=64") -set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wall -fPIC -Werror -fno-omit-frame-pointer") +set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wall -fPIC -fno-omit-frame-pointer") set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fno-strict-aliasing -Wno-sign-compare -Wno-missing-field-initializers -Wno-mismatched-tags -Wno-deprecated-declarations -Wno-initializer-overrides -Wno-zero-length-array") set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fexceptions") -set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -fPIC -Wno-mismatched-tags -Werror -Wno-zero-length-array") +set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -fPIC -Wno-mismatched-tags -Wno-zero-length-array") +if(WITH_SYMBEX) + set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -DCONFIG_SYMBEX") -if (WITH_SYMBEX) -set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -DCONFIG_SYMBEX") + set(CARGS_LIST "${CMAKE_C_FLAGS}") + separate_arguments(CARGS_LIST) -set(CARGS_LIST "${CMAKE_C_FLAGS}") -separate_arguments(CARGS_LIST) + get_property(dirs TARGET cpu PROPERTY INCLUDE_DIRECTORIES) + foreach(dir ${dirs}) + message(STATUS "dir='${dir}'") + set(BC_INC_DIRS "${BC_INC_DIRS} -I${dir}") + endforeach() + separate_arguments(BC_INC_DIRS) -get_property(dirs TARGET cpu PROPERTY INCLUDE_DIRECTORIES) -foreach(dir ${dirs}) - message(STATUS "dir='${dir}'") - set(BC_INC_DIRS "${BC_INC_DIRS} -I${dir}") -endforeach() -separate_arguments(BC_INC_DIRS) + get_filename_component(LLVM_BIN_DIR ${CMAKE_C_COMPILER} DIRECTORY) -get_filename_component(LLVM_BIN_DIR ${CMAKE_C_COMPILER} DIRECTORY) + add_custom_target( + op_helper_bc ALL + ${CMAKE_C_COMPILER} ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET_DIR}/op_helper.c -c ${CARGS_LIST} -Wno-unused-function -O3 -DSYMBEX_LLVM_LIB -emit-llvm -o ${CMAKE_CURRENT_BINARY_DIR}/op_helper-org.bc ${BC_INC_DIRS} + COMMAND ${CMAKE_C_COMPILER} ${CMAKE_CURRENT_SOURCE_DIR}/fpu/softfloat.c -c ${CARGS_LIST} -Wno-unused-function -O3 -DSYMBEX_LLVM_LIB -emit-llvm -o ${CMAKE_CURRENT_BINARY_DIR}/softfloat.bc ${BC_INC_DIRS} + COMMAND ${LLVM_BIN_DIR}/llvm-link ${CMAKE_CURRENT_BINARY_DIR}/op_helper-org.bc ${CMAKE_CURRENT_BINARY_DIR}/softfloat.bc -o ${CMAKE_CURRENT_BINARY_DIR}/op_helper.bc + DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/${TARGET_DIR}/op_helper.c ${CMAKE_CURRENT_SOURCE_DIR}/fpu/softfloat.c + ) -add_custom_target( - op_helper_bc ALL - ${CMAKE_C_COMPILER} ${CMAKE_CURRENT_SOURCE_DIR}/target-i386/op_helper.c -c ${CARGS_LIST} -Wno-unused-function -O3 -DSYMBEX_LLVM_LIB -emit-llvm -o ${CMAKE_CURRENT_BINARY_DIR}/op_helper-org.bc ${BC_INC_DIRS} - COMMAND ${CMAKE_C_COMPILER} ${CMAKE_CURRENT_SOURCE_DIR}/fpu/softfloat.c -c ${CARGS_LIST} -Wno-unused-function -O3 -DSYMBEX_LLVM_LIB -emit-llvm -o ${CMAKE_CURRENT_BINARY_DIR}/softfloat.bc ${BC_INC_DIRS} - COMMAND ${LLVM_BIN_DIR}/llvm-link ${CMAKE_CURRENT_BINARY_DIR}/op_helper-org.bc ${CMAKE_CURRENT_BINARY_DIR}/softfloat.bc -o ${CMAKE_CURRENT_BINARY_DIR}/op_helper.bc - DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/target-i386/op_helper.c ${CMAKE_CURRENT_SOURCE_DIR}/fpu/softfloat.c -) - -endif (WITH_SYMBEX) +endif(WITH_SYMBEX) MESSAGE( STATUS "CMAKE_C_FLAGS: " ${CMAKE_C_FLAGS} ) MESSAGE( STATUS "CMAKE_C_FLAGS_RELEASE: " ${CMAKE_C_FLAGS_RELEASE} ) diff --git a/src/bswap.h b/src/bswap.h index ab8c708..5962918 100644 --- a/src/bswap.h +++ b/src/bswap.h @@ -19,10 +19,10 @@ #ifndef BSWAP_H #define BSWAP_H -#include - #include -#include "softfloat.h" + +#include +#include #ifdef CONFIG_MACHINE_BSWAP_H #include @@ -277,11 +277,22 @@ static inline int ldsb_p(const void *ptr) { static inline void stb_p(void *ptr, int v) { *(uint8_t *) ptr = v; } - +#if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED) +static inline int lduw_le_p(const void *ptr) { +#ifdef _ARCH_PPC + int val; + __asm__ __volatile__("lhbrx %0,0,%1" : "=r"(val) : "r"(ptr)); + return val; +#else + const uint8_t *p = ptr; + return p[0] | (p[1] << 8); +#endif +} +#else static inline int lduw_le_p(const void *ptr) { return *(uint16_t *) ptr; } - +#endif static inline int ldsw_le_p(const void *ptr) { return *(int16_t *) ptr; } diff --git a/src/cpu-all.h b/src/cpu-all.h index a28e023..c04c412 100644 --- a/src/cpu-all.h +++ b/src/cpu-all.h @@ -21,10 +21,17 @@ #include #include -#include #include "bswap.h" #include "qemu-common.h" +#if defined(TARGET_I386)|| defined(TARGET_X86_64) +#include +#elif defined(TARGET_ARM) +#include +#else +#error unsupported target CPU +#endif + #ifdef CONFIG_SYMBEX #include #include @@ -167,7 +174,7 @@ static inline int _se_check_concrete(void *objectState, target_ulong offset, int static inline void *_se_check_translate_ram_access(const void *p, unsigned size) { #if defined(SE_ENABLE_PHYSRAM_TLB) extern CPUArchState *env; - uintptr_t tlb_index = ((uintptr_t) p >> 12) & (CPU_TLB_SIZE - 1); + uintptr_t tlb_index = ((uintptr_t) p >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); CPUTLBRAMEntry *re = &env->se_ram_tlb[tlb_index]; if (re->host_page == (((uintptr_t) p) & (~(uintptr_t) 0xfff | (size - 1)))) { return (void *) ((uintptr_t) p + re->addend); @@ -349,8 +356,4 @@ void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data); #define CPU_LOG_LLVM_IR (1 << 10) #define CPU_LOG_LLVM_ASM (1 << 11) -/* Get a list of mapped pages. */ -void list_mapped_pages(CPUX86State *env, unsigned rw_only, unsigned user_only, target_ulong **pages_addr, - size_t *pages_count); - #endif /* CPU_ALL_H */ diff --git a/src/cpu-exec.c b/src/cpu-exec.c index 6315f5f..d3a6866 100644 --- a/src/cpu-exec.c +++ b/src/cpu-exec.c @@ -87,12 +87,13 @@ static TranslationBlock *tb_find_slow(CPUArchState *env, target_ulong pc, target target_ulong virt_page2; tb_invalidated_flag = 0; - + DPRINTF(" find translated block using physical mappings \n"); /* find translated block using physical mappings */ phys_pc = get_page_addr_code(env, pc); phys_page1 = phys_pc & TARGET_PAGE_MASK; h = tb_phys_hash_func(phys_pc); ptb1 = &tb_phys_hash[h]; + for (;;) { tb = *ptb1; if (!tb) { @@ -127,6 +128,8 @@ static TranslationBlock *tb_find_slow(CPUArchState *env, target_ulong pc, target } not_found: /* if no translated code available, then translate it now */ + DPRINTF(" if no translated code available, then translate it now pc=0x%x, cs_base=0x%x, flags= 0x%lx\n", pc, + cs_base, flags); tb = tb_gen_code(env, pc, cs_base, flags, 0); ++g_cpu_stats.tb_regens; @@ -206,28 +209,49 @@ static void cpu_handle_debug_exception(CPUArchState *env) { volatile sig_atomic_t exit_request; #ifdef TRACE_EXEC -static void dump_regs(CPUState *env, int isStart) { +static void dump_regs(CPUArchState *env, int isStart) { #if defined(CONFIG_SYMBEX) - target_ulong eax, ebx, ecx, edx, esi, edi, ebp, esp; - g_sqi.regs.read_concrete(offsetof(CPUState, regs[R_EAX]), (uint8_t *) &eax, sizeof(eax)); - g_sqi.regs.read_concrete(offsetof(CPUState, regs[R_EBX]), (uint8_t *) &ebx, sizeof(ebx)); - g_sqi.regs.read_concrete(offsetof(CPUState, regs[R_ECX]), (uint8_t *) &ecx, sizeof(ecx)); - g_sqi.regs.read_concrete(offsetof(CPUState, regs[R_EDX]), (uint8_t *) &edx, sizeof(edx)); - g_sqi.regs.read_concrete(offsetof(CPUState, regs[R_ESI]), (uint8_t *) &esi, sizeof(esi)); - g_sqi.regs.read_concrete(offsetof(CPUState, regs[R_EDI]), (uint8_t *) &edi, sizeof(edi)); - g_sqi.regs.read_concrete(offsetof(CPUState, regs[R_EBP]), (uint8_t *) &ebp, sizeof(ebp)); - g_sqi.regs.read_concrete(offsetof(CPUState, regs[R_ESP]), (uint8_t *) &esp, sizeof(esp)); - - fprintf(logfile, "%c cs:eip=%lx:%lx eax=%lx ebx=%lx ecx=%lx edx=%lx esi=%lx edi=%lx ebp=%lx ss:esp=%lx:%lx\n", - isStart ? 's' : 'e', (uint64_t) env->segs[R_CS].selector, (uint64_t) env->eip, (uint64_t) eax, - (uint64_t) ebx, (uint64_t) ecx, (uint64_t) edx, (uint64_t) esi, (uint64_t) edi, (uint64_t) ebp, - (uint64_t) env->segs[R_SS].selector, (uint64_t) esp); + #if defined(TARGET_I386) || defined(TARGET_X86_64) + target_ulong eax, ebx, ecx, edx, esi, edi, ebp, esp; + g_sqi.regs.read_concrete(offsetof(CPUArchState, regs[R_EAX]), (uint8_t *) &eax, sizeof(eax)); + g_sqi.regs.read_concrete(offsetof(CPUArchState, regs[R_EBX]), (uint8_t *) &ebx, sizeof(ebx)); + g_sqi.regs.read_concrete(offsetof(CPUArchState, regs[R_ECX]), (uint8_t *) &ecx, sizeof(ecx)); + g_sqi.regs.read_concrete(offsetof(CPUArchState, regs[R_EDX]), (uint8_t *) &edx, sizeof(edx)); + g_sqi.regs.read_concrete(offsetof(CPUArchState, regs[R_ESI]), (uint8_t *) &esi, sizeof(esi)); + g_sqi.regs.read_concrete(offsetof(CPUArchState, regs[R_EDI]), (uint8_t *) &edi, sizeof(edi)); + g_sqi.regs.read_concrete(offsetof(CPUArchState, regs[R_EBP]), (uint8_t *) &ebp, sizeof(ebp)); + g_sqi.regs.read_concrete(offsetof(CPUArchState, regs[R_ESP]), (uint8_t *) &esp, sizeof(esp)); + + fprintf(logfile, "%c cs:eip=%lx:%lx eax=%lx ebx=%lx ecx=%lx edx=%lx esi=%lx edi=%lx ebp=%lx ss:esp=%lx:%lx\n", + isStart ? 's' : 'e', (uint64_t) env->segs[R_CS].selector, (uint64_t) env->eip, (uint64_t) eax, + (uint64_t) ebx, (uint64_t) ecx, (uint64_t) edx, (uint64_t) esi, (uint64_t) edi, (uint64_t) ebp, + (uint64_t) env->segs[R_SS].selector, (uint64_t) esp); + #elif defined(TARGET_ARM) + uint32_t R0, R1, R2; + g_sqi.regs.read_concrete(offsetof(CPUArchState, regs[0]), (uint8_t *) &R0, sizeof(R0)); + g_sqi.regs.read_concrete(offsetof(CPUArchState, regs[1]), (uint8_t *) &R1, sizeof(R1)); + g_sqi.regs.read_concrete(offsetof(CPUArchState, regs[2]), (uint8_t *) &R2, sizeof(R2)); + + fprintf(logfile, "PC=%x R1=%x R2=%x R3=%x SP=%x LR=%x\n", + (uint32_t) env->regs[15], (uint32_t) R0, (uint32_t) R1, + (uint32_t) R2, (uint32_t) env->regs[13], (uint32_t) env->regs[14]); + #else + #error Unsupported target architecture + #endif #else - fprintf(logfile, "%c cs:eip=%lx:%lx eax=%lx ebx=%lx ecx=%lx edx=%lx esi=%lx edi=%lx ebp=%lx ss:esp=%lx:%lx\n", - isStart ? 's' : 'e', (uint64_t) env->segs[R_CS].selector, (uint64_t) env->eip, (uint64_t) env->regs[R_EAX], - (uint64_t) env->regs[R_EBX], (uint64_t) env->regs[R_ECX], (uint64_t) env->regs[R_EDX], - (uint64_t) env->regs[R_ESI], (uint64_t) env->regs[R_EDI], (uint64_t) env->regs[R_EBP], - (uint64_t) env->segs[R_SS].selector, (uint64_t) env->regs[R_ESP]); + #if defined(TARGET_I386) || defined(TARGET_X86_64) + fprintf(logfile, "%c cs:eip=%lx:%lx eax=%lx ebx=%lx ecx=%lx edx=%lx esi=%lx edi=%lx ebp=%lx ss:esp=%lx:%lx\n", + isStart ? 's' : 'e', (uint64_t) env->segs[R_CS].selector, (uint64_t) env->eip, (uint64_t) env->regs[R_EAX], + (uint64_t) env->regs[R_EBX], (uint64_t) env->regs[R_ECX], (uint64_t) env->regs[R_EDX], + (uint64_t) env->regs[R_ESI], (uint64_t) env->regs[R_EDI], (uint64_t) env->regs[R_EBP], + (uint64_t) env->segs[R_SS].selector, (uint64_t) env->regs[R_ESP]); + #elif defined(TARGET_ARM) + fprintf(logfile, "PC=%x R0=%x R1=%x R2=%x SP=%x LR=%x\n", + (uint32_t) env->regs[15], (uint32_t) env->regs[0], (uint32_t) env->regs[1], + (uint32_t) env->regs[2], (uint32_t) env->regs[13], (uint32_t) env->regs[14]); + #else + #error Unsupported target architecture + #endif #endif } #endif @@ -237,11 +261,18 @@ static uintptr_t fetch_and_run_tb(TranslationBlock *prev_tb, int tb_exit_code, C uintptr_t last_tb; TranslationBlock *tb = tb_find_fast(env); - +#if defined(TARGET_I386) || defined(TARGET_X86_64) DPRINTF("fetch_and_run_tb cs:eip=%#lx:%#lx e=%#lx fl=%lx riw=%d\n", (uint64_t) env->segs[R_CS].selector, (uint64_t) env->eip, (uint64_t) env->eip + tb->size, (uint64_t) env->mflags, env->kvm_request_interrupt_window); +#elif defined(TARGET_ARM) + DPRINTF(" fetch_and_run_tb pc=0x%x sp=0x%x cpsr=0x%x \n", (uint32_t) env->regs[15], env->regs[13], env->uncached_cpsr); +#else +#error Unsupported target architecture +#endif + /* Note: we do it here to avoid a gcc bug on Mac OS X when + doing it in tb_find_slow */ if (tb_invalidated_flag) { prev_tb = NULL; tb_invalidated_flag = 0; @@ -317,9 +348,14 @@ static bool process_interrupt_request(CPUArchState *env) { } bool has_interrupt = false; - +#if defined(TARGET_I386) || defined(TARGET_X86_64) DPRINTF(" process_interrupt intrq=%#x mflags=%#lx hf1=%#x hf2=%#x\n", interrupt_request, (uint64_t) env->mflags, env->hflags, env->hflags2); +#elif defined(TARGET_ARM) + DPRINTF(" process_interrupt intrq=%#x \n", interrupt_request); +#else +#error Unsupported target architecture +#endif if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) { /* Mask out external interrupts for this step. */ @@ -330,7 +366,15 @@ static bool process_interrupt_request(CPUArchState *env) { env->exception_index = EXCP_DEBUG; cpu_loop_exit(env); } - +#if defined(TARGET_ARM) + if (interrupt_request & CPU_INTERRUPT_HALT) { + env->interrupt_request &= ~CPU_INTERRUPT_HALT; + env->halted = 1; + env->exception_index = EXCP_HLT; + cpu_loop_exit(env); + } +#endif +#if defined(TARGET_I386) if (interrupt_request & CPU_INTERRUPT_INIT) { svm_check_intercept(env, SVM_EXIT_INIT); do_cpu_init(env); @@ -366,9 +410,8 @@ static bool process_interrupt_request(CPUArchState *env) { libcpu_log_mask(CPU_LOG_INT, "Servicing hardware INT=0x%02x\n", intno); if (intno >= 0) { #ifdef SE_KVM_DEBUG_IRQ - DPRINTF("Handling interrupt %d\n", intno); + DPRINTF(" Handling interrupt %d\n", intno); #endif - do_interrupt_x86_hardirq(env, intno, 1); } @@ -387,7 +430,43 @@ static bool process_interrupt_request(CPUArchState *env) { has_interrupt = true; } } - +#elif defined(TARGET_ARM) + if (interrupt_request & CPU_INTERRUPT_FIQ && !(env->uncached_cpsr & CPSR_F)) { + env->exception_index = EXCP_FIQ; + do_interrupt(env); + has_interrupt = true; + } + /* ARMv7-M interrupt return works by loading a magic value + into the PC. On real hardware the load causes the + return to occur. The qemu implementation performs the + jump normally, then does the exception return when the + CPU tries to execute code at the magic address. + This will cause the magic PC value to be pushed to + the stack if an interrupt occurred at the wrong time. + We avoid this by disabling interrupts when + pc contains a magic address. */ + + // in case lower prioriy interrupt so add armv7m_nvic_can_take_pending_exception + // in case basepri has not been synced so add exit code condition + if ((interrupt_request & CPU_INTERRUPT_HARD) && + ((IS_M(env) && env->regs[15] < 0xfffffff0) || !(env->uncached_cpsr & CPSR_I))) { + int irq_num; + if ((armv7m_nvic_can_take_pending_exception(env->nvic, &irq_num))) { +#ifdef CONFIG_SYMBEX + if (likely(*g_sqi.mode.fast_concrete_invocation && **g_sqi.mode.running_concrete && *g_sqi.mode.allow_interrupt) + || unlikely(*g_sqi.mode.allow_interrupt == 2) || unlikely(irq_num != 15)) { +#endif + env->exception_index = EXCP_IRQ; + do_interrupt(env); + has_interrupt = true; +#ifdef CONFIG_SYMBEX + } +#endif + } else { + DPRINTF("cpu basepri = %d irq num = %d\n", env->v7m.basepri, irq_num); + } + } +#endif /* Don't use the cached interrupt_request value, do_interrupt may have updated the EXITTB flag. */ if (env->interrupt_request & CPU_INTERRUPT_EXITTB) { @@ -413,9 +492,11 @@ static int process_exceptions(CPUArchState *env) { cpu_handle_debug_exception(env); } } else { - DPRINTF(" do_interrupt exidx=%x\n", env->exception_index); - do_interrupt(env); - env->exception_index = -1; + if (env->exception_index != 5) { + DPRINTF(" do_interrupt exidx=%x\n", env->exception_index); + do_interrupt(env); + env->exception_index = -1; + } } return ret; @@ -433,7 +514,7 @@ static bool execution_loop(CPUArchState *env) { * ensure that no TB jump will be modified as * the program flow was changed */ - last_tb = 0; + ltb = NULL; has_interrupt = true; } @@ -454,6 +535,8 @@ static bool execution_loop(CPUArchState *env) { // It's too heavy to log all cpu state, usually gp regs are enough // TODO: add an option to customize which regs to print log_cpu_state(env, X86_DUMP_GPREGS); +#else + log_cpu_state(env, 0); #endif } #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */ @@ -464,17 +547,38 @@ static bool execution_loop(CPUArchState *env) { ltb = (TranslationBlock *) (last_tb & ~TB_EXIT_MASK); if (ltb) { +#if defined(TARGET_I386) || defined(TARGET_X86_64) DPRINTF("ltb s=%#lx e=%#lx fl=%lx exit_code=%x riw=%d\n", (uint64_t) ltb->pc, (uint64_t) ltb->pc + ltb->size, (uint64_t) env->mflags, last_tb_exit_code, env->kvm_request_interrupt_window); +#elif defined(TARGET_ARM) + DPRINTF("ltb s=%#lx e=%#lx exit_code=%x riw=%d\n", (uint64_t) ltb->pc, + (uint64_t) ltb->pc + ltb->size, last_tb_exit_code, + env->kvm_request_interrupt_window); +#else +#error Unsupported target architecture +#endif } if (last_tb_exit_code > TB_EXIT_IDXMAX) { +#if defined(TARGET_I386) || defined(TARGET_X86_64) env->eip = ltb->pc - ltb->cs_base; +#elif defined(TARGET_ARM) + env->regs[15] = ltb->pc; +#else +#error Unsupported target architecture +#endif ltb = NULL; } - if (env->kvm_request_interrupt_window && (env->mflags & IF_MASK)) { + if (env->kvm_request_interrupt_window && +#if defined(TARGET_I386) || defined(TARGET_X86_64) + (env->mflags & IF_MASK)) { +#elif defined(TARGET_ARM) + !(env->uncached_cpsr & CPSR_I)) { +#else +#error unsupported target CPU +#endif env->kvm_request_interrupt_window = 0; return true; } @@ -485,7 +589,6 @@ static bool execution_loop(CPUArchState *env) { int cpu_exec(CPUArchState *env) { int ret; - if (env->halted) { if (!cpu_has_work(env)) { return EXCP_HALTED; @@ -510,8 +613,6 @@ int cpu_exec(CPUArchState *env) { env->exception_index = -1; - DPRINTF("cpu_loop enter mflags=%#lx hf1=%#x hf2=%#x\n", (uint64_t) env->mflags, env->hflags, env->hflags2); - /* prepare setjmp context for exception handling */ for (;;) { if (setjmp(env->jmp_env) == 0) { @@ -521,9 +622,13 @@ int cpu_exec(CPUArchState *env) { * This usually happens when TB cache is flushed but current tb is not reset. */ env->current_tb = NULL; - +#if defined(TARGET_I386) || defined(TARGET_X86_64) DPRINTF(" setjmp entered eip=%#lx\n", (uint64_t) env->eip); - +#elif defined(TARGET_ARM) + DPRINTF(" setjmp entered r15=%#x\n", (uint32_t) env->regs[15]); +#else +#error Unsupported target architecture +#endif #ifdef CONFIG_SYMBEX assert(env->exception_index != EXCP_SE); if (g_sqi.exec.finalize_tb_exec()) { @@ -536,7 +641,6 @@ int cpu_exec(CPUArchState *env) { continue; } #endif - ret = process_exceptions(env); if (ret) { if (ret == EXCP_HLT && env->interrupt_request) { @@ -546,7 +650,7 @@ int cpu_exec(CPUArchState *env) { } break; } - + DPRINTF(" execution_loop\n"); if (execution_loop(env)) { break; } @@ -565,11 +669,17 @@ int cpu_exec(CPUArchState *env) { env = cpu_single_env; } } /* for(;;) */ +#if defined(TARGET_I386) || defined(TARGET_X86_64) DPRINTF("cpu_loop exit ret=%#x eip=%#lx\n", ret, (uint64_t) env->eip); +#elif defined(TARGET_ARM) + DPRINTF("cpu_loop exit ret=%#x r15=%#x\n", ret, (uint32_t) env->regs[15]); +#else +#error Unsupported target architecture +#endif env->current_tb = NULL; -#if defined(TARGET_I386) +#if defined(TARGET_I386) || defined(TARGET_X86_64) #ifdef CONFIG_SYMBEX g_sqi.regs.set_cc_op_eflags(env); #else diff --git a/src/cpus.c b/src/cpus.c index 883e322..a42b6c4 100644 --- a/src/cpus.c +++ b/src/cpus.c @@ -203,8 +203,10 @@ static void qemu_tcg_init_vcpu(void *_env) { void qemu_init_vcpu(void *_env) { CPUArchState *env = _env; +#if defined(TARGET_I386) env->cpuid.nr_cores = 1; env->cpuid.nr_threads = 1; +#endif if (tcg_enabled()) { qemu_tcg_init_vcpu(env); diff --git a/src/disas.c b/src/disas.c index 2f2cbe8..49fe6c4 100644 --- a/src/disas.c +++ b/src/disas.c @@ -18,7 +18,13 @@ #include #include +#if defined(TARGET_I386) || defined(TARGET_X86_64) #include +#elif defined(TARGET_ARM) +#include +#else +#error unsupported target CPU +#endif #include #include diff --git a/src/exec-all.h b/src/exec-all.h index bf04223..a93d185 100644 --- a/src/exec-all.h +++ b/src/exec-all.h @@ -42,6 +42,13 @@ extern struct cpu_stats_t g_cpu_stats; #define DISAS_JUMP 1 /* only pc was modified dynamically */ #define DISAS_UPDATE 2 /* cpu state was modified dynamically */ #define DISAS_TB_JUMP 3 /* only pc was modified statically */ +#define DISAS_BX_EXCRET 8 +/* For instructions which want an immediate exit to the main loop, + * as opposed to attempting to use lookup_and_goto_ptr. Unlike + * DISAS_UPDATE this doesn't write the PC on exiting the translation + * loop so you need to ensure something (gen_a64_set_pc_im or runtime + * helper) has done so before we reach return from cpu_tb_exec. + */ #ifdef STATIC_TRANSLATOR /* Accomodate large TBs */ @@ -68,12 +75,12 @@ void gen_intermediate_code_pc(CPUArchState *env, struct TranslationBlock *tb); #ifdef CONFIG_SYMBEX void cpu_gen_flush(void); void cpu_gen_init_opc(void); -void se_restore_state_to_opc(CPUX86State *env, TranslationBlock *tb, target_ulong pc, int cc_op, target_ulong next_pc); +void se_restore_state_to_opc(CPUArchState *env, TranslationBlock *tb, target_ulong pc, int cc_op, target_ulong next_pc); #endif void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb, target_ulong *data); -int restore_state_to_next_pc(CPUX86State *env, TranslationBlock *tb); +int restore_state_to_next_pc(CPUArchState *env, TranslationBlock *tb); int cpu_gen_code(CPUArchState *env, TranslationBlock *tb); @@ -150,6 +157,24 @@ extern int tb_invalidated_flag; #undef ACCESS_TYPE #undef MEMSUFFIX #undef env +#if defined(TARGET_ARM) +static inline uint32_t arm_ldl_code(CPUArchState *env, uint32_t addr, bool do_swap) { + uint32_t insn = cpu_ldl_code(env, addr); + if (do_swap) { + return bswap32(insn); + } + return insn; +} + +/* Ditto, for a halfword (Thumb) instruction */ +static inline uint16_t arm_lduw_code(CPUArchState *env, uint32_t addr, bool do_swap) { + uint16_t insn = cpu_lduw_code(env, addr); + if (do_swap) { + return bswap16(insn); + } + return insn; +} +#endif tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr); @@ -157,6 +182,9 @@ typedef void(CPUDebugExcpHandler)(CPUArchState *env); CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler); +/* vl.c */ +extern int singlestep; + /* cpu-exec.c */ extern volatile sig_atomic_t exit_request; diff --git a/src/exec-ram.h b/src/exec-ram.h index 11d098a..b0c0201 100644 --- a/src/exec-ram.h +++ b/src/exec-ram.h @@ -17,14 +17,25 @@ /// License along with this library; if not, see . #ifndef __EXEC_RAM_H__ - #define __EXEC_RAM_H__ +#include + #include +#include + +#if defined(TARGET_I386) || defined(TARGET_X86_64) #include +#elif defined(TARGET_ARM) +#include +#else +#error undefined target CPU +#endif + +#ifdef CONFIG_SYMBEX #include -#include -#include +#endif + #include "qqueue.h" #define RAM_ADDR_MAX UINTPTR_MAX diff --git a/src/exec-tb.c b/src/exec-tb.c index 79f2593..3814a99 100644 --- a/src/exec-tb.c +++ b/src/exec-tb.c @@ -402,7 +402,6 @@ void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, int current_tb_modified = 1; cpu_restore_state(env, env->mem_io_pc); cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, ¤t_flags); - // When an instruction modifies itself, advance pc to the next instruction // and abort the tb asap. int instr_size = tb_get_instruction_size(current_tb, current_tb->cs_base + env->eip); diff --git a/src/exec.c b/src/exec.c index e171782..6b486bf 100644 --- a/src/exec.c +++ b/src/exec.c @@ -44,8 +44,8 @@ //#define DEBUG_UNASSIGNED /* make various TB consistency checks */ -//#define DEBUG_TB_CHECK -//#define DEBUG_TLB_CHECK +#define DEBUG_TB_CHECK +#define DEBUG_TLB_CHECK //#define DEBUG_IOPORT //#define DEBUG_SUBPAGE @@ -538,7 +538,16 @@ tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) { cpu_ldub_code(env1, addr); } pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK; +#if defined(TARGET_I386) || defined(TARGET_X86_64) if (!mem_desc_find(pd)) { +#elif defined(TARGET_ARM) + if (!mem_desc_find(addr)) { + if (unlikely(*g_sqi.events.on_invalid_pc_access_signals_count)) { + g_sqi.events.on_invalid_pc_access(addr); + } +#else +#error Unsupported target architecture +#endif #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC) cpu_unassigned_access(env1, addr, 0, 1, 0, 4); #else diff --git a/src/exec.h b/src/exec.h index 924a59f..de61cb7 100644 --- a/src/exec.h +++ b/src/exec.h @@ -22,7 +22,8 @@ #include #include -#include "target-i386/cpu.h" + +#include "cpu.h" /* In system mode we want L1_MAP to be based on ram offsets, while in user mode we want it to be based on virtual addresses. */ diff --git a/src/fpu/softfloat.c b/src/fpu/softfloat.c index 520208b..e60f50b 100644 --- a/src/fpu/softfloat.c +++ b/src/fpu/softfloat.c @@ -40,14 +40,14 @@ these four paragraphs for those parts of this code that are retained. */ #include -#include "softfloat.h" +#include /*---------------------------------------------------------------------------- | Primitive arithmetic functions, including multi-word arithmetic, and | division and square root approximations. (Can be specialized to target if | desired.) *----------------------------------------------------------------------------*/ -#include "softfloat-macros.h" +#include /*---------------------------------------------------------------------------- | Functions and definitions to determine: (1) whether tininess for underflow @@ -57,7 +57,7 @@ these four paragraphs for those parts of this code that are retained. | are propagated from function inputs to output. These details are target- | specific. *----------------------------------------------------------------------------*/ -#include "softfloat-specialize.h" +#include void set_float_rounding_mode(int val STATUS_PARAM) { STATUS_W(float_rounding_mode, val); diff --git a/src/memory.c b/src/memory.c index 1019a39..8102716 100644 --- a/src/memory.c +++ b/src/memory.c @@ -19,6 +19,7 @@ #include #include #include + #include "exec-all.h" #include "exec-ram.h" diff --git a/src/softmmu_template.h b/src/softmmu_template.h index 57b54cc..5915f78 100644 --- a/src/softmmu_template.h +++ b/src/softmmu_template.h @@ -129,7 +129,6 @@ DATA_TYPE glue(glue(io_read, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_phys_ void *retaddr) { DATA_TYPE res; const struct MemoryDescOps *ops = phys_get_ops(physaddr); - physaddr = (physaddr & TARGET_PAGE_MASK) + addr; #if defined(CONFIG_SYMBEX) && defined(CONFIG_SYMBEX_MP) @@ -160,6 +159,7 @@ DATA_TYPE glue(glue(io_read, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_phys_ env->mem_io_pc = (uintptr_t) retaddr; SE_SET_MEM_IO_VADDR(env, addr, 0); + #if SHIFT <= 2 res = ops->read(physaddr, 1 << SHIFT); #else @@ -234,7 +234,7 @@ DATA_TYPE glue(glue(io_read_chk, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_p res.res = glue(glue(io_read, SUFFIX), MMUSUFFIX)(env, origaddr, addr, retaddr); end: - tcg_llvm_trace_mmio_access(addr, res.res, DATA_SIZE, 0); + res.res = tcg_llvm_trace_mmio_access(addr, res.res, DATA_SIZE, 0); SE_SET_MEM_IO_VADDR(env, 0, 1); return res.res; @@ -425,17 +425,24 @@ void glue(glue(io_write, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_phys_addr SE_SET_MEM_IO_VADDR(env, addr, 0); env->mem_io_pc = (uintptr_t) retaddr; + +#ifdef CONFIG_SYMBEX + if (likely(!g_sqi.mem.is_mmio_symbolic(addr, DATA_SIZE))) { +#endif #if SHIFT <= 2 - ops->write(physaddr, val, 1 << SHIFT); + ops->write(physaddr, val, 1 << SHIFT); #else #ifdef TARGET_WORDS_BIGENDIAN - ops->write(physaddr, (val >> 32), 4); - ops->write(physaddr + 4, (uint32_t) val, 4); + ops->write(physaddr, (val >> 32), 4); + ops->write(physaddr + 4, (uint32_t) val, 4); #else - ops->write(physaddr, (uint32_t) val, 4); - ops->write(physaddr + 4, val >> 32, 4); + ops->write(physaddr, (uint32_t) val, 4); + ops->write(physaddr + 4, val >> 32, 4); #endif #endif /* SHIFT > 2 */ +#ifdef CONFIG_SYMBEX + } +#endif } void glue(glue(io_write_chk, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_phys_addr_t physaddr, DATA_TYPE val, @@ -462,6 +469,7 @@ void glue(glue(io_write_chk, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_phys_ SE_SET_MEM_IO_VADDR(env, addr, 0); env->mem_io_pc = (uintptr_t) retaddr; + #if SHIFT <= 2 if (se_ismemfunc(ops, 1)) { uintptr_t pa = se_notdirty_mem_write(physaddr, 1 << SHIFT); @@ -482,8 +490,10 @@ void glue(glue(io_write_chk, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_phys_ #endif #endif /* SHIFT > 2 */ - // By default, call the original io_write function, which is external - glue(glue(io_write, SUFFIX), MMUSUFFIX)(env, origaddr, val, addr, retaddr); + if (likely(!g_sqi.mem.is_mmio_symbolic(addr, DATA_SIZE))) { + // By default, call the original io_write function, which is external + glue(glue(io_write, SUFFIX), MMUSUFFIX)(env, origaddr, val, addr, retaddr); + } end: tcg_llvm_trace_mmio_access(addr, val, DATA_SIZE, 1); diff --git a/src/target-arm/cpu.h b/src/target-arm/cpu.h new file mode 100644 index 0000000..2a3c5c8 --- /dev/null +++ b/src/target-arm/cpu.h @@ -0,0 +1,496 @@ +/// Copyright (C) 2003 Fabrice Bellard +/// Copyright (C) 2010 Dependable Systems Laboratory, EPFL +/// Copyright (C) 2017 Adrian Herrera +/// Copyrights of all contributions belong to their respective owners. +/// +/// This library is free software; you can redistribute it and/or +/// modify it under the terms of the GNU Library General Public +/// License as published by the Free Software Foundation; either +/// version 2 of the License, or (at your option) any later version. +/// +/// This library is distributed in the hope that it will be useful, +/// but WITHOUT ANY WARRANTY; without even the implied warranty of +/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +/// Library General Public License for more details. +/// +/// You should have received a copy of the GNU Library General Public +/// License along with this library; if not, see . + +#ifndef CPU_ARM_H +#define CPU_ARM_H + +#include + +#include +#include +#include +#include +#include + +#include "cpu-defs.h" +#include "nvic_interfaces.h" + +#ifdef CONFIG_SYMBEX +#include +#endif + +#include + +#define EXCP_UDEF 1 /* undefined instruction */ +#define EXCP_SWI 2 /* software interrupt */ +#define EXCP_PREFETCH_ABORT 3 +#define EXCP_DATA_ABORT 4 +#define EXCP_IRQ 5 +#define EXCP_FIQ 6 +#define EXCP_BKPT 7 +#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ +#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ +#define EXCP_STREX 10 + +#define ARMV7M_EXCP_RESET 1 +#define ARMV7M_EXCP_NMI 2 +#define ARMV7M_EXCP_HARD 3 +#define ARMV7M_EXCP_MEM 4 +#define ARMV7M_EXCP_BUS 5 +#define ARMV7M_EXCP_USAGE 6 +#define ARMV7M_EXCP_SVC 11 +#define ARMV7M_EXCP_DEBUG 12 +#define ARMV7M_EXCP_PENDSV 14 +#define ARMV7M_EXCP_SYSTICK 15 + +/* ARM-specific interrupt pending bits. */ +#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 + +struct arm_boot_info; + +#if defined(CONFIG_SYMBEX) && !defined(SYMBEX_LLVM_LIB) + +/* uncomment this to compile assertions in */ +/* #define DO_SANITY_CHECK */ + +#ifdef DO_SANITY_CHECK +#define CHECK_ASSERT(x) assert(x) +#else +#define CHECK_ASSERT(x) +#endif + +/* Macros to access registers */ +static inline target_ulong __RR_env_raw(CPUARMState *cpuState, unsigned offset, unsigned size) { + if (likely(*g_sqi.mode.fast_concrete_invocation)) { + switch (size) { + case 1: + return *((uint8_t *) cpuState + offset); + case 2: + return *(uint16_t *) ((uint8_t *) cpuState + offset); + case 4: + return *(uint32_t *) ((uint8_t *) cpuState + offset); + case 8: + return *(uint64_t *) ((uint8_t *) cpuState + offset); + default: + assert(false); + return 0; + } + } else { + target_ulong result = 0; + g_sqi.regs.read_concrete(offset, (uint8_t *) &result, size); + + return result; + } +} + +static inline void __WR_env_raw(CPUARMState *cpuState, unsigned offset, target_ulong value, unsigned size) { + if (likely(*g_sqi.mode.fast_concrete_invocation)) { + switch (size) { + case 1: + *((uint8_t *) cpuState + offset) = value; + break; + case 2: + *(uint16_t *) ((uint8_t *) cpuState + offset) = value; + break; + case 4: + *(uint32_t *) ((uint8_t *) cpuState + offset) = value; + break; + case 8: + *(uint64_t *) ((uint8_t *) cpuState + offset) = value; + break; + default: + assert(false); + } + } else { + g_sqi.regs.write_concrete(offset, (uint8_t *) &value, size); + } +} + +#define RR_cpu(cpu, reg) ((__typeof__(cpu->reg)) __RR_env_raw(cpu, offsetof(CPUARMState, reg), sizeof(cpu->reg))) +#define WR_cpu(cpu, reg, value) __WR_env_raw(cpu, offsetof(CPUARMState, reg), (target_ulong) value, sizeof(cpu->reg)) +#else /* defined(CONFIG_SYMBEX) && !defined(SYMBEX_LLVM_LIB) */ +#define RR_cpu(cpu, reg) cpu->reg +#define WR_cpu(cpu, reg, value) cpu->reg = value +#endif /* defined(CONFIG_SYMBEX) && !defined(SYMBEX_LLVM_LIB) */ + +#ifdef ENABLE_PRECISE_EXCEPTION_DEBUGGING +#define WR_se_pc(cpu, value) cpu->preceise_pc = value +#else +#define WR_se_pc(cpu, value) +#endif + +CPUARMState *cpu_arm_init(const char *cpu_model); +void arm_translate_init(void); +int cpu_arm_exec(CPUARMState *s); +void do_interrupt(CPUARMState *); +void switch_mode(CPUARMState *, int); +uint32_t do_arm_semihosting(CPUARMState *env); + +/* you can call this signal handler from your SIGBUS and SIGSEGV + signal handlers to inform the virtual CPU of exceptions. non zero + is returned if the signal was handled by the virtual CPU. */ +int cpu_arm_signal_handler(int host_signum, void *pinfo, void *puc); +int cpu_arm_handle_mmu_fault(CPUARMState *env, target_ulong address, int rw, int mmu_idx); +#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault + +static inline void cpu_set_tls(CPUARMState *env, target_ulong newtls) { + env->cp15.c13_tls2 = newtls; +} + +/* #define CPSR_M (0x1f) */ +// #define CPSR_T (1 << 5) +// #define CPSR_F (1 << 6) +// #define CPSR_I (1 << 7) +// #define CPSR_A (1 << 8) +// #define CPSR_E (1 << 9) +// #define CPSR_IT_2_7 (0xfc00) +// #define CPSR_GE (0xf << 16) +// #define CPSR_RESERVED (0xf << 20) +// #define CPSR_J (1 << 24) +// #define CPSR_IT_0_1 (3 << 25) +// #define CPSR_Q (1 << 27) +// #define CPSR_V (1 << 28) +// #define CPSR_C (1 << 29) +// #define CPSR_Z (1 << 30) +// #define CPSR_N (1 << 31) +// #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) + +// #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) +// #define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV) +// [> Bits writable in user mode. <] +// #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) +// [> Execution state bits. MRS read as zero, MSR writes ignored. <] +/* #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J) */ + +/* Return the current CPSR value. */ +uint32_t cpsr_read(CPUARMState *env); +/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */ +void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask); + +/* Return the current xPSR value. */ +static inline uint32_t xpsr_read(CPUARMState *env) { + int ZF; + ZF = (RR_cpu(env, ZF) == 0); + return (RR_cpu(env, NF) & 0x80000000) | (ZF << 30) | (RR_cpu(env, CF) << 29) | + ((RR_cpu(env, VF) & 0x80000000) >> 3) | (env->QF << 27) | (env->thumb << 24) | + ((env->condexec_bits & 3) << 25) | ((env->condexec_bits & 0xfc) << 8) | env->v7m.exception; +} + +/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ +static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) { +//sync var exception for kvm env by using hard-code offset + unsigned long *armcpu; + uint32_t *exception; + armcpu = env->nvic+0x308; + exception = (unsigned long)(*armcpu+0x8b50); + + if (mask & CPSR_NZCV) { + WR_cpu(env, ZF, (~val) & CPSR_Z); + WR_cpu(env, NF, val); + WR_cpu(env, CF, (val >> 29) & 1); + WR_cpu(env, VF, (val << 3) & 0x80000000); + } + if (mask & CPSR_Q) + env->QF = ((val & CPSR_Q) != 0); + if (mask & (1 << 24)) + env->thumb = ((val & (1 << 24)) != 0); + if (mask & CPSR_IT_0_1) { + env->condexec_bits &= ~3; + env->condexec_bits |= (val >> 25) & 3; + } + if (mask & CPSR_IT_2_7) { + env->condexec_bits &= 3; + env->condexec_bits |= (val >> 8) & 0xfc; + } + if (mask & 0x1ff) { + env->v7m.exception = val & 0x1ff; + *exception = val & 0x1ff; + } +} + +/* Return the current FPSCR value. */ +uint32_t vfp_get_fpscr(CPUARMState *env); +void vfp_set_fpscr(CPUARMState *env, uint32_t val); + +/* enum arm_cpu_mode { */ +// ARM_CPU_MODE_USR = 0x10, +// ARM_CPU_MODE_FIQ = 0x11, +// ARM_CPU_MODE_IRQ = 0x12, +// ARM_CPU_MODE_SVC = 0x13, +// ARM_CPU_MODE_ABT = 0x17, +// ARM_CPU_MODE_UND = 0x1b, +// ARM_CPU_MODE_SYS = 0x1f +/* }; */ + +/* VFP system registers. */ +#define ARM_VFP_FPSID 0 +#define ARM_VFP_FPSCR 1 +#define ARM_VFP_MVFR1 6 +#define ARM_VFP_MVFR0 7 +#define ARM_VFP_FPEXC 8 +#define ARM_VFP_FPINST 9 +#define ARM_VFP_FPINST2 10 + +/* iwMMXt coprocessor control registers. */ +#define ARM_IWMMXT_wCID 0 +#define ARM_IWMMXT_wCon 1 +#define ARM_IWMMXT_wCSSF 2 +#define ARM_IWMMXT_wCASF 3 +#define ARM_IWMMXT_wCGR0 8 +#define ARM_IWMMXT_wCGR1 9 +#define ARM_IWMMXT_wCGR2 10 +#define ARM_IWMMXT_wCGR3 11 + +/* enum arm_features { */ +// ARM_FEATURE_VFP, +// ARM_FEATURE_AUXCR, [> ARM1026 Auxiliary control register. <] +// ARM_FEATURE_XSCALE, [> Intel XScale extensions. <] +// ARM_FEATURE_IWMMXT, [> Intel iwMMXt extension. <] +// ARM_FEATURE_V6, +// ARM_FEATURE_V6K, +// ARM_FEATURE_V7, +// ARM_FEATURE_THUMB2, +// ARM_FEATURE_MPU, [> Only has Memory Protection Unit, not full MMU. <] +// ARM_FEATURE_VFP3, +// ARM_FEATURE_VFP_FP16, +// ARM_FEATURE_NEON, +// ARM_FEATURE_THUMB_DIV, [> divide supported in Thumb encoding <] +// ARM_FEATURE_M, [> Microcontroller profile. <] +// ARM_FEATURE_OMAPCP, [> OMAP specific CP15 ops handling. <] +// ARM_FEATURE_THUMB2EE, +// ARM_FEATURE_V7MP, [> v7 Multiprocessing Extensions <] +// ARM_FEATURE_V4T, +// ARM_FEATURE_V5, +// ARM_FEATURE_STRONGARM, +// ARM_FEATURE_VAPA, [> cp15 VA to PA lookups <] +// ARM_FEATURE_ARM_DIV, [> divide supported in ARM encoding <] +// ARM_FEATURE_VFP4, [> VFPv4 (implies that NEON is v2) <] +// ARM_FEATURE_GENERIC_TIMER, +// ARM_FEATURE_MVFR, [> Media and VFP Feature Registers 0 and 1 <] +/* }; */ +enum arm_features { + ARM_FEATURE_VFP, + ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ + ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ + ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ + ARM_FEATURE_V6, + ARM_FEATURE_V6K, + ARM_FEATURE_V7, + ARM_FEATURE_THUMB2, + ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */ + ARM_FEATURE_VFP3, + ARM_FEATURE_VFP_FP16, + ARM_FEATURE_NEON, + ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */ + ARM_FEATURE_M, /* Microcontroller profile. */ + ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ + ARM_FEATURE_THUMB2EE, + ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ + ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ + ARM_FEATURE_V4T, + ARM_FEATURE_V5, + ARM_FEATURE_STRONGARM, + ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ + ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */ + ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */ + ARM_FEATURE_GENERIC_TIMER, + ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ + ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ + ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ + ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ + ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ + ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ + ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ + ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ + ARM_FEATURE_V8, + ARM_FEATURE_AARCH64, /* supports 64 bit mode */ + ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */ + ARM_FEATURE_CBAR, /* has cp15 CBAR */ + ARM_FEATURE_CRC, /* ARMv8 CRC instructions */ + ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ + ARM_FEATURE_EL2, /* has EL2 Virtualization support */ + ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ + ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */ + ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */ + ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */ + ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ + ARM_FEATURE_PMU, /* has PMU support */ + ARM_FEATURE_VBAR, /* has cp15 VBAR */ + ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ + ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */ + ARM_FEATURE_SVE, /* has Scalable Vector Extension */ + ARM_FEATURE_V8_SHA512, /* implements SHA512 part of v8 Crypto Extensions */ + ARM_FEATURE_V8_SHA3, /* implements SHA3 part of v8 Crypto Extensions */ + ARM_FEATURE_V8_SM3, /* implements SM3 part of v8 Crypto Extensions */ + ARM_FEATURE_V8_SM4, /* implements SM4 part of v8 Crypto Extensions */ + ARM_FEATURE_V8_ATOMICS, /* ARMv8.1-Atomics feature */ + ARM_FEATURE_V8_RDM, /* implements v8.1 simd round multiply */ + ARM_FEATURE_V8_DOTPROD, /* implements v8.2 simd dot product */ + ARM_FEATURE_V8_FP16, /* implements v8.2 half-precision float */ + ARM_FEATURE_V8_FCMA, /* has complex number part of v8.3 extensions. */ + ARM_FEATURE_M_MAIN, /* M profile Main Extension */ +}; +static inline int arm_feature(CPUARMState *env, int feature) { + return (env->features & (1ULL << feature)) != 0; +} + +void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf); + +/* Interface between CPU and Interrupt controller. */ +/* void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); */ +// int armv7m_nvic_acknowledge_irq(void *opaque); +/* void armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); */ + +void cpu_arm_set_cp_io(CPUARMState *env, int cpnum, ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write, void *opaque); + +/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3. + Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are + conventional cores (ie. Application or Realtime profile). */ + +#define IS_M(env) arm_feature(env, ARM_FEATURE_M) +#define ARM_CPUID(env) (env->cp15.c0_cpuid) + +#define ARM_CPUID_ARM1026 0x4106a262 +#define ARM_CPUID_ARM926 0x41069265 +#define ARM_CPUID_ARM946 0x41059461 +#define ARM_CPUID_TI915T 0x54029152 +#define ARM_CPUID_TI925T 0x54029252 +#define ARM_CPUID_SA1100 0x4401A11B +#define ARM_CPUID_SA1110 0x6901B119 +#define ARM_CPUID_PXA250 0x69052100 +#define ARM_CPUID_PXA255 0x69052d00 +#define ARM_CPUID_PXA260 0x69052903 +#define ARM_CPUID_PXA261 0x69052d05 +#define ARM_CPUID_PXA262 0x69052d06 +#define ARM_CPUID_PXA270 0x69054110 +#define ARM_CPUID_PXA270_A0 0x69054110 +#define ARM_CPUID_PXA270_A1 0x69054111 +#define ARM_CPUID_PXA270_B0 0x69054112 +#define ARM_CPUID_PXA270_B1 0x69054113 +#define ARM_CPUID_PXA270_C0 0x69054114 +#define ARM_CPUID_PXA270_C5 0x69054117 +#define ARM_CPUID_ARM1136 0x4117b363 +#define ARM_CPUID_ARM1136_R2 0x4107b362 +#define ARM_CPUID_ARM1176 0x410fb767 +#define ARM_CPUID_ARM11MPCORE 0x410fb022 +#define ARM_CPUID_CORTEXA8 0x410fc080 +#define ARM_CPUID_CORTEXA9 0x410fc090 +#define ARM_CPUID_CORTEXA15 0x412fc0f1 +#define ARM_CPUID_CORTEXM3 0x410fc231 +#define ARM_CPUID_ANY 0xffffffff + +#define TARGET_PHYS_ADDR_SPACE_BITS 32 +#define TARGET_VIRT_ADDR_SPACE_BITS 32 + +#define cpu_init cpu_arm_init +#define cpu_exec cpu_arm_exec +#define cpu_gen_code cpu_arm_gen_code +#define cpu_signal_handler cpu_arm_signal_handler +#define cpu_list arm_cpu_list + +#define CPU_SAVE_VERSION 6 + +/* MMU modes definitions */ +#define MMU_MODE0_SUFFIX _kernel +#define MMU_MODE1_SUFFIX _user +#define MMU_USER_IDX 1 + +/* static inline int cpu_mmu_index(CPUARMState *env) { */ +// return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0; +// } + +#include "cpu-all.h" + +/* Bit usage in the TB flags field: */ +#define ARM_TBFLAG_THUMB_SHIFT 0 +#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT) +#define ARM_TBFLAG_VECLEN_SHIFT 1 +#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT) +#define ARM_TBFLAG_VECSTRIDE_SHIFT 4 +#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT) +#define ARM_TBFLAG_PRIV_SHIFT 6 +#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT) +#define ARM_TBFLAG_VFPEN_SHIFT 7 +#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT) +#define ARM_TBFLAG_CONDEXEC_SHIFT 8 +#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT) +#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16 +#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT) +/* Bits 31..17 are currently unused. */ + +/* some convenience accessor macros */ +#define ARM_TBFLAG_THUMB(F) (((F) &ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT) +#define ARM_TBFLAG_VECLEN(F) (((F) &ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT) +#define ARM_TBFLAG_VECSTRIDE(F) (((F) &ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT) +#define ARM_TBFLAG_PRIV(F) (((F) &ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT) +#define ARM_TBFLAG_VFPEN(F) (((F) &ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT) +#define ARM_TBFLAG_CONDEXEC(F) (((F) &ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT) +#define ARM_TBFLAG_BSWAP_CODE(F) (((F) &ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT) + +static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, target_ulong *cs_base, int *flags) { + int privmode; + *pc = env->regs[15]; + *cs_base = 0; + *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) | + (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) | + (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT); + if (arm_feature(env, ARM_FEATURE_M)) { + privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1)); + } else { + privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR; + } + if (privmode) { + *flags |= ARM_TBFLAG_PRIV_MASK; + } + if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { + *flags |= ARM_TBFLAG_VFPEN_MASK; + } +} + +static inline bool cpu_has_work(CPUARMState *env) { + return env->interrupt_request & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB); +} + +#include "exec-all.h" + +static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb) { + env->regs[15] = tb->pc; +} +/* Load an instruction and return it in the standard little-endian order */ +/* +static inline uint32_t arm_ldl_code(uint32_t addr, bool do_swap) +{ + uint32_t insn = ldl_code(addr); + if (do_swap) { + return bswap32(insn); + } + return insn; +} +*/ +/* Ditto, for a halfword (Thumb) instruction */ +/* +static inline uint16_t arm_lduw_code(uint32_t addr, bool do_swap) +{ + uint16_t insn = lduw_code(addr); + if (do_swap) { + return bswap16(insn); + } + return insn; +} +*/ +#endif diff --git a/src/target-arm/helper.c b/src/target-arm/helper.c new file mode 100644 index 0000000..5ce0e58 --- /dev/null +++ b/src/target-arm/helper.c @@ -0,0 +1,3120 @@ +/// Copyright (C) 2003 Fabrice Bellard +/// Copyright (C) 2010 Dependable Systems Laboratory, EPFL +/// Copyright (C) 2017 Adrian Herrera +/// Copyrights of all contributions belong to their respective owners. +/// +/// This library is free software; you can redistribute it and/or +/// modify it under the terms of the GNU Library General Public +/// License as published by the Free Software Foundation; either +/// version 2 of the License, or (at your option) any later version. +/// +/// This library is distributed in the hope that it will be useful, +/// but WITHOUT ANY WARRANTY; without even the implied warranty of +/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +/// Library General Public License for more details. +/// +/// You should have received a copy of the GNU Library General Public +/// License along with this library; if not, see . + +#include + +#include "cpu.h" + +#include + +#include +#include + +//#define DEBUG_HELPER + +#ifdef DEBUG_HELPER +#define HPRINTF(...) printf(__VA_ARGS__) +#else +#define HPRINTF(...) +#endif + +int semihosting_enabled = 0; +int smp_cpus = 1; + +static uint32_t cortexa15_cp15_c0_c1[8] = {0x00001131, 0x00011011, 0x02010555, 0x00000000, + 0x10201105, 0x20000000, 0x01240000, 0x02102211}; + +static uint32_t cortexa15_cp15_c0_c2[8] = {0x02101110, 0x13112111, 0x21232041, 0x11112131, 0x10011142, 0, 0, 0}; + +static uint32_t cortexa9_cp15_c0_c1[8] = {0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111}; + +static uint32_t cortexa9_cp15_c0_c2[8] = {0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0}; + +static uint32_t cortexa8_cp15_c0_c1[8] = {0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11}; + +static uint32_t cortexa8_cp15_c0_c2[8] = {0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0}; + +static uint32_t mpcore_cp15_c0_c1[8] = {0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0}; + +static uint32_t mpcore_cp15_c0_c2[8] = {0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0}; + +static uint32_t arm1136_cp15_c0_c1[8] = {0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0}; + +static uint32_t arm1136_cp15_c0_c2[8] = {0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0}; + +static uint32_t arm1176_cp15_c0_c1[8] = {0x111, 0x11, 0x33, 0, 0x01130003, 0x10030302, 0x01222100, 0}; + +static uint32_t arm1176_cp15_c0_c2[8] = {0x0140011, 0x12002111, 0x11231121, 0x01102131, 0x01141, 0, 0, 0}; + +static uint32_t cpu_arm_find_by_name(const char *name); + +static inline void set_feature(CPUARMState *env, int feature) { + env->features |= 1u << feature; +} + +static void cpu_reset_model_id(CPUARMState *env, uint32_t id) { + env->cp15.c0_cpuid = id; + switch (id) { + case ARM_CPUID_ARM926: + set_feature(env, ARM_FEATURE_V5); + set_feature(env, ARM_FEATURE_VFP); + env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090; + env->cp15.c0_cachetype = 0x1dd20d2; + env->cp15.c1_sys = 0x00090078; + break; + case ARM_CPUID_ARM946: + set_feature(env, ARM_FEATURE_V5); + set_feature(env, ARM_FEATURE_MPU); + env->cp15.c0_cachetype = 0x0f004006; + env->cp15.c1_sys = 0x00000078; + break; + case ARM_CPUID_ARM1026: + set_feature(env, ARM_FEATURE_V5); + set_feature(env, ARM_FEATURE_VFP); + set_feature(env, ARM_FEATURE_AUXCR); + env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0; + env->cp15.c0_cachetype = 0x1dd20d2; + env->cp15.c1_sys = 0x00090078; + break; + case ARM_CPUID_ARM1136: + /* This is the 1136 r1, which is a v6K core */ + set_feature(env, ARM_FEATURE_V6K); + /* Fall through */ + case ARM_CPUID_ARM1136_R2: + /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an + * older core than plain "arm1136". In particular this does not + * have the v6K features. + */ + set_feature(env, ARM_FEATURE_V6); + set_feature(env, ARM_FEATURE_VFP); + /* These ID register values are correct for 1136 but may be wrong + * for 1136_r2 (in particular r0p2 does not actually implement most + * of the ID registers). + */ + env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4; + env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111; + env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000; + memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t)); + memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t)); + env->cp15.c0_cachetype = 0x1dd20d2; + env->cp15.c1_sys = 0x00050078; + break; + case ARM_CPUID_ARM1176: + set_feature(env, ARM_FEATURE_V6K); + set_feature(env, ARM_FEATURE_VFP); + set_feature(env, ARM_FEATURE_VAPA); + env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b5; + env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111; + env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000; + memcpy(env->cp15.c0_c1, arm1176_cp15_c0_c1, 8 * sizeof(uint32_t)); + memcpy(env->cp15.c0_c2, arm1176_cp15_c0_c2, 8 * sizeof(uint32_t)); + env->cp15.c0_cachetype = 0x1dd20d2; + env->cp15.c1_sys = 0x00050078; + break; + case ARM_CPUID_ARM11MPCORE: + set_feature(env, ARM_FEATURE_V6K); + set_feature(env, ARM_FEATURE_VFP); + set_feature(env, ARM_FEATURE_VAPA); + env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4; + env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111; + env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000; + memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t)); + memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t)); + env->cp15.c0_cachetype = 0x1dd20d2; + break; + case ARM_CPUID_CORTEXA8: + set_feature(env, ARM_FEATURE_V7); + set_feature(env, ARM_FEATURE_VFP3); + set_feature(env, ARM_FEATURE_NEON); + set_feature(env, ARM_FEATURE_THUMB2EE); + env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0; + env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222; + env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100; + memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t)); + memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t)); + env->cp15.c0_cachetype = 0x82048004; + env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3; + env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */ + env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */ + env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */ + env->cp15.c1_sys = 0x00c50078; + break; + case ARM_CPUID_CORTEXA9: + set_feature(env, ARM_FEATURE_V7); + set_feature(env, ARM_FEATURE_VFP3); + set_feature(env, ARM_FEATURE_VFP_FP16); + set_feature(env, ARM_FEATURE_NEON); + set_feature(env, ARM_FEATURE_THUMB2EE); + /* Note that A9 supports the MP extensions even for + * A9UP and single-core A9MP (which are both different + * and valid configurations; we don't model A9UP). + */ + set_feature(env, ARM_FEATURE_V7MP); + env->vfp.xregs[ARM_VFP_FPSID] = 0x41033090; + env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222; + env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111; + memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t)); + memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t)); + env->cp15.c0_cachetype = 0x80038003; + env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3; + env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */ + env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */ + env->cp15.c1_sys = 0x00c50078; + break; + case ARM_CPUID_CORTEXA15: + set_feature(env, ARM_FEATURE_V7); + set_feature(env, ARM_FEATURE_VFP4); + set_feature(env, ARM_FEATURE_VFP_FP16); + set_feature(env, ARM_FEATURE_NEON); + set_feature(env, ARM_FEATURE_THUMB2EE); + set_feature(env, ARM_FEATURE_ARM_DIV); + set_feature(env, ARM_FEATURE_V7MP); + set_feature(env, ARM_FEATURE_GENERIC_TIMER); + env->vfp.xregs[ARM_VFP_FPSID] = 0x410430f0; + env->vfp.xregs[ARM_VFP_MVFR0] = 0x10110222; + env->vfp.xregs[ARM_VFP_MVFR1] = 0x11111111; + memcpy(env->cp15.c0_c1, cortexa15_cp15_c0_c1, 8 * sizeof(uint32_t)); + memcpy(env->cp15.c0_c2, cortexa15_cp15_c0_c2, 8 * sizeof(uint32_t)); + env->cp15.c0_cachetype = 0x8444c004; + env->cp15.c0_clid = 0x0a200023; + env->cp15.c0_ccsid[0] = 0x701fe00a; /* 32K L1 dcache */ + env->cp15.c0_ccsid[1] = 0x201fe00a; /* 32K L1 icache */ + env->cp15.c0_ccsid[2] = 0x711fe07a; /* 4096K L2 unified cache */ + env->cp15.c1_sys = 0x00c50078; + break; + case ARM_CPUID_CORTEXM3: + set_feature(env, ARM_FEATURE_V7); + set_feature(env, ARM_FEATURE_M); + break; + case ARM_CPUID_ANY: /* For userspace emulation. */ + set_feature(env, ARM_FEATURE_V7); + set_feature(env, ARM_FEATURE_VFP4); + set_feature(env, ARM_FEATURE_VFP_FP16); + set_feature(env, ARM_FEATURE_NEON); + set_feature(env, ARM_FEATURE_THUMB2EE); + set_feature(env, ARM_FEATURE_ARM_DIV); + set_feature(env, ARM_FEATURE_V7MP); + break; + case ARM_CPUID_TI915T: + case ARM_CPUID_TI925T: + set_feature(env, ARM_FEATURE_V4T); + set_feature(env, ARM_FEATURE_OMAPCP); + env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */ + env->cp15.c0_cachetype = 0x5109149; + env->cp15.c1_sys = 0x00000070; + env->cp15.c15_i_max = 0x000; + env->cp15.c15_i_min = 0xff0; + break; + case ARM_CPUID_PXA250: + case ARM_CPUID_PXA255: + case ARM_CPUID_PXA260: + case ARM_CPUID_PXA261: + case ARM_CPUID_PXA262: + set_feature(env, ARM_FEATURE_V5); + set_feature(env, ARM_FEATURE_XSCALE); + /* JTAG_ID is ((id << 28) | 0x09265013) */ + env->cp15.c0_cachetype = 0xd172172; + env->cp15.c1_sys = 0x00000078; + break; + case ARM_CPUID_PXA270_A0: + case ARM_CPUID_PXA270_A1: + case ARM_CPUID_PXA270_B0: + case ARM_CPUID_PXA270_B1: + case ARM_CPUID_PXA270_C0: + case ARM_CPUID_PXA270_C5: + set_feature(env, ARM_FEATURE_V5); + set_feature(env, ARM_FEATURE_XSCALE); + /* JTAG_ID is ((id << 28) | 0x09265013) */ + set_feature(env, ARM_FEATURE_IWMMXT); + env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; + env->cp15.c0_cachetype = 0xd172172; + env->cp15.c1_sys = 0x00000078; + break; + case ARM_CPUID_SA1100: + case ARM_CPUID_SA1110: + set_feature(env, ARM_FEATURE_STRONGARM); + env->cp15.c1_sys = 0x00000070; + break; + default: + cpu_abort(env, "Bad CPU ID: %x\n", id); + break; + } + + /* Some features automatically imply others: */ + if (arm_feature(env, ARM_FEATURE_V7)) { + set_feature(env, ARM_FEATURE_VAPA); + set_feature(env, ARM_FEATURE_THUMB2); + if (!arm_feature(env, ARM_FEATURE_M)) { + set_feature(env, ARM_FEATURE_V6K); + } else { + set_feature(env, ARM_FEATURE_V6); + } + } + if (arm_feature(env, ARM_FEATURE_V6K)) { + set_feature(env, ARM_FEATURE_V6); + set_feature(env, ARM_FEATURE_MVFR); + } + if (arm_feature(env, ARM_FEATURE_V6)) { + set_feature(env, ARM_FEATURE_V5); + if (!arm_feature(env, ARM_FEATURE_M)) { + set_feature(env, ARM_FEATURE_AUXCR); + } + } + if (arm_feature(env, ARM_FEATURE_V5)) { + set_feature(env, ARM_FEATURE_V4T); + } + if (arm_feature(env, ARM_FEATURE_M)) { + set_feature(env, ARM_FEATURE_THUMB_DIV); + } + if (arm_feature(env, ARM_FEATURE_ARM_DIV)) { + set_feature(env, ARM_FEATURE_THUMB_DIV); + } + if (arm_feature(env, ARM_FEATURE_VFP4)) { + set_feature(env, ARM_FEATURE_VFP3); + } + if (arm_feature(env, ARM_FEATURE_VFP3)) { + set_feature(env, ARM_FEATURE_VFP); + } +} + +/* TODO Move contents into arm_cpu_reset() in cpu.c, + * once cpu_reset_model_id() is eliminated, + * and then forward to cpu_reset() here. + */ +void cpu_state_reset(CPUARMState *env) { + uint32_t id; + uint32_t tmp = 0; + + if (libcpu_loglevel_mask(CPU_LOG_RESET)) { + libcpu_log("CPU Reset (CPU %d)\n", env->cpu_index); + log_cpu_state(env, 0); + } + + id = env->cp15.c0_cpuid; + tmp = env->cp15.c15_config_base_address; + memset(env, 0, offsetof(CPUARMState, breakpoints)); + if (id) + cpu_reset_model_id(env, id); + env->cp15.c15_config_base_address = tmp; + /* SVC mode with interrupts disabled. */ + env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I; + /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is + clear at reset. Initial SP and PC are loaded from ROM. */ + if (IS_M(env)) { + env->uncached_cpsr &= ~CPSR_I; + } + env->vfp.xregs[ARM_VFP_FPEXC] = 0; + env->cp15.c2_base_mask = 0xffffc000u; + /* v7 performance monitor control register: same implementor + * field as main ID register, and we implement no event counters. + */ + env->cp15.c9_pmcr = (id & 0xff000000); + set_flush_to_zero(1, &env->vfp.standard_fp_status); + set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); + set_default_nan_mode(1, &env->vfp.standard_fp_status); + set_float_detect_tininess(float_tininess_before_rounding, &env->vfp.fp_status); + set_float_detect_tininess(float_tininess_before_rounding, &env->vfp.standard_fp_status); + tlb_flush(env, 1); + /* Reset is a state change for some CPUARMState fields which we + * bake assumptions about into translated code, so we need to + * tb_flush(). + */ + tb_flush(env); + env->kvm_irq = -1; +} + +// static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) { +// int nregs; +// +// /* VFP data registers are always little-endian. */ +// nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; +// if (reg < nregs) { +// stfq_le_p(buf, env->vfp.regs[reg]); +// return 8; +// } +// if (arm_feature(env, ARM_FEATURE_NEON)) { +// /* Aliases for Q regs. */ +// nregs += 16; +// if (reg < nregs) { +// stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); +// stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); +// return 16; +// } +// } +// switch (reg - nregs) { +// case 0: +// stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); +// return 4; +// case 1: +// stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); +// return 4; +// case 2: +// stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); +// return 4; +// } +// return 0; +//} +// +// static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) { +// int nregs; +// +// nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; +// if (reg < nregs) { +// env->vfp.regs[reg] = ldfq_le_p(buf); +// return 8; +// } +// if (arm_feature(env, ARM_FEATURE_NEON)) { +// nregs += 16; +// if (reg < nregs) { +// env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); +// env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); +// return 16; +// } +// } +// switch (reg - nregs) { +// case 0: +// env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); +// return 4; +// case 1: +// env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); +// return 4; +// case 2: +// env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); +// return 4; +// } +// return 0; +//} + +CPUARMState *cpu_arm_init(const char *cpu_model) { + + CPUARMState *env; + uint32_t id; + static int inited = 0; + + id = cpu_arm_find_by_name(cpu_model); + if (id == 0) + return NULL; + env = g_malloc0(sizeof(CPUARMState)); + cpu_exec_init(env); + if (tcg_enabled() && !inited) { + inited = 1; + arm_translate_init(); + } + + env->cp15.c0_cpuid = id; + // if (arm_feature(env, ARM_FEATURE_NEON)) { + // gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, 51, "arm-neon.xml", 0); + // } else if (arm_feature(env, ARM_FEATURE_VFP3)) { + // gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, 35, "arm-vfp3.xml", 0); + // } else if (arm_feature(env, ARM_FEATURE_VFP)) { + // gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, 19, "arm-vfp.xml", 0); + // } + + qemu_init_vcpu(env); + // move state reset to do_cpu_arm_init + // cpu_state_reset(env); + return env; +} + +void do_cpu_arm_init(CPUARMState *env) { + + cpu_state_reset(env); +} + +void arm_cpu_set_irq(CPUARMState *env, int level) { + + if (level) { + cpu_interrupt(env, CPU_INTERRUPT_HARD); + } else { + cpu_reset_interrupt(env, CPU_INTERRUPT_HARD); + } +} + +struct arm_cpu_t { + uint32_t id; + const char *name; +}; + +static const struct arm_cpu_t arm_cpu_names[] = {{ARM_CPUID_ARM926, "arm926"}, + {ARM_CPUID_ARM946, "arm946"}, + {ARM_CPUID_ARM1026, "arm1026"}, + {ARM_CPUID_ARM1136, "arm1136"}, + {ARM_CPUID_ARM1136_R2, "arm1136-r2"}, + {ARM_CPUID_ARM1176, "arm1176"}, + {ARM_CPUID_ARM11MPCORE, "arm11mpcore"}, + {ARM_CPUID_CORTEXM3, "cortex-m3"}, + {ARM_CPUID_CORTEXA8, "cortex-a8"}, + {ARM_CPUID_CORTEXA9, "cortex-a9"}, + {ARM_CPUID_CORTEXA15, "cortex-a15"}, + {ARM_CPUID_TI925T, "ti925t"}, + {ARM_CPUID_PXA250, "pxa250"}, + {ARM_CPUID_SA1100, "sa1100"}, + {ARM_CPUID_SA1110, "sa1110"}, + {ARM_CPUID_PXA255, "pxa255"}, + {ARM_CPUID_PXA260, "pxa260"}, + {ARM_CPUID_PXA261, "pxa261"}, + {ARM_CPUID_PXA262, "pxa262"}, + {ARM_CPUID_PXA270, "pxa270"}, + {ARM_CPUID_PXA270_A0, "pxa270-a0"}, + {ARM_CPUID_PXA270_A1, "pxa270-a1"}, + {ARM_CPUID_PXA270_B0, "pxa270-b0"}, + {ARM_CPUID_PXA270_B1, "pxa270-b1"}, + {ARM_CPUID_PXA270_C0, "pxa270-c0"}, + {ARM_CPUID_PXA270_C5, "pxa270-c5"}, + {ARM_CPUID_ANY, "any"}, + {0, NULL}}; + +void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) { + int i; + + (*cpu_fprintf)(f, "Available CPUs:\n"); + for (i = 0; arm_cpu_names[i].name; i++) { + (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name); + } +} + +/* return 0 if not found */ +static uint32_t cpu_arm_find_by_name(const char *name) { + int i; + uint32_t id; + + id = 0; + for (i = 0; arm_cpu_names[i].name; i++) { + if (strcmp(name, arm_cpu_names[i].name) == 0) { + id = arm_cpu_names[i].id; + break; + } + } + return id; +} + +static int bad_mode_switch(CPUARMState *env, int mode) { + /* Return true if it is not valid for us to switch to + * this CPU mode (ie all the UNPREDICTABLE cases in + * the ARM ARM CPSRWriteByInstr pseudocode). + */ + switch (mode) { + case ARM_CPU_MODE_USR: + case ARM_CPU_MODE_SYS: + case ARM_CPU_MODE_SVC: + case ARM_CPU_MODE_ABT: + case ARM_CPU_MODE_UND: + case ARM_CPU_MODE_IRQ: + case ARM_CPU_MODE_FIQ: + return 0; + default: + return 1; + } +} + +uint32_t cpsr_read(CPUARMState *env) { + // These bits (ZF, NF, CF, VF) may be symbolic + target_ulong ZF, NF, CF, VF; + ZF = (RR_cpu(env,ZF) == 0); + NF = (RR_cpu(env,NF) & 0x80000000); + CF = (RR_cpu(env,CF) << 29); + VF = ((RR_cpu(env,VF) & 0x80000000) >> 3); + + // These bits instead are are always concrete + target_ulong QF, thumb, condex1, condex2, GE; + QF = (env->QF << 27); + thumb = (env->thumb << 5); + condex1 = ((env->condexec_bits & 3) << 25); + condex2 = ((env->condexec_bits & 0xfc) << 8); + GE = (env->GE << 16); + + // Re-assemble the cpsr + return env->uncached_cpsr | NF | (ZF << 30) | + CF | VF | QF + | thumb | condex1 + | condex2 + | GE; +} + +void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) { + if (mask & CPSR_NZCV) { + WR_cpu(env,ZF,((~val) & CPSR_Z)); + WR_cpu(env,NF,val); + WR_cpu(env,CF,((val >> 29) & 1)); + WR_cpu(env,VF,((val << 3) & 0x80000000)); + } + if (mask & CPSR_Q) + env->QF = ((val & CPSR_Q) != 0); + if (mask & CPSR_T) + env->thumb = ((val & CPSR_T) != 0); + if (mask & CPSR_IT_0_1) { + env->condexec_bits &= ~3; + env->condexec_bits |= (val >> 25) & 3; + } + if (mask & CPSR_IT_2_7) { + env->condexec_bits &= 3; + env->condexec_bits |= (val >> 8) & 0xfc; + } + if (mask & CPSR_GE) { + env->GE = (val >> 16) & 0xf; + } + + if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { + if (bad_mode_switch(env, val & CPSR_M)) { + /* Attempt to switch to an invalid mode: this is UNPREDICTABLE. + * We choose to ignore the attempt and leave the CPSR M field + * untouched. + */ + mask &= ~CPSR_M; + } else { + switch_mode(env, val & CPSR_M); + } + } + mask &= ~CACHED_CPSR_BITS; + env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); +} + +/* Map CPU modes onto saved register banks. */ +int bank_number(CPUARMState *env, int mode) { + switch (mode) { + case ARM_CPU_MODE_USR: + case ARM_CPU_MODE_SYS: + return 0; + case ARM_CPU_MODE_SVC: + return 1; + case ARM_CPU_MODE_ABT: + return 2; + case ARM_CPU_MODE_UND: + return 3; + case ARM_CPU_MODE_IRQ: + return 4; + case ARM_CPU_MODE_FIQ: + return 5; + } + cpu_abort(env, "Bad mode %x\n", mode); + return -1; +} + +void switch_mode(CPUARMState *env, int mode) { + int old_mode; + int i; + + old_mode = env->uncached_cpsr & CPSR_M; + if (mode == old_mode) + return; + + if (old_mode == ARM_CPU_MODE_FIQ) { + //memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); + WR_cpu(env,fiq_regs[0],RR_cpu(env,regs[8])); + WR_cpu(env,fiq_regs[1],RR_cpu(env,regs[9])); + WR_cpu(env,fiq_regs[2],RR_cpu(env,regs[10])); + WR_cpu(env,fiq_regs[3],RR_cpu(env,regs[11])); + WR_cpu(env,fiq_regs[4],RR_cpu(env,regs[12])); + + //memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); + WR_cpu(env,regs[8],RR_cpu(env,usr_regs[0])); + WR_cpu(env,regs[9],RR_cpu(env,usr_regs[1])); + WR_cpu(env,regs[10],RR_cpu(env,usr_regs[2])); + WR_cpu(env,regs[11],RR_cpu(env,usr_regs[3])); + WR_cpu(env,regs[12],RR_cpu(env,usr_regs[4])); + + } else if (mode == ARM_CPU_MODE_FIQ) { + //memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); + WR_cpu(env,usr_regs[0],RR_cpu(env,regs[8])); + WR_cpu(env,usr_regs[1],RR_cpu(env,regs[9])); + WR_cpu(env,usr_regs[2],RR_cpu(env,regs[10])); + WR_cpu(env,usr_regs[3],RR_cpu(env,regs[11])); + WR_cpu(env,usr_regs[4],RR_cpu(env,regs[12])); + + //memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); + WR_cpu(env,regs[8],RR_cpu(env,fiq_regs[0])); + WR_cpu(env,regs[9],RR_cpu(env,fiq_regs[1])); + WR_cpu(env,regs[10],RR_cpu(env,fiq_regs[2])); + WR_cpu(env,regs[11],RR_cpu(env,fiq_regs[3])); + WR_cpu(env,regs[12],RR_cpu(env,fiq_regs[4])); + } + + i = bank_number(env, old_mode); + WR_cpu(env,banked_r13[i], RR_cpu(env,regs[13])); + WR_cpu(env,banked_r14[i], RR_cpu(env,regs[14])); + WR_cpu(env,banked_spsr[i], RR_cpu(env,spsr)); + + i = bank_number(env, mode); + WR_cpu(env,regs[13],RR_cpu(env,banked_r13[i])); + WR_cpu(env,regs[14],RR_cpu(env,banked_r14[i])); + WR_cpu(env,spsr,RR_cpu(env,banked_spsr[i])); +} + +static void v7m_push(CPUARMState *env, uint32_t val) { + WR_cpu(env,regs[13],(RR_cpu(env,regs[13]) - 4)); + stl_phys(RR_cpu(env,regs[13]), val); +} + +static uint32_t v7m_pop(CPUARMState *env) { + uint32_t val; + val = ldl_phys(RR_cpu(env,regs[13])); + WR_cpu(env,regs[13],(RR_cpu(env,regs[13]) + 4)); + return val; +} + +/* Switch to V7M main or process stack pointer. */ +static void switch_v7m_sp(CPUARMState *env, int process) { + uint32_t tmp; + if (env->v7m.current_sp != process) { + tmp = env->v7m.other_sp; + env->v7m.other_sp = RR_cpu(env,regs[13]); + WR_cpu(env,regs[13],tmp); + env->v7m.current_sp = process; + HPRINTF(" switch sp tmp = 0x%x, current_sp = 0x%x, other_sp = 0x%x\n", tmp, env->v7m.current_sp, env->v7m.other_sp); + } else { + HPRINTF(" already in handle mode current_sp = 0x%x, other_sp = 0x%x\n", env->v7m.current_sp, env->v7m.other_sp); + } +} + +static void do_v7m_exception_exit(CPUARMState *env) { + uint32_t type; + uint32_t xpsr; + uint32_t irq_no; + + type = env->regs[15]; + irq_no = env->v7m.exception; + if (env->v7m.exception != 0) + armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, false); + + /* Switch to the target stack. */ + switch_v7m_sp(env, (type & 4) != 0); + /* Pop registers. */ + WR_cpu(env,regs[0],v7m_pop(env)); + WR_cpu(env,regs[1],v7m_pop(env)); + WR_cpu(env,regs[2],v7m_pop(env)); + WR_cpu(env,regs[3],v7m_pop(env)); + WR_cpu(env,regs[12],v7m_pop(env)); + WR_cpu(env,regs[14],v7m_pop(env)); + env->regs[15] = v7m_pop(env); + //thumb2 remove LSB + env->regs[15] = env->regs[15] & ~1; + xpsr = v7m_pop(env); + xpsr_write(env, xpsr, 0xfffffdff); + /* Undo stack alignment. */ + if (xpsr & 0x200) + WR_cpu(env,regs[13],(RR_cpu(env,regs[13]) | 4)); + + HPRINTF(" R3=0x%x R4=0x%x R5=0x%x R6=0x%x R7=0x%x R8=0x%x R9=0x%x R10=0x%x R11=0x%x R12=0x%x R2=0x%x R1=0x%x R0=0x%x\n", + RR_cpu(env,regs[3]), RR_cpu(env,regs[4]), RR_cpu(env,regs[5]), RR_cpu(env,regs[6]), RR_cpu(env,regs[7]), RR_cpu(env,regs[8]), + RR_cpu(env,regs[9]), RR_cpu(env,regs[10]), RR_cpu(env,regs[11]), RR_cpu(env,regs[12]), RR_cpu(env,regs[2]), RR_cpu(env,regs[1]), RR_cpu(env,regs[0])); + if (env->interrupt_flag > 0) + env->interrupt_flag -= 1; + HPRINTF(" interrupt exit r13 = 0x%x r15 = 0x%x flag = %d\n", env->regs[13], env->regs[15], env->interrupt_flag); + if (unlikely(*g_sqi.events.on_invalid_pc_access_signals_count)) { + g_sqi.events.on_armv7m_interrupt_exit(irq_no); + } + /* ??? The exception return type specifies Thread/Handler mode. However + this is also implied by the xPSR value. Not sure what to do + if there is a mismatch. */ + /* ??? Likewise for mismatches between the CONTROL register and the stack + pointer. */ +} + +void do_interrupt_v7m(CPUARMState *env) { + uint32_t addr; + uint32_t xpsr = xpsr_read(env); + uint32_t lr; + + int exc; + bool targets_secure; +//sync var exception for kvm env by using hard-code offset + unsigned long *armcpu; + uint32_t *exception; + armcpu = env->nvic+0x308; + exception = (unsigned long)(*armcpu+0x8b50); + + lr = 0xfffffff1; + if (env->v7m.current_sp) + lr |= 4; + if (env->v7m.exception == 0) + lr |= 8; + // HPRINTF("interreput = 0x%x\n",env->exception_index); + /* For exceptions we just mark as pending on the NVIC, and let that + handle it. */ + switch (env->exception_index) { + case EXCP_UDEF: + armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); + return; + case EXCP_SWI: + /* The PC already points to the next instruction. */ + armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, false); + //env->interrupt_flag = 2; + return; + case EXCP_PREFETCH_ABORT: + case EXCP_DATA_ABORT: + armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, false); + cpu_abort(env, "hard fault exception 0x%x\n", env->exception_index); + break; + case EXCP_BKPT: + if (semihosting_enabled) { + int nr; + nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; + if (nr == 0xab) { + env->regs[15] += 2; + WR_cpu(env,regs[0],do_arm_semihosting(env)); + return; + } + } + armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); + return; + case EXCP_IRQ: + armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure); + armv7m_nvic_acknowledge_irq(env->nvic, exc); + env->v7m.exception = exc; + *exception = exc; + env->interrupt_flag += 1; + break; + case EXCP_EXCEPTION_EXIT: + do_v7m_exception_exit(env); + return; + default: + cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); + return; /* Never happens. Keep compiler happy. */ + } + + HPRINTF(" interrupt r13 = 0x%x r15 = 0x%x\n", env->regs[13], env->regs[15]); + HPRINTF(" R3=0x%x R4=0x%x R5=0x%x R6=0x%x R7=0x%x R8=0x%x R9=0x%x R10=0x%x R11=0x%x R12=0x%x R2=0x%x R1=0x%x R0=0x%x\n", + RR_cpu(env,regs[3]), RR_cpu(env,regs[4]), RR_cpu(env,regs[5]), RR_cpu(env,regs[6]), RR_cpu(env,regs[7]), RR_cpu(env,regs[8]), + RR_cpu(env,regs[9]), RR_cpu(env,regs[10]), RR_cpu(env,regs[11]), RR_cpu(env,regs[12]), RR_cpu(env,regs[2]), RR_cpu(env,regs[1]), RR_cpu(env,regs[0])); + + /* Align stack pointer. */ + /* ??? Should only do this if Configuration Control Register + STACKALIGN bit is set. */ + if (RR_cpu(env,regs[13]) & 4) { + WR_cpu(env,regs[13],(RR_cpu(env,regs[13]) - 4)); + xpsr |= 0x200; + } + + v7m_push(env, xpsr); + v7m_push(env, env->regs[15]); + v7m_push(env, RR_cpu(env,regs[14])); + v7m_push(env, RR_cpu(env,regs[12])); + v7m_push(env, RR_cpu(env,regs[3])); + v7m_push(env, RR_cpu(env,regs[2])); + v7m_push(env, RR_cpu(env,regs[1])); + v7m_push(env, RR_cpu(env,regs[0])); + + /* Now we've done everything that might cause a derived exception + * we can go ahead and activate whichever exception we're going to + * take (which might now be the derived exception). + */ + + /* Switch to the msp stack. */ + switch_v7m_sp(env, 0); + /* Clear IT bits */ + env->condexec_bits = 0; + WR_cpu(env,regs[14],lr); + addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4); + env->regs[15] = addr & 0xfffffffe; + HPRINTF("addr = %x vecbase = %d exce = %d flag = %d\n", addr, env->v7m.vecbase, + env->v7m.exception, env->interrupt_flag); + env->thumb = addr & 1; +} + +#ifdef CONFIG_SYMBEX +#include +uint32_t se_helper_get_active_armv7m_external_irq(CPUArchState *env, int serial) { + return armv7m_nvic_get_active_external_irq(env->nvic, serial); +} + +void se_helper_set_armv7m_external_irq(CPUARMState *env, int irq_num) { + armv7m_nvic_set_external_peripheral_irq(env->nvic, irq_num, 1); +} + +void se_helper_enable_all_armv7m_external_irq(CPUARMState *env, int serial) { + armv7m_nvic_enable_all_external_irq(env->nvic, serial, 1); +} + +void se_helper_enable_systick_irq(CPUARMState *env, int mode) { + armv7m_nvic_enable_systick(env->nvic, mode); +} +/* This will be called from S2EExecutor if running concretely; It will + in turn call the real ARM IRQ handler with current CPUARMState.*/ +void do_interrupt(CPUARMState *env) { + g_sqi.exec.do_interrupt_arm(); +} +void se_helper_do_interrupt_arm(CPUARMState *env) { +#else +/* Handle a CPU exception. */ +void do_interrupt(CPUARMState *env) { +#endif + uint32_t addr; + uint32_t mask; + int new_mode; + uint32_t offset; + + if (IS_M(env)) { + do_interrupt_v7m(env); + return; + } + /* TODO: Vectored interrupt controller. */ + switch (env->exception_index) { + case EXCP_UDEF: + new_mode = ARM_CPU_MODE_UND; + addr = 0x04; + mask = CPSR_I; + if (env->thumb) + offset = 2; + else + offset = 4; + break; + case EXCP_SWI: + if (semihosting_enabled) { + /* Check for semihosting interrupt. */ + if (env->thumb) { + mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code) & 0xff; + } else { + mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code) & 0xffffff; + } + /* Only intercept calls from privileged modes, to provide some + semblance of security. */ + if (((mask == 0x123456 && !env->thumb) || (mask == 0xab && env->thumb)) && + (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { + WR_cpu(env,regs[0],do_arm_semihosting(env)); + return; + } + } + new_mode = ARM_CPU_MODE_SVC; + addr = 0x08; + mask = CPSR_I; + /* The PC already points to the next instruction. */ + offset = 0; + break; + case EXCP_BKPT: + /* See if this is a semihosting syscall. */ + if (env->thumb && semihosting_enabled) { + mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff; + if (mask == 0xab && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { + env->regs[15] += 2; + WR_cpu(env,regs[0],do_arm_semihosting(env)); + return; + } + } + env->cp15.c5_insn = 2; + /* Fall through to prefetch abort. */ + case EXCP_PREFETCH_ABORT: + new_mode = ARM_CPU_MODE_ABT; + addr = 0x0c; + mask = CPSR_A | CPSR_I; + offset = 4; + break; + case EXCP_DATA_ABORT: + new_mode = ARM_CPU_MODE_ABT; + addr = 0x10; + mask = CPSR_A | CPSR_I; + offset = 8; + break; + case EXCP_IRQ: + new_mode = ARM_CPU_MODE_IRQ; + addr = 0x18; + /* Disable IRQ and imprecise data aborts. */ + mask = CPSR_A | CPSR_I; + offset = 4; + break; + case EXCP_FIQ: + new_mode = ARM_CPU_MODE_FIQ; + addr = 0x1c; + /* Disable FIQ, IRQ and imprecise data aborts. */ + mask = CPSR_A | CPSR_I | CPSR_F; + offset = 4; + break; + default: + cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); + return; /* Never happens. Keep compiler happy. */ + } + /* High vectors. */ + if (env->cp15.c1_sys & (1 << 13)) { + addr += 0xffff0000; + } + switch_mode(env, new_mode); + WR_cpu(env,spsr,cpsr_read(env)); + /* Clear IT bits. */ + env->condexec_bits = 0; + /* Switch to the new mode, and to the correct instruction set. */ + env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; + env->uncached_cpsr |= mask; + /* this is a lie, as the was no c1_sys on V4T/V5, but who cares + * and we should just guard the thumb mode on V4 */ + if (arm_feature(env, ARM_FEATURE_V4T)) { + env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0; + } + WR_cpu(env,regs[14],(env->regs[15] + offset)); + env->regs[15] = addr; + env->interrupt_request |= CPU_INTERRUPT_EXITTB; +} + +/* Check section/page access permissions. + Returns the page protection flags, or zero if the access is not + permitted. */ +static inline int check_ap(CPUARMState *env, int ap, int domain_prot, int access_type, int is_user) { + int prot_ro; + + if (domain_prot == 3) { + return PAGE_READ | PAGE_WRITE; + } + + if (access_type == 1) + prot_ro = 0; + else + prot_ro = PAGE_READ; + + switch (ap) { + case 0: + if (access_type == 1) + return 0; + switch ((env->cp15.c1_sys >> 8) & 3) { + case 1: + return is_user ? 0 : PAGE_READ; + case 2: + return PAGE_READ; + default: + return 0; + } + case 1: + return is_user ? 0 : PAGE_READ | PAGE_WRITE; + case 2: + if (is_user) + return prot_ro; + else + return PAGE_READ | PAGE_WRITE; + case 3: + return PAGE_READ | PAGE_WRITE; + case 4: /* Reserved. */ + return 0; + case 5: + return is_user ? 0 : prot_ro; + case 6: + return prot_ro; + case 7: + if (!arm_feature(env, ARM_FEATURE_V6K)) + return 0; + return prot_ro; + default: + abort(); + } +} + +static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address) { + uint32_t table; + + if (address & env->cp15.c2_mask) + table = env->cp15.c2_base1 & 0xffffc000; + else + table = env->cp15.c2_base0 & env->cp15.c2_base_mask; + + table |= (address >> 18) & 0x3ffc; + return table; +} + +static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, int is_user, uint32_t *phys_ptr, + int *prot, target_ulong *page_size) { + int code; + uint32_t table; + uint32_t desc; + int type; + int ap; + int domain; + int domain_prot; + uint32_t phys_addr; + + /* Pagetable walk. */ + /* Lookup l1 descriptor. */ + table = get_level1_table_address(env, address); + desc = ldl_phys(table); + type = (desc & 3); + domain = (desc >> 5) & 0x0f; + domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; + if (type == 0) { + /* Section translation fault. */ + code = 5; + goto do_fault; + } + if (domain_prot == 0 || domain_prot == 2) { + if (type == 2) + code = 9; /* Section domain fault. */ + else + code = 11; /* Page domain fault. */ + goto do_fault; + } + if (type == 2) { + /* 1Mb section. */ + phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); + ap = (desc >> 10) & 3; + code = 13; + *page_size = 1024 * 1024; + } else { + /* Lookup l2 entry. */ + if (type == 1) { + /* Coarse pagetable. */ + table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); + } else { + /* Fine pagetable. */ + table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); + } + desc = ldl_phys(table); + switch (desc & 3) { + case 0: /* Page translation fault. */ + code = 7; + goto do_fault; + case 1: /* 64k page. */ + phys_addr = (desc & 0xffff0000) | (address & 0xffff); + ap = (desc >> (4 + ((address >> 13) & 6))) & 3; + *page_size = 0x10000; + break; + case 2: /* 4k page. */ + phys_addr = (desc & 0xfffff000) | (address & 0xfff); + ap = (desc >> (4 + ((address >> 13) & 6))) & 3; + *page_size = 0x1000; + break; + case 3: /* 1k page. */ + if (type == 1) { + if (arm_feature(env, ARM_FEATURE_XSCALE)) { + phys_addr = (desc & 0xfffff000) | (address & 0xfff); + } else { + /* Page translation fault. */ + code = 7; + goto do_fault; + } + } else { + phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); + } + ap = (desc >> 4) & 3; + *page_size = 0x400; + break; + default: + /* Never happens, but compiler isn't smart enough to tell. */ + abort(); + } + code = 15; + } + *prot = check_ap(env, ap, domain_prot, access_type, is_user); + if (!*prot) { + /* Access permission fault. */ + goto do_fault; + } + *prot |= PAGE_EXEC; + *phys_ptr = phys_addr; + return 0; +do_fault: + return code | (domain << 4); +} + +static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, int is_user, uint32_t *phys_ptr, + int *prot, target_ulong *page_size) { + int code; + uint32_t table; + uint32_t desc; + uint32_t xn; + int type; + int ap; + int domain; + int domain_prot; + uint32_t phys_addr; + + /* Pagetable walk. */ + /* Lookup l1 descriptor. */ + table = get_level1_table_address(env, address); + desc = ldl_phys(table); + type = (desc & 3); + if (type == 0) { + /* Section translation fault. */ + code = 5; + domain = 0; + goto do_fault; + } else if (type == 2 && (desc & (1 << 18))) { + /* Supersection. */ + domain = 0; + } else { + /* Section or page. */ + domain = (desc >> 5) & 0x0f; + } + domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; + if (domain_prot == 0 || domain_prot == 2) { + if (type == 2) + code = 9; /* Section domain fault. */ + else + code = 11; /* Page domain fault. */ + goto do_fault; + } + if (type == 2) { + if (desc & (1 << 18)) { + /* Supersection. */ + phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); + *page_size = 0x1000000; + } else { + /* Section. */ + phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); + *page_size = 0x100000; + } + ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); + xn = desc & (1 << 4); + code = 13; + } else { + /* Lookup l2 entry. */ + table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); + desc = ldl_phys(table); + ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); + switch (desc & 3) { + case 0: /* Page translation fault. */ + code = 7; + goto do_fault; + case 1: /* 64k page. */ + phys_addr = (desc & 0xffff0000) | (address & 0xffff); + xn = desc & (1 << 15); + *page_size = 0x10000; + break; + case 2: + case 3: /* 4k page. */ + phys_addr = (desc & 0xfffff000) | (address & 0xfff); + xn = desc & 1; + *page_size = 0x1000; + break; + default: + /* Never happens, but compiler isn't smart enough to tell. */ + abort(); + } + code = 15; + } + if (domain_prot == 3) { + *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; + } else { + if (xn && access_type == 2) + goto do_fault; + + /* The simplified model uses AP[0] as an access control bit. */ + if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) { + /* Access flag fault. */ + code = (code == 15) ? 6 : 3; + goto do_fault; + } + *prot = check_ap(env, ap, domain_prot, access_type, is_user); + if (!*prot) { + /* Access permission fault. */ + goto do_fault; + } + if (!xn) { + *prot |= PAGE_EXEC; + } + } + *phys_ptr = phys_addr; + return 0; +do_fault: + return code | (domain << 4); +} + +static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type, int is_user, uint32_t *phys_ptr, + int *prot) { + int n; + uint32_t mask; + uint32_t base; + + *phys_ptr = address; + for (n = 7; n >= 0; n--) { + base = env->cp15.c6_region[n]; + if ((base & 1) == 0) + continue; + mask = 1 << ((base >> 1) & 0x1f); + /* Keep this shift separate from the above to avoid an + (undefined) << 32. */ + mask = (mask << 1) - 1; + if (((base ^ address) & ~mask) == 0) + break; + } + if (n < 0) + return 2; + + if (access_type == 2) { + mask = env->cp15.c5_insn; + } else { + mask = env->cp15.c5_data; + } + mask = (mask >> (n * 4)) & 0xf; + switch (mask) { + case 0: + return 1; + case 1: + if (is_user) + return 1; + *prot = PAGE_READ | PAGE_WRITE; + break; + case 2: + *prot = PAGE_READ; + if (!is_user) + *prot |= PAGE_WRITE; + break; + case 3: + *prot = PAGE_READ | PAGE_WRITE; + break; + case 5: + if (is_user) + return 1; + *prot = PAGE_READ; + break; + case 6: + *prot = PAGE_READ; + break; + default: + /* Bad permission. */ + return 1; + } + *prot |= PAGE_EXEC; + return 0; +} + +static inline int get_phys_addr(CPUARMState *env, uint32_t address, int access_type, int is_user, uint32_t *phys_ptr, + int *prot, target_ulong *page_size) { + /* Fast Context Switch Extension. */ + if (address < 0x02000000) + address += env->cp15.c13_fcse; + + if ((env->cp15.c1_sys & 1) == 0) { + /* MMU/MPU disabled. */ + *phys_ptr = address; + *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; + *page_size = TARGET_PAGE_SIZE; + return 0; + } else if (arm_feature(env, ARM_FEATURE_MPU)) { + *page_size = TARGET_PAGE_SIZE; + return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, prot); + } else if (env->cp15.c1_sys & (1 << 23)) { + return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, prot, page_size); + } else { + return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, prot, page_size); + } +} + +int cpu_arm_handle_mmu_fault(CPUARMState *env, target_ulong address, int access_type, int mmu_idx) { + uint32_t phys_addr; + target_ulong page_size; + int prot; + int ret, is_user; + + is_user = mmu_idx == MMU_USER_IDX; + ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot, &page_size); + if (ret == 0) { + /* Map a single [sub]page. */ + phys_addr &= ~(uint32_t) 0x3ff; + address &= ~(uint32_t) 0x3ff; + tlb_set_page(env, address, phys_addr, prot, mmu_idx, page_size); + return 0; + } + + if (access_type == 2) { + env->cp15.c5_insn = ret; + env->cp15.c6_insn = address; + env->exception_index = EXCP_PREFETCH_ABORT; + } else { + env->cp15.c5_data = ret; + if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) + env->cp15.c5_data |= (1 << 11); + env->cp15.c6_data = address; + env->exception_index = EXCP_DATA_ABORT; + } + return 1; +} + +target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr) { + uint32_t phys_addr; + target_ulong page_size; + int prot; + int ret; + + ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size); + + if (ret != 0) + return -1; + + return phys_addr; +} + +void HELPER(set_cp)(CPUARMState *env, uint32_t insn, uint32_t val) { + int cp_num = (insn >> 8) & 0xf; + int cp_info = (insn >> 5) & 7; + int src = (insn >> 16) & 0xf; + int operand = insn & 0xf; + + if (env->cp[cp_num].cp_write) + env->cp[cp_num].cp_write(env->cp[cp_num].opaque, cp_info, src, operand, val); +} + +uint32_t HELPER(get_cp)(CPUARMState *env, uint32_t insn) { + int cp_num = (insn >> 8) & 0xf; + int cp_info = (insn >> 5) & 7; + int dest = (insn >> 16) & 0xf; + int operand = insn & 0xf; + + if (env->cp[cp_num].cp_read) + return env->cp[cp_num].cp_read(env->cp[cp_num].opaque, cp_info, dest, operand); + return 0; +} + +/* Return basic MPU access permission bits. */ +static uint32_t simple_mpu_ap_bits(uint32_t val) { + uint32_t ret; + uint32_t mask; + int i; + ret = 0; + mask = 3; + for (i = 0; i < 16; i += 2) { + ret |= (val >> i) & mask; + mask <<= 2; + } + return ret; +} + +/* Pad basic MPU access permission bits to extended format. */ +static uint32_t extended_mpu_ap_bits(uint32_t val) { + uint32_t ret; + uint32_t mask; + int i; + ret = 0; + mask = 3; + for (i = 0; i < 16; i += 2) { + ret |= (val & mask) << i; + mask <<= 2; + } + return ret; +} + +void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val) { + int op1; + int op2; + int crm; + + op1 = (insn >> 21) & 7; + op2 = (insn >> 5) & 7; + crm = insn & 0xf; + switch ((insn >> 16) & 0xf) { + case 0: + /* ID codes. */ + if (arm_feature(env, ARM_FEATURE_XSCALE)) + break; + if (arm_feature(env, ARM_FEATURE_OMAPCP)) + break; + if (arm_feature(env, ARM_FEATURE_V7) && op1 == 2 && crm == 0 && op2 == 0) { + env->cp15.c0_cssel = val & 0xf; + break; + } + goto bad_reg; + case 1: /* System configuration. */ + if (arm_feature(env, ARM_FEATURE_V7) && op1 == 0 && crm == 1 && op2 == 0) { + env->cp15.c1_scr = val; + break; + } + if (arm_feature(env, ARM_FEATURE_OMAPCP)) + op2 = 0; + switch (op2) { + case 0: + if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0) + env->cp15.c1_sys = val; + /* ??? Lots of these bits are not implemented. */ + /* This may enable/disable the MMU, so do a TLB flush. */ + tlb_flush(env, 1); + break; + case 1: /* Auxiliary control register. */ + if (arm_feature(env, ARM_FEATURE_XSCALE)) { + env->cp15.c1_xscaleauxcr = val; + break; + } + /* Not implemented. */ + break; + case 2: + if (arm_feature(env, ARM_FEATURE_XSCALE)) + goto bad_reg; + if (env->cp15.c1_coproc != val) { + env->cp15.c1_coproc = val; + /* ??? Is this safe when called from within a TB? */ + tb_flush(env); + } + break; + default: + goto bad_reg; + } + break; + case 2: /* MMU Page table control / MPU cache control. */ + if (arm_feature(env, ARM_FEATURE_MPU)) { + switch (op2) { + case 0: + env->cp15.c2_data = val; + break; + case 1: + env->cp15.c2_insn = val; + break; + default: + goto bad_reg; + } + } else { + switch (op2) { + case 0: + env->cp15.c2_base0 = val; + break; + case 1: + env->cp15.c2_base1 = val; + break; + case 2: + val &= 7; + env->cp15.c2_control = val; + env->cp15.c2_mask = ~(((uint32_t) 0xffffffffu) >> val); + env->cp15.c2_base_mask = ~((uint32_t) 0x3fffu >> val); + break; + default: + goto bad_reg; + } + } + break; + case 3: /* MMU Domain access control / MPU write buffer control. */ + env->cp15.c3 = val; + tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */ + break; + case 4: /* Reserved. */ + goto bad_reg; + case 5: /* MMU Fault status / MPU access permission. */ + if (arm_feature(env, ARM_FEATURE_OMAPCP)) + op2 = 0; + switch (op2) { + case 0: + if (arm_feature(env, ARM_FEATURE_MPU)) + val = extended_mpu_ap_bits(val); + env->cp15.c5_data = val; + break; + case 1: + if (arm_feature(env, ARM_FEATURE_MPU)) + val = extended_mpu_ap_bits(val); + env->cp15.c5_insn = val; + break; + case 2: + if (!arm_feature(env, ARM_FEATURE_MPU)) + goto bad_reg; + env->cp15.c5_data = val; + break; + case 3: + if (!arm_feature(env, ARM_FEATURE_MPU)) + goto bad_reg; + env->cp15.c5_insn = val; + break; + default: + goto bad_reg; + } + break; + case 6: /* MMU Fault address / MPU base/size. */ + if (arm_feature(env, ARM_FEATURE_MPU)) { + if (crm >= 8) + goto bad_reg; + env->cp15.c6_region[crm] = val; + } else { + if (arm_feature(env, ARM_FEATURE_OMAPCP)) + op2 = 0; + switch (op2) { + case 0: + env->cp15.c6_data = val; + break; + case 1: /* ??? This is WFAR on armv6 */ + case 2: + env->cp15.c6_insn = val; + break; + default: + goto bad_reg; + } + } + break; + case 7: /* Cache control. */ + env->cp15.c15_i_max = 0x000; + env->cp15.c15_i_min = 0xff0; + if (op1 != 0) { + goto bad_reg; + } + /* No cache, so nothing to do except VA->PA translations. */ + if (arm_feature(env, ARM_FEATURE_VAPA)) { + switch (crm) { + case 4: + if (arm_feature(env, ARM_FEATURE_V7)) { + env->cp15.c7_par = val & 0xfffff6ff; + } else { + env->cp15.c7_par = val & 0xfffff1ff; + } + break; + case 8: { + uint32_t phys_addr; + target_ulong page_size; + int prot; + int ret, is_user = op2 & 2; + int access_type = op2 & 1; + + if (op2 & 4) { + /* Other states are only available with TrustZone */ + goto bad_reg; + } + ret = get_phys_addr(env, val, access_type, is_user, &phys_addr, &prot, &page_size); + if (ret == 0) { + /* We do not set any attribute bits in the PAR */ + if (page_size == (1 << 24) && arm_feature(env, ARM_FEATURE_V7)) { + env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1; + } else { + env->cp15.c7_par = phys_addr & 0xfffff000; + } + } else { + env->cp15.c7_par = + ((ret & (10 << 1)) >> 5) | ((ret & (12 << 1)) >> 6) | ((ret & 0xf) << 1) | 1; + } + break; + } + } + } + break; + case 8: /* MMU TLB control. */ + switch (op2) { + case 0: /* Invalidate all (TLBIALL) */ + tlb_flush(env, 1); + break; + case 1: /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ + tlb_flush_page(env, val & TARGET_PAGE_MASK); + break; + case 2: /* Invalidate by ASID (TLBIASID) */ + tlb_flush(env, val == 0); + break; + case 3: /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ + tlb_flush_page(env, val & TARGET_PAGE_MASK); + break; + default: + goto bad_reg; + } + break; + case 9: + if (arm_feature(env, ARM_FEATURE_OMAPCP)) + break; + if (arm_feature(env, ARM_FEATURE_STRONGARM)) + break; /* Ignore ReadBuffer access */ + switch (crm) { + case 0: /* Cache lockdown. */ + switch (op1) { + case 0: /* L1 cache. */ + switch (op2) { + case 0: + env->cp15.c9_data = val; + break; + case 1: + env->cp15.c9_insn = val; + break; + default: + goto bad_reg; + } + break; + case 1: /* L2 cache. */ + /* Ignore writes to L2 lockdown/auxiliary registers. */ + break; + default: + goto bad_reg; + } + break; + case 1: /* TCM memory region registers. */ + /* Not implemented. */ + goto bad_reg; + case 12: /* Performance monitor control */ + /* Performance monitors are implementation defined in v7, + * but with an ARM recommended set of registers, which we + * follow (although we don't actually implement any counters) + */ + if (!arm_feature(env, ARM_FEATURE_V7)) { + goto bad_reg; + } + switch (op2) { + case 0: /* performance monitor control register */ + /* only the DP, X, D and E bits are writable */ + env->cp15.c9_pmcr &= ~0x39; + env->cp15.c9_pmcr |= (val & 0x39); + break; + case 1: /* Count enable set register */ + val &= (1 << 31); + env->cp15.c9_pmcnten |= val; + break; + case 2: /* Count enable clear */ + val &= (1 << 31); + env->cp15.c9_pmcnten &= ~val; + break; + case 3: /* Overflow flag status */ + env->cp15.c9_pmovsr &= ~val; + break; + case 4: /* Software increment */ + /* RAZ/WI since we don't implement the software-count event */ + break; + case 5: /* Event counter selection register */ + /* Since we don't implement any events, writing to this register + * is actually UNPREDICTABLE. So we choose to RAZ/WI. + */ + break; + default: + goto bad_reg; + } + break; + case 13: /* Performance counters */ + if (!arm_feature(env, ARM_FEATURE_V7)) { + goto bad_reg; + } + switch (op2) { + case 0: /* Cycle count register: not implemented, so RAZ/WI */ + break; + case 1: /* Event type select */ + env->cp15.c9_pmxevtyper = val & 0xff; + break; + case 2: /* Event count register */ + /* Unimplemented (we have no events), RAZ/WI */ + break; + default: + goto bad_reg; + } + break; + case 14: /* Performance monitor control */ + if (!arm_feature(env, ARM_FEATURE_V7)) { + goto bad_reg; + } + switch (op2) { + case 0: /* user enable */ + env->cp15.c9_pmuserenr = val & 1; + /* changes access rights for cp registers, so flush tbs */ + tb_flush(env); + break; + case 1: /* interrupt enable set */ + /* We have no event counters so only the C bit can be changed */ + val &= (1 << 31); + env->cp15.c9_pminten |= val; + break; + case 2: /* interrupt enable clear */ + val &= (1 << 31); + env->cp15.c9_pminten &= ~val; + break; + } + break; + default: + goto bad_reg; + } + break; + case 10: /* MMU TLB lockdown. */ + /* ??? TLB lockdown not implemented. */ + break; + case 12: /* Reserved. */ + goto bad_reg; + case 13: /* Process ID. */ + switch (op2) { + case 0: + /* Unlike real hardware the qemu TLB uses virtual addresses, + not modified virtual addresses, so this causes a TLB flush. + */ + if (env->cp15.c13_fcse != val) + tlb_flush(env, 1); + env->cp15.c13_fcse = val; + break; + case 1: + /* This changes the ASID, so do a TLB flush. */ + if (env->cp15.c13_context != val && !arm_feature(env, ARM_FEATURE_MPU)) + tlb_flush(env, 0); + env->cp15.c13_context = val; + break; + default: + goto bad_reg; + } + break; + case 14: /* Generic timer */ + if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { + /* Dummy implementation: RAZ/WI for all */ + break; + } + goto bad_reg; + case 15: /* Implementation specific. */ + if (arm_feature(env, ARM_FEATURE_XSCALE)) { + if (op2 == 0 && crm == 1) { + if (env->cp15.c15_cpar != (val & 0x3fff)) { + /* Changes cp0 to cp13 behavior, so needs a TB flush. */ + tb_flush(env); + env->cp15.c15_cpar = val & 0x3fff; + } + break; + } + goto bad_reg; + } + if (arm_feature(env, ARM_FEATURE_OMAPCP)) { + switch (crm) { + case 0: + break; + case 1: /* Set TI925T configuration. */ + env->cp15.c15_ticonfig = val & 0xe7; + env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */ + ARM_CPUID_TI915T + : ARM_CPUID_TI925T; + break; + case 2: /* Set I_max. */ + env->cp15.c15_i_max = val; + break; + case 3: /* Set I_min. */ + env->cp15.c15_i_min = val; + break; + case 4: /* Set thread-ID. */ + env->cp15.c15_threadid = val & 0xffff; + break; + case 8: /* Wait-for-interrupt (deprecated). */ + cpu_interrupt(env, CPU_INTERRUPT_HALT); + break; + default: + goto bad_reg; + } + } + if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) { + switch (crm) { + case 0: + if ((op1 == 0) && (op2 == 0)) { + env->cp15.c15_power_control = val; + } else if ((op1 == 0) && (op2 == 1)) { + env->cp15.c15_diagnostic = val; + } else if ((op1 == 0) && (op2 == 2)) { + env->cp15.c15_power_diagnostic = val; + } + default: + break; + } + } + break; + } + return; +bad_reg: + /* ??? For debugging only. Should raise illegal instruction exception. */ + cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n", (insn >> 16) & 0xf, crm, op1, op2); +} + +uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn) { + int op1; + int op2; + int crm; + + op1 = (insn >> 21) & 7; + op2 = (insn >> 5) & 7; + crm = insn & 0xf; + switch ((insn >> 16) & 0xf) { + case 0: /* ID codes. */ + switch (op1) { + case 0: + switch (crm) { + case 0: + switch (op2) { + case 0: /* Device ID. */ + return env->cp15.c0_cpuid; + case 1: /* Cache Type. */ + return env->cp15.c0_cachetype; + case 2: /* TCM status. */ + return 0; + case 3: /* TLB type register. */ + return 0; /* No lockable TLB entries. */ + case 5: /* MPIDR */ + /* The MPIDR was standardised in v7; prior to + * this it was implemented only in the 11MPCore. + * For all other pre-v7 cores it does not exist. + */ + if (arm_feature(env, ARM_FEATURE_V7) || ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) { + int mpidr = env->cpu_index; + /* We don't support setting cluster ID ([8..11]) + * so these bits always RAZ. + */ + if (arm_feature(env, ARM_FEATURE_V7MP)) { + mpidr |= (1 << 31); + /* Cores which are uniprocessor (non-coherent) + * but still implement the MP extensions set + * bit 30. (For instance, A9UP.) However we do + * not currently model any of those cores. + */ + } + return mpidr; + } + /* otherwise fall through to the unimplemented-reg case */ + default: + goto bad_reg; + } + case 1: + if (!arm_feature(env, ARM_FEATURE_V6)) + goto bad_reg; + return env->cp15.c0_c1[op2]; + case 2: + if (!arm_feature(env, ARM_FEATURE_V6)) + goto bad_reg; + return env->cp15.c0_c2[op2]; + case 3: + case 4: + case 5: + case 6: + case 7: + return 0; + default: + goto bad_reg; + } + case 1: + /* These registers aren't documented on arm11 cores. However + Linux looks at them anyway. */ + if (!arm_feature(env, ARM_FEATURE_V6)) + goto bad_reg; + if (crm != 0) + goto bad_reg; + if (!arm_feature(env, ARM_FEATURE_V7)) + return 0; + + switch (op2) { + case 0: + return env->cp15.c0_ccsid[env->cp15.c0_cssel]; + case 1: + return env->cp15.c0_clid; + case 7: + return 0; + } + goto bad_reg; + case 2: + if (op2 != 0 || crm != 0) + goto bad_reg; + return env->cp15.c0_cssel; + default: + goto bad_reg; + } + case 1: /* System configuration. */ + if (arm_feature(env, ARM_FEATURE_V7) && op1 == 0 && crm == 1 && op2 == 0) { + return env->cp15.c1_scr; + } + if (arm_feature(env, ARM_FEATURE_OMAPCP)) + op2 = 0; + switch (op2) { + case 0: /* Control register. */ + return env->cp15.c1_sys; + case 1: /* Auxiliary control register. */ + if (arm_feature(env, ARM_FEATURE_XSCALE)) + return env->cp15.c1_xscaleauxcr; + if (!arm_feature(env, ARM_FEATURE_AUXCR)) + goto bad_reg; + switch (ARM_CPUID(env)) { + case ARM_CPUID_ARM1026: + return 1; + case ARM_CPUID_ARM1136: + case ARM_CPUID_ARM1136_R2: + case ARM_CPUID_ARM1176: + return 7; + case ARM_CPUID_ARM11MPCORE: + return 1; + case ARM_CPUID_CORTEXA8: + return 2; + case ARM_CPUID_CORTEXA9: + case ARM_CPUID_CORTEXA15: + return 0; + default: + goto bad_reg; + } + case 2: /* Coprocessor access register. */ + if (arm_feature(env, ARM_FEATURE_XSCALE)) + goto bad_reg; + return env->cp15.c1_coproc; + default: + goto bad_reg; + } + case 2: /* MMU Page table control / MPU cache control. */ + if (arm_feature(env, ARM_FEATURE_MPU)) { + switch (op2) { + case 0: + return env->cp15.c2_data; + break; + case 1: + return env->cp15.c2_insn; + break; + default: + goto bad_reg; + } + } else { + switch (op2) { + case 0: + return env->cp15.c2_base0; + case 1: + return env->cp15.c2_base1; + case 2: + return env->cp15.c2_control; + default: + goto bad_reg; + } + } + case 3: /* MMU Domain access control / MPU write buffer control. */ + return env->cp15.c3; + case 4: /* Reserved. */ + goto bad_reg; + case 5: /* MMU Fault status / MPU access permission. */ + if (arm_feature(env, ARM_FEATURE_OMAPCP)) + op2 = 0; + switch (op2) { + case 0: + if (arm_feature(env, ARM_FEATURE_MPU)) + return simple_mpu_ap_bits(env->cp15.c5_data); + return env->cp15.c5_data; + case 1: + if (arm_feature(env, ARM_FEATURE_MPU)) + return simple_mpu_ap_bits(env->cp15.c5_insn); + return env->cp15.c5_insn; + case 2: + if (!arm_feature(env, ARM_FEATURE_MPU)) + goto bad_reg; + return env->cp15.c5_data; + case 3: + if (!arm_feature(env, ARM_FEATURE_MPU)) + goto bad_reg; + return env->cp15.c5_insn; + default: + goto bad_reg; + } + case 6: /* MMU Fault address. */ + if (arm_feature(env, ARM_FEATURE_MPU)) { + if (crm >= 8) + goto bad_reg; + return env->cp15.c6_region[crm]; + } else { + if (arm_feature(env, ARM_FEATURE_OMAPCP)) + op2 = 0; + switch (op2) { + case 0: + return env->cp15.c6_data; + case 1: + if (arm_feature(env, ARM_FEATURE_V6)) { + /* Watchpoint Fault Adrress. */ + return 0; /* Not implemented. */ + } else { + /* Instruction Fault Adrress. */ + /* Arm9 doesn't have an IFAR, but implementing it anyway + shouldn't do any harm. */ + return env->cp15.c6_insn; + } + case 2: + if (arm_feature(env, ARM_FEATURE_V6)) { + /* Instruction Fault Adrress. */ + return env->cp15.c6_insn; + } else { + goto bad_reg; + } + default: + goto bad_reg; + } + } + case 7: /* Cache control. */ + if (crm == 4 && op1 == 0 && op2 == 0) { + return env->cp15.c7_par; + } + /* FIXME: Should only clear Z flag if destination is r15. */ + env->ZF = 0; + return 0; + case 8: /* MMU TLB control. */ + goto bad_reg; + case 9: + switch (crm) { + case 0: /* Cache lockdown */ + switch (op1) { + case 0: /* L1 cache. */ + if (arm_feature(env, ARM_FEATURE_OMAPCP)) { + return 0; + } + switch (op2) { + case 0: + return env->cp15.c9_data; + case 1: + return env->cp15.c9_insn; + default: + goto bad_reg; + } + case 1: /* L2 cache */ + /* L2 Lockdown and Auxiliary control. */ + switch (op2) { + case 0: + /* L2 cache lockdown (A8 only) */ + return 0; + case 2: + /* L2 cache auxiliary control (A8) or control (A15) */ + if (ARM_CPUID(env) == ARM_CPUID_CORTEXA15) { + /* Linux wants the number of processors from here. + * Might as well set the interrupt-controller bit too. + */ + return ((smp_cpus - 1) << 24) | (1 << 23); + } + return 0; + case 3: + /* L2 cache extended control (A15) */ + return 0; + default: + goto bad_reg; + } + default: + goto bad_reg; + } + break; + case 12: /* Performance monitor control */ + if (!arm_feature(env, ARM_FEATURE_V7)) { + goto bad_reg; + } + switch (op2) { + case 0: /* performance monitor control register */ + return env->cp15.c9_pmcr; + case 1: /* count enable set */ + case 2: /* count enable clear */ + return env->cp15.c9_pmcnten; + case 3: /* overflow flag status */ + return env->cp15.c9_pmovsr; + case 4: /* software increment */ + case 5: /* event counter selection register */ + return 0; /* Unimplemented, RAZ/WI */ + default: + goto bad_reg; + } + case 13: /* Performance counters */ + if (!arm_feature(env, ARM_FEATURE_V7)) { + goto bad_reg; + } + switch (op2) { + case 1: /* Event type select */ + return env->cp15.c9_pmxevtyper; + case 0: /* Cycle count register */ + case 2: /* Event count register */ + /* Unimplemented, so RAZ/WI */ + return 0; + default: + goto bad_reg; + } + case 14: /* Performance monitor control */ + if (!arm_feature(env, ARM_FEATURE_V7)) { + goto bad_reg; + } + switch (op2) { + case 0: /* user enable */ + return env->cp15.c9_pmuserenr; + case 1: /* interrupt enable set */ + case 2: /* interrupt enable clear */ + return env->cp15.c9_pminten; + default: + goto bad_reg; + } + default: + goto bad_reg; + } + break; + case 10: /* MMU TLB lockdown. */ + /* ??? TLB lockdown not implemented. */ + return 0; + case 11: /* TCM DMA control. */ + case 12: /* Reserved. */ + goto bad_reg; + case 13: /* Process ID. */ + switch (op2) { + case 0: + return env->cp15.c13_fcse; + case 1: + return env->cp15.c13_context; + default: + goto bad_reg; + } + case 14: /* Generic timer */ + if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { + /* Dummy implementation: RAZ/WI for all */ + return 0; + } + goto bad_reg; + case 15: /* Implementation specific. */ + if (arm_feature(env, ARM_FEATURE_XSCALE)) { + if (op2 == 0 && crm == 1) + return env->cp15.c15_cpar; + + goto bad_reg; + } + if (arm_feature(env, ARM_FEATURE_OMAPCP)) { + switch (crm) { + case 0: + return 0; + case 1: /* Read TI925T configuration. */ + return env->cp15.c15_ticonfig; + case 2: /* Read I_max. */ + return env->cp15.c15_i_max; + case 3: /* Read I_min. */ + return env->cp15.c15_i_min; + case 4: /* Read thread-ID. */ + return env->cp15.c15_threadid; + case 8: /* TI925T_status */ + return 0; + } + /* TODO: Peripheral port remap register: + * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt + * controller base address at $rn & ~0xfff and map size of + * 0x200 << ($rn & 0xfff), when MMU is off. */ + goto bad_reg; + } + if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) { + switch (crm) { + case 0: + if ((op1 == 4) && (op2 == 0)) { + /* The config_base_address should hold the value of + * the peripheral base. ARM should get this from a CPU + * object property, but that support isn't available in + * December 2011. Default to 0 for now and board models + * that care can set it by a private hook */ + return env->cp15.c15_config_base_address; + } else if ((op1 == 0) && (op2 == 0)) { + /* power_control should be set to maximum latency. Again, + default to 0 and set by private hook */ + return env->cp15.c15_power_control; + } else if ((op1 == 0) && (op2 == 1)) { + return env->cp15.c15_diagnostic; + } else if ((op1 == 0) && (op2 == 2)) { + return env->cp15.c15_power_diagnostic; + } + break; + case 1: /* NEON Busy */ + return 0; + case 5: /* tlb lockdown */ + case 6: + case 7: + if ((op1 == 5) && (op2 == 2)) { + return 0; + } + break; + default: + break; + } + goto bad_reg; + } + return 0; + } +bad_reg: + /* ??? For debugging only. Should raise illegal instruction exception. */ + cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n", (insn >> 16) & 0xf, crm, op1, op2); + return 0; +} + +void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) { + if ((env->uncached_cpsr & CPSR_M) == mode) { + WR_cpu(env,regs[13],val); + } else { + env->banked_r13[bank_number(env, mode)] = val; + } +} + +uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) { + if ((env->uncached_cpsr & CPSR_M) == mode) { + return RR_cpu(env,regs[13]); + } else { + return env->banked_r13[bank_number(env, mode)]; + } +} + +uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) { + switch (reg) { + case 0: /* APSR */ + return xpsr_read(env) & 0xf8000000; + case 1: /* IAPSR */ + return xpsr_read(env) & 0xf80001ff; + case 2: /* EAPSR */ + return xpsr_read(env) & 0xff00fc00; + case 3: /* xPSR */ + return xpsr_read(env) & 0xff00fdff; + case 5: /* IPSR */ + return xpsr_read(env) & 0x000001ff; + case 6: /* EPSR */ + return xpsr_read(env) & 0x0700fc00; + case 7: /* IEPSR */ + return xpsr_read(env) & 0x0700edff; + case 8: /* MSP */ + return env->v7m.current_sp ? env->v7m.other_sp : RR_cpu(env,regs[13]); + case 9: /* PSP */ + return env->v7m.current_sp ? RR_cpu(env,regs[13]) : env->v7m.other_sp; + case 16: /* PRIMASK */ + return (env->uncached_cpsr & CPSR_I) != 0; + case 17: /* BASEPRI */ + case 18: /* BASEPRI_MAX */ + return env->v7m.basepri; + case 19: /* FAULTMASK */ + return (env->uncached_cpsr & CPSR_F) != 0; + case 20: /* CONTROL */ + return env->v7m.control; + default: + /* ??? For debugging only. */ + cpu_abort(env, "Unimplemented system register read (%d)\n", reg); + return 0; + } +} + +void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) { + unsigned long *armcpu; + uint32_t *basepri; + uint32_t *primask; + + armcpu = env->nvic+0x308; + basepri = (unsigned long)(*armcpu+0x8b0c); + primask = (unsigned long)(*armcpu+0x8b54); + + switch (reg) { + case 0: /* APSR */ + xpsr_write(env, val, 0xf8000000); + break; + case 1: /* IAPSR */ + xpsr_write(env, val, 0xf8000000); + break; + case 2: /* EAPSR */ + xpsr_write(env, val, 0xfe00fc00); + break; + case 3: /* xPSR */ + xpsr_write(env, val, 0xfe00fc00); + break; + case 5: /* IPSR */ + /* IPSR bits are readonly. */ + break; + case 6: /* EPSR */ + xpsr_write(env, val, 0x0600fc00); + break; + case 7: /* IEPSR */ + xpsr_write(env, val, 0x0600fc00); + break; + case 8: /* MSP */ + if (env->v7m.current_sp) + env->v7m.other_sp = val; + else + WR_cpu(env,regs[13],val); + break; + case 9: /* PSP */ + if (env->v7m.current_sp) + WR_cpu(env,regs[13],val); + else + env->v7m.other_sp = val; + break; + case 16: /* PRIMASK */ + *primask = val & 1; + if (val & 1) + env->uncached_cpsr |= CPSR_I; + else + env->uncached_cpsr &= ~CPSR_I; + break; + case 17: /* BASEPRI */ + env->v7m.basepri = val & 0xff; + *basepri = val & 0xff; /*sync with kvm env basepri */ + break; + case 18: /* BASEPRI_MAX */ + val &= 0xff; + if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) { + env->v7m.basepri = val; + *basepri = val; /*sync with kvm env basepri */ + } + break; + case 19: /* FAULTMASK */ + if (val & 1) + env->uncached_cpsr |= CPSR_F; + else + env->uncached_cpsr &= ~CPSR_F; + break; + case 20: /* CONTROL */ + env->v7m.control = val & 3; + switch_v7m_sp(env, (val & 2) != 0); + break; + default: + /* ??? For debugging only. */ + cpu_abort(env, "Unimplemented system register write (%d)\n", reg); + return; + } +} + +void cpu_arm_set_cp_io(CPUARMState *env, int cpnum, ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write, void *opaque) { + if (cpnum < 0 || cpnum > 14) { + cpu_abort(env, "Bad coprocessor number: %i\n", cpnum); + return; + } + + env->cp[cpnum].cp_read = cp_read; + env->cp[cpnum].cp_write = cp_write; + env->cp[cpnum].opaque = opaque; +} + +/* Note that signed overflow is undefined in C. The following routines are + careful to use unsigned types where modulo arithmetic is required. + Failure to do so _will_ break on newer gcc. */ + +/* Signed saturating arithmetic. */ + +/* Perform 16-bit signed saturating addition. */ +static inline uint16_t add16_sat(uint16_t a, uint16_t b) { + uint16_t res; + + res = a + b; + if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { + if (a & 0x8000) + res = 0x8000; + else + res = 0x7fff; + } + return res; +} + +/* Perform 8-bit signed saturating addition. */ +static inline uint8_t add8_sat(uint8_t a, uint8_t b) { + uint8_t res; + + res = a + b; + if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { + if (a & 0x80) + res = 0x80; + else + res = 0x7f; + } + return res; +} + +/* Perform 16-bit signed saturating subtraction. */ +static inline uint16_t sub16_sat(uint16_t a, uint16_t b) { + uint16_t res; + + res = a - b; + if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { + if (a & 0x8000) + res = 0x8000; + else + res = 0x7fff; + } + return res; +} + +/* Perform 8-bit signed saturating subtraction. */ +static inline uint8_t sub8_sat(uint8_t a, uint8_t b) { + uint8_t res; + + res = a - b; + if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { + if (a & 0x80) + res = 0x80; + else + res = 0x7f; + } + return res; +} + +#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); +#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); +#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); +#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); +#define PFX q + +#include "op_addsub.h" + +/* Unsigned saturating arithmetic. */ +static inline uint16_t add16_usat(uint16_t a, uint16_t b) { + uint16_t res; + res = a + b; + if (res < a) + res = 0xffff; + return res; +} + +static inline uint16_t sub16_usat(uint16_t a, uint16_t b) { + if (a > b) + return a - b; + else + return 0; +} + +static inline uint8_t add8_usat(uint8_t a, uint8_t b) { + uint8_t res; + res = a + b; + if (res < a) + res = 0xff; + return res; +} + +static inline uint8_t sub8_usat(uint8_t a, uint8_t b) { + if (a > b) + return a - b; + else + return 0; +} + +#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); +#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); +#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); +#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); +#define PFX uq + +#include "op_addsub.h" + +/* Signed modulo arithmetic. */ +#define SARITH16(a, b, n, op) \ + do { \ + int32_t sum; \ + sum = (int32_t)(int16_t)(a) op(int32_t)(int16_t)(b); \ + RESULT(sum, n, 16); \ + if (sum >= 0) \ + ge |= 3 << (n * 2); \ + } while (0) + +#define SARITH8(a, b, n, op) \ + do { \ + int32_t sum; \ + sum = (int32_t)(int8_t)(a) op(int32_t)(int8_t)(b); \ + RESULT(sum, n, 8); \ + if (sum >= 0) \ + ge |= 1 << n; \ + } while (0) + +#define ADD16(a, b, n) SARITH16(a, b, n, +) +#define SUB16(a, b, n) SARITH16(a, b, n, -) +#define ADD8(a, b, n) SARITH8(a, b, n, +) +#define SUB8(a, b, n) SARITH8(a, b, n, -) +#define PFX s +#define ARITH_GE + +#include "op_addsub.h" + +/* Unsigned modulo arithmetic. */ +#define ADD16(a, b, n) \ + do { \ + uint32_t sum; \ + sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ + RESULT(sum, n, 16); \ + if ((sum >> 16) == 1) \ + ge |= 3 << (n * 2); \ + } while (0) + +#define ADD8(a, b, n) \ + do { \ + uint32_t sum; \ + sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ + RESULT(sum, n, 8); \ + if ((sum >> 8) == 1) \ + ge |= 1 << n; \ + } while (0) + +#define SUB16(a, b, n) \ + do { \ + uint32_t sum; \ + sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ + RESULT(sum, n, 16); \ + if ((sum >> 16) == 0) \ + ge |= 3 << (n * 2); \ + } while (0) + +#define SUB8(a, b, n) \ + do { \ + uint32_t sum; \ + sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ + RESULT(sum, n, 8); \ + if ((sum >> 8) == 0) \ + ge |= 1 << n; \ + } while (0) + +#define PFX u +#define ARITH_GE + +#include "op_addsub.h" + +/* Halved signed arithmetic. */ +#define ADD16(a, b, n) RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) +#define SUB16(a, b, n) RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) +#define ADD8(a, b, n) RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) +#define SUB8(a, b, n) RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) +#define PFX sh + +#include "op_addsub.h" + +/* Halved unsigned arithmetic. */ +#define ADD16(a, b, n) RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) +#define SUB16(a, b, n) RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) +#define ADD8(a, b, n) RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) +#define SUB8(a, b, n) RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) +#define PFX uh + +#include "op_addsub.h" + +static inline uint8_t do_usad(uint8_t a, uint8_t b) { + if (a > b) + return a - b; + else + return b - a; +} + +/* Unsigned sum of absolute byte differences. */ +uint32_t HELPER(usad8)(uint32_t a, uint32_t b) { + uint32_t sum; + sum = do_usad(a, b); + sum += do_usad(a >> 8, b >> 8); + sum += do_usad(a >> 16, b >> 16); + sum += do_usad(a >> 24, b >> 24); + return sum; +} + +/* For ARMv6 SEL instruction. */ +uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) { + uint32_t mask; + + mask = 0; + if (flags & 1) + mask |= 0xff; + if (flags & 2) + mask |= 0xff00; + if (flags & 4) + mask |= 0xff0000; + if (flags & 8) + mask |= 0xff000000; + return (a & mask) | (b & ~mask); +} + +uint32_t HELPER(logicq_cc)(uint64_t val) { + return (val >> 32) | (val != 0); +} + +/* VFP support. We follow the convention used for VFP instrunctions: + Single precition routines have a "s" suffix, double precision a + "d" suffix. */ + +/* Convert host exception flags to vfp form. */ +static inline int vfp_exceptbits_from_host(int host_bits) { + int target_bits = 0; + + if (host_bits & float_flag_invalid) + target_bits |= 1; + if (host_bits & float_flag_divbyzero) + target_bits |= 2; + if (host_bits & float_flag_overflow) + target_bits |= 4; + if (host_bits & (float_flag_underflow | float_flag_output_denormal)) + target_bits |= 8; + if (host_bits & float_flag_inexact) + target_bits |= 0x10; + if (host_bits & float_flag_input_denormal) + target_bits |= 0x80; + return target_bits; +} + +uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) { + int i; + uint32_t fpscr; + + fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | (env->vfp.vec_len << 16) | (env->vfp.vec_stride << 20); + i = get_float_exception_flags(&env->vfp.fp_status); + i |= get_float_exception_flags(&env->vfp.standard_fp_status); + fpscr |= vfp_exceptbits_from_host(i); + return fpscr; +} + +uint32_t vfp_get_fpscr(CPUARMState *env) { + return HELPER(vfp_get_fpscr)(env); +} + +/* Convert vfp exception flags to target form. */ +static inline int vfp_exceptbits_to_host(int target_bits) { + int host_bits = 0; + + if (target_bits & 1) + host_bits |= float_flag_invalid; + if (target_bits & 2) + host_bits |= float_flag_divbyzero; + if (target_bits & 4) + host_bits |= float_flag_overflow; + if (target_bits & 8) + host_bits |= float_flag_underflow; + if (target_bits & 0x10) + host_bits |= float_flag_inexact; + if (target_bits & 0x80) + host_bits |= float_flag_input_denormal; + return host_bits; +} + +void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) { + int i; + uint32_t changed; + + changed = env->vfp.xregs[ARM_VFP_FPSCR]; + env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); + env->vfp.vec_len = (val >> 16) & 7; + env->vfp.vec_stride = (val >> 20) & 3; + + changed ^= val; + if (changed & (3 << 22)) { + i = (val >> 22) & 3; + switch (i) { + case 0: + i = float_round_nearest_even; + break; + case 1: + i = float_round_up; + break; + case 2: + i = float_round_down; + break; + case 3: + i = float_round_to_zero; + break; + } + set_float_rounding_mode(i, &env->vfp.fp_status); + } + if (changed & (1 << 24)) { + set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); + set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); + } + if (changed & (1 << 25)) + set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); + + i = vfp_exceptbits_to_host(val); + set_float_exception_flags(i, &env->vfp.fp_status); + set_float_exception_flags(0, &env->vfp.standard_fp_status); +} + +void vfp_set_fpscr(CPUARMState *env, uint32_t val) { + HELPER(vfp_set_fpscr)(env, val); +} + +#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_, name), p)) + +#define VFP_BINOP(name) \ + float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) { \ + float_status *fpst = fpstp; \ + return float32_##name(a, b, fpst); \ + } \ + float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) { \ + float_status *fpst = fpstp; \ + return float64_##name(a, b, fpst); \ + } +VFP_BINOP(add) +VFP_BINOP(sub) +VFP_BINOP(mul) +VFP_BINOP(div) +#undef VFP_BINOP + +float32 VFP_HELPER(neg, s)(float32 a) { + return float32_chs(a); +} + +float64 VFP_HELPER(neg, d)(float64 a) { + return float64_chs(a); +} + +float32 VFP_HELPER(abs, s)(float32 a) { + return float32_abs(a); +} + +float64 VFP_HELPER(abs, d)(float64 a) { + return float64_abs(a); +} + +float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) { + return float32_sqrt(a, &env->vfp.fp_status); +} + +float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) { + return float64_sqrt(a, &env->vfp.fp_status); +} + +/* XXX: check quiet/signaling case */ +#define DO_VFP_cmp(p, type) \ + void VFP_HELPER(cmp, p)(type a, type b, CPUARMState * env) { \ + uint32_t flags; \ + switch (type##_compare_quiet(a, b, &env->vfp.fp_status)) { \ + case 0: \ + flags = 0x6; \ + break; \ + case -1: \ + flags = 0x8; \ + break; \ + case 1: \ + flags = 0x2; \ + break; \ + default: \ + case 2: \ + flags = 0x3; \ + break; \ + } \ + env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ + } \ + void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState * env) { \ + uint32_t flags; \ + switch (type##_compare(a, b, &env->vfp.fp_status)) { \ + case 0: \ + flags = 0x6; \ + break; \ + case -1: \ + flags = 0x8; \ + break; \ + case 1: \ + flags = 0x2; \ + break; \ + default: \ + case 2: \ + flags = 0x3; \ + break; \ + } \ + env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ + } +DO_VFP_cmp(s, float32) DO_VFP_cmp(d, float64) +#undef DO_VFP_cmp + +/* Integer to float and float to integer conversions */ + +#define CONV_ITOF(name, fsz, sign) \ + float##fsz HELPER(name)(uint32_t x, void *fpstp) { \ + float_status *fpst = fpstp; \ + return sign##int32_to_##float##fsz((sign##int32_t) x, fpst); \ + } + +#define CONV_FTOI(name, fsz, sign, round) \ + uint32_t HELPER(name)(float##fsz x, void *fpstp) { \ + float_status *fpst = fpstp; \ + if (float##fsz##_is_any_nan(x)) { \ + float_raise(float_flag_invalid, fpst); \ + return 0; \ + } \ + return float##fsz##_to_##sign##int32##round(x, fpst); \ + } + +#define FLOAT_CONVS(name, p, fsz, sign) \ + CONV_ITOF(vfp_##name##to##p, fsz, sign) \ + CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ + CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) + + FLOAT_CONVS(si, s, 32, ) FLOAT_CONVS(si, d, 64, ) FLOAT_CONVS(ui, s, 32, u) FLOAT_CONVS(ui, d, 64, u) + +#undef CONV_ITOF +#undef CONV_FTOI +#undef FLOAT_CONVS + + /* floating point conversion */ + float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) { + float64 r = float32_to_float64(x, &env->vfp.fp_status); + /* ARM requires that S<->D conversion of any kind of NaN generates + * a quiet NaN by forcing the most significant frac bit to 1. + */ + return float64_maybe_silence_nan(r); +} + +float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) { + float32 r = float64_to_float32(x, &env->vfp.fp_status); + /* ARM requires that S<->D conversion of any kind of NaN generates + * a quiet NaN by forcing the most significant frac bit to 1. + */ + return float32_maybe_silence_nan(r); +} + +/* VFP3 fixed point conversion. */ +#define VFP_CONV_FIX(name, p, fsz, itype, sign) \ + float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, void *fpstp) { \ + float_status *fpst = fpstp; \ + float##fsz tmp; \ + tmp = sign##int32_to_##float##fsz((itype##_t) x, fpst); \ + return float##fsz##_scalbn(tmp, -(int) shift, fpst); \ + } \ + uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, void *fpstp) { \ + float_status *fpst = fpstp; \ + float##fsz tmp; \ + if (float##fsz##_is_any_nan(x)) { \ + float_raise(float_flag_invalid, fpst); \ + return 0; \ + } \ + tmp = float##fsz##_scalbn(x, shift, fpst); \ + return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \ + } + +VFP_CONV_FIX(sh, d, 64, int16, ) +VFP_CONV_FIX(sl, d, 64, int32, ) +VFP_CONV_FIX(uh, d, 64, uint16, u) +VFP_CONV_FIX(ul, d, 64, uint32, u) +VFP_CONV_FIX(sh, s, 32, int16, ) +VFP_CONV_FIX(sl, s, 32, int32, ) +VFP_CONV_FIX(uh, s, 32, uint16, u) +VFP_CONV_FIX(ul, s, 32, uint32, u) +#undef VFP_CONV_FIX + +/* Half precision conversions. */ +static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) { + int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; + float32 r = float16_to_float32(make_float16(a), ieee, s); + if (ieee) { + return float32_maybe_silence_nan(r); + } + return r; +} + +static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) { + int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; + float16 r = float32_to_float16(a, ieee, s); + if (ieee) { + r = float16_maybe_silence_nan(r); + } + return float16_val(r); +} + +float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) { + return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); +} + +uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) { + return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); +} + +float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) { + return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); +} + +uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) { + return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); +} + +#define float32_two make_float32(0x40000000) +#define float32_three make_float32(0x40400000) +#define float32_one_point_five make_float32(0x3fc00000) + +float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) { + float_status *s = &env->vfp.standard_fp_status; + if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || + (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { + if (!(float32_is_zero(a) || float32_is_zero(b))) { + float_raise(float_flag_input_denormal, s); + } + return float32_two; + } + return float32_sub(float32_two, float32_mul(a, b, s), s); +} + +float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) { + float_status *s = &env->vfp.standard_fp_status; + float32 product; + if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || + (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { + if (!(float32_is_zero(a) || float32_is_zero(b))) { + float_raise(float_flag_input_denormal, s); + } + return float32_one_point_five; + } + product = float32_mul(a, b, s); + return float32_div(float32_sub(float32_three, product, s), float32_two, s); +} + +/* NEON helpers. */ + +/* Constants 256 and 512 are used in some helpers; we avoid relying on + * int->float conversions at run-time. */ +#define float64_256 make_float64(0x4070000000000000LL) +#define float64_512 make_float64(0x4080000000000000LL) + +/* The algorithm that must be used to calculate the estimate + * is specified by the ARM ARM. + */ +static float64 recip_estimate(float64 a, CPUARMState *env) { + /* These calculations mustn't set any fp exception flags, + * so we use a local copy of the fp_status. + */ + float_status dummy_status = env->vfp.standard_fp_status; + float_status *s = &dummy_status; + /* q = (int)(a * 512.0) */ + float64 q = float64_mul(float64_512, a, s); + int64_t q_int = float64_to_int64_round_to_zero(q, s); + + /* r = 1.0 / (((double)q + 0.5) / 512.0) */ + q = int64_to_float64(q_int, s); + q = float64_add(q, float64_half, s); + q = float64_div(q, float64_512, s); + q = float64_div(float64_one, q, s); + + /* s = (int)(256.0 * r + 0.5) */ + q = float64_mul(q, float64_256, s); + q = float64_add(q, float64_half, s); + q_int = float64_to_int64_round_to_zero(q, s); + + /* return (double)s / 256.0 */ + return float64_div(int64_to_float64(q_int, s), float64_256, s); +} + +float32 HELPER(recpe_f32)(float32 a, CPUARMState *env) { + float_status *s = &env->vfp.standard_fp_status; + float64 f64; + uint32_t val32 = float32_val(a); + + int result_exp; + int a_exp = (val32 & 0x7f800000) >> 23; + int sign = val32 & 0x80000000; + + if (float32_is_any_nan(a)) { + if (float32_is_signaling_nan(a)) { + float_raise(float_flag_invalid, s); + } + return float32_default_nan; + } else if (float32_is_infinity(a)) { + return float32_set_sign(float32_zero, float32_is_neg(a)); + } else if (float32_is_zero_or_denormal(a)) { + if (!float32_is_zero(a)) { + float_raise(float_flag_input_denormal, s); + } + float_raise(float_flag_divbyzero, s); + return float32_set_sign(float32_infinity, float32_is_neg(a)); + } else if (a_exp >= 253) { + float_raise(float_flag_underflow, s); + return float32_set_sign(float32_zero, float32_is_neg(a)); + } + + f64 = make_float64((0x3feULL << 52) | ((int64_t)(val32 & 0x7fffff) << 29)); + + result_exp = 253 - a_exp; + + f64 = recip_estimate(f64, env); + + val32 = sign | ((result_exp & 0xff) << 23) | ((float64_val(f64) >> 29) & 0x7fffff); + return make_float32(val32); +} + +/* The algorithm that must be used to calculate the estimate + * is specified by the ARM ARM. + */ +static float64 recip_sqrt_estimate(float64 a, CPUARMState *env) { + /* These calculations mustn't set any fp exception flags, + * so we use a local copy of the fp_status. + */ + float_status dummy_status = env->vfp.standard_fp_status; + float_status *s = &dummy_status; + float64 q; + int64_t q_int; + + if (float64_lt(a, float64_half, s)) { + /* range 0.25 <= a < 0.5 */ + + /* a in units of 1/512 rounded down */ + /* q0 = (int)(a * 512.0); */ + q = float64_mul(float64_512, a, s); + q_int = float64_to_int64_round_to_zero(q, s); + + /* reciprocal root r */ + /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ + q = int64_to_float64(q_int, s); + q = float64_add(q, float64_half, s); + q = float64_div(q, float64_512, s); + q = float64_sqrt(q, s); + q = float64_div(float64_one, q, s); + } else { + /* range 0.5 <= a < 1.0 */ + + /* a in units of 1/256 rounded down */ + /* q1 = (int)(a * 256.0); */ + q = float64_mul(float64_256, a, s); + int64_t q_int = float64_to_int64_round_to_zero(q, s); + + /* reciprocal root r */ + /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ + q = int64_to_float64(q_int, s); + q = float64_add(q, float64_half, s); + q = float64_div(q, float64_256, s); + q = float64_sqrt(q, s); + q = float64_div(float64_one, q, s); + } + /* r in units of 1/256 rounded to nearest */ + /* s = (int)(256.0 * r + 0.5); */ + + q = float64_mul(q, float64_256, s); + q = float64_add(q, float64_half, s); + q_int = float64_to_int64_round_to_zero(q, s); + + /* return (double)s / 256.0;*/ + return float64_div(int64_to_float64(q_int, s), float64_256, s); +} + +float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env) { + float_status *s = &env->vfp.standard_fp_status; + int result_exp; + float64 f64; + uint32_t val; + uint64_t val64; + + val = float32_val(a); + + if (float32_is_any_nan(a)) { + if (float32_is_signaling_nan(a)) { + float_raise(float_flag_invalid, s); + } + return float32_default_nan; + } else if (float32_is_zero_or_denormal(a)) { + if (!float32_is_zero(a)) { + float_raise(float_flag_input_denormal, s); + } + float_raise(float_flag_divbyzero, s); + return float32_set_sign(float32_infinity, float32_is_neg(a)); + } else if (float32_is_neg(a)) { + float_raise(float_flag_invalid, s); + return float32_default_nan; + } else if (float32_is_infinity(a)) { + return float32_zero; + } + + /* Normalize to a double-precision value between 0.25 and 1.0, + * preserving the parity of the exponent. */ + if ((val & 0x800000) == 0) { + f64 = + make_float64(((uint64_t)(val & 0x80000000) << 32) | (0x3feULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)); + } else { + f64 = + make_float64(((uint64_t)(val & 0x80000000) << 32) | (0x3fdULL << 52) | ((uint64_t)(val & 0x7fffff) << 29)); + } + + result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2; + + f64 = recip_sqrt_estimate(f64, env); + + val64 = float64_val(f64); + + val = ((result_exp & 0xff) << 23) | ((val64 >> 29) & 0x7fffff); + return make_float32(val); +} + +uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env) { + float64 f64; + + if ((a & 0x80000000) == 0) { + return 0xffffffff; + } + + f64 = make_float64((0x3feULL << 52) | ((int64_t)(a & 0x7fffffff) << 21)); + + f64 = recip_estimate(f64, env); + + return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); +} + +uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env) { + float64 f64; + + if ((a & 0xc0000000) == 0) { + return 0xffffffff; + } + + if (a & 0x80000000) { + f64 = make_float64((0x3feULL << 52) | ((uint64_t)(a & 0x7fffffff) << 21)); + } else { /* bits 31-30 == '01' */ + f64 = make_float64((0x3fdULL << 52) | ((uint64_t)(a & 0x3fffffff) << 22)); + } + + f64 = recip_sqrt_estimate(f64, env); + + return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); +} + +/* VFPv4 fused multiply-accumulate */ +float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) { + float_status *fpst = fpstp; + return float32_muladd(a, b, c, 0, fpst); +} + +float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) { + float_status *fpst = fpstp; + return float64_muladd(a, b, c, 0, fpst); +} + +void HELPER(set_teecr)(CPUARMState *env, uint32_t val) { + val &= 1; + if (env->teecr != val) { + env->teecr = val; + tb_flush(env); + } +} diff --git a/src/target-arm/iwmmxt_helper.c b/src/target-arm/iwmmxt_helper.c new file mode 100644 index 0000000..ddce171 --- /dev/null +++ b/src/target-arm/iwmmxt_helper.c @@ -0,0 +1,482 @@ +/* + * iwMMXt micro operations for XScale. + * + * Copyright (c) 2007 OpenedHand, Ltd. + * Written by Andrzej Zaborowski + * Copyright (c) 2008 CodeSourcery + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see . + */ + +#include +#include + +#include "cpu.h" +#include "exec-all.h" +#include +/* iwMMXt macros extracted from GNU gdb. */ + +/* Set the SIMD wCASF flags for 8, 16, 32 or 64-bit operations. */ +#define SIMD8_SET(v, n, b) ((v != 0) << ((((b) + 1) * 4) + (n))) +#define SIMD16_SET(v, n, h) ((v != 0) << ((((h) + 1) * 8) + (n))) +#define SIMD32_SET(v, n, w) ((v != 0) << ((((w) + 1) * 16) + (n))) +#define SIMD64_SET(v, n) ((v != 0) << (32 + (n))) +/* Flags to pass as "n" above. */ +#define SIMD_NBIT -1 +#define SIMD_ZBIT -2 +#define SIMD_CBIT -3 +#define SIMD_VBIT -4 +/* Various status bit macros. */ +#define NBIT8(x) ((x) &0x80) +#define NBIT16(x) ((x) &0x8000) +#define NBIT32(x) ((x) &0x80000000) +#define NBIT64(x) ((x) &0x8000000000000000ULL) +#define ZBIT8(x) (((x) &0xff) == 0) +#define ZBIT16(x) (((x) &0xffff) == 0) +#define ZBIT32(x) (((x) &0xffffffff) == 0) +#define ZBIT64(x) (x == 0) +/* Sign extension macros. */ +#define EXTEND8H(a) ((uint16_t)(int8_t)(a)) +#define EXTEND8(a) ((uint32_t)(int8_t)(a)) +#define EXTEND16(a) ((uint32_t)(int16_t)(a)) +#define EXTEND16S(a) ((int32_t)(int16_t)(a)) +#define EXTEND32(a) ((uint64_t)(int32_t)(a)) + +uint64_t HELPER(iwmmxt_maddsq)(uint64_t a, uint64_t b) { + a = ((EXTEND16S((a >> 0) & 0xffff) * EXTEND16S((b >> 0) & 0xffff) + + EXTEND16S((a >> 16) & 0xffff) * EXTEND16S((b >> 16) & 0xffff)) & + 0xffffffff) | + ((uint64_t)(EXTEND16S((a >> 32) & 0xffff) * EXTEND16S((b >> 32) & 0xffff) + + EXTEND16S((a >> 48) & 0xffff) * EXTEND16S((b >> 48) & 0xffff)) + << 32); + return a; +} + +uint64_t HELPER(iwmmxt_madduq)(uint64_t a, uint64_t b) { + a = ((((a >> 0) & 0xffff) * ((b >> 0) & 0xffff) + ((a >> 16) & 0xffff) * ((b >> 16) & 0xffff)) & 0xffffffff) | + ((((a >> 32) & 0xffff) * ((b >> 32) & 0xffff) + ((a >> 48) & 0xffff) * ((b >> 48) & 0xffff)) << 32); + return a; +} + +uint64_t HELPER(iwmmxt_sadb)(uint64_t a, uint64_t b) { +#define abs(x) (((x) >= 0) ? x : -x) +#define SADB(SHR) abs((int) ((a >> SHR) & 0xff) - (int) ((b >> SHR) & 0xff)) + return SADB(0) + SADB(8) + SADB(16) + SADB(24) + SADB(32) + SADB(40) + SADB(48) + SADB(56); +#undef SADB +} + +uint64_t HELPER(iwmmxt_sadw)(uint64_t a, uint64_t b) { +#define SADW(SHR) abs((int) ((a >> SHR) & 0xffff) - (int) ((b >> SHR) & 0xffff)) + return SADW(0) + SADW(16) + SADW(32) + SADW(48); +#undef SADW +} + +uint64_t HELPER(iwmmxt_mulslw)(uint64_t a, uint64_t b) { +#define MULS(SHR) ((uint64_t)(((EXTEND16S((a >> SHR) & 0xffff) * EXTEND16S((b >> SHR) & 0xffff)) >> 0) & 0xffff) << SHR) + return MULS(0) | MULS(16) | MULS(32) | MULS(48); +#undef MULS +} + +uint64_t HELPER(iwmmxt_mulshw)(uint64_t a, uint64_t b) { +#define MULS(SHR) \ + ((uint64_t)(((EXTEND16S((a >> SHR) & 0xffff) * EXTEND16S((b >> SHR) & 0xffff)) >> 16) & 0xffff) << SHR) + return MULS(0) | MULS(16) | MULS(32) | MULS(48); +#undef MULS +} + +uint64_t HELPER(iwmmxt_mululw)(uint64_t a, uint64_t b) { +#define MULU(SHR) ((uint64_t)(((((a >> SHR) & 0xffff) * ((b >> SHR) & 0xffff)) >> 0) & 0xffff) << SHR) + return MULU(0) | MULU(16) | MULU(32) | MULU(48); +#undef MULU +} + +uint64_t HELPER(iwmmxt_muluhw)(uint64_t a, uint64_t b) { +#define MULU(SHR) ((uint64_t)(((((a >> SHR) & 0xffff) * ((b >> SHR) & 0xffff)) >> 16) & 0xffff) << SHR) + return MULU(0) | MULU(16) | MULU(32) | MULU(48); +#undef MULU +} + +uint64_t HELPER(iwmmxt_macsw)(uint64_t a, uint64_t b) { +#define MACS(SHR) (EXTEND16((a >> SHR) & 0xffff) * EXTEND16S((b >> SHR) & 0xffff)) + return (int64_t)(MACS(0) + MACS(16) + MACS(32) + MACS(48)); +#undef MACS +} + +uint64_t HELPER(iwmmxt_macuw)(uint64_t a, uint64_t b) { +#define MACU(SHR) ((uint32_t)((a >> SHR) & 0xffff) * (uint32_t)((b >> SHR) & 0xffff)) + return MACU(0) + MACU(16) + MACU(32) + MACU(48); +#undef MACU +} + +#define NZBIT8(x, i) SIMD8_SET(NBIT8((x) &0xff), SIMD_NBIT, i) | SIMD8_SET(ZBIT8((x) &0xff), SIMD_ZBIT, i) +#define NZBIT16(x, i) SIMD16_SET(NBIT16((x) &0xffff), SIMD_NBIT, i) | SIMD16_SET(ZBIT16((x) &0xffff), SIMD_ZBIT, i) +#define NZBIT32(x, i) \ + SIMD32_SET(NBIT32((x) &0xffffffff), SIMD_NBIT, i) | SIMD32_SET(ZBIT32((x) &0xffffffff), SIMD_ZBIT, i) +#define NZBIT64(x) SIMD64_SET(NBIT64(x), SIMD_NBIT) | SIMD64_SET(ZBIT64(x), SIMD_ZBIT) +#define IWMMXT_OP_UNPACK(S, SH0, SH1, SH2, SH3) \ + uint64_t HELPER(glue(iwmmxt_unpack, glue(S, b)))(CPUARMState * env, uint64_t a, uint64_t b) { \ + a = (((a >> SH0) & 0xff) << 0) | (((b >> SH0) & 0xff) << 8) | (((a >> SH1) & 0xff) << 16) | \ + (((b >> SH1) & 0xff) << 24) | (((a >> SH2) & 0xff) << 32) | (((b >> SH2) & 0xff) << 40) | \ + (((a >> SH3) & 0xff) << 48) | (((b >> SH3) & 0xff) << 56); \ + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT8(a >> 0, 0) | NZBIT8(a >> 8, 1) | NZBIT8(a >> 16, 2) | \ + NZBIT8(a >> 24, 3) | NZBIT8(a >> 32, 4) | NZBIT8(a >> 40, 5) | \ + NZBIT8(a >> 48, 6) | NZBIT8(a >> 56, 7); \ + return a; \ + } \ + uint64_t HELPER(glue(iwmmxt_unpack, glue(S, w)))(CPUARMState * env, uint64_t a, uint64_t b) { \ + a = (((a >> SH0) & 0xffff) << 0) | (((b >> SH0) & 0xffff) << 16) | (((a >> SH2) & 0xffff) << 32) | \ + (((b >> SH2) & 0xffff) << 48); \ + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = \ + NZBIT8(a >> 0, 0) | NZBIT8(a >> 16, 1) | NZBIT8(a >> 32, 2) | NZBIT8(a >> 48, 3); \ + return a; \ + } \ + uint64_t HELPER(glue(iwmmxt_unpack, glue(S, l)))(CPUARMState * env, uint64_t a, uint64_t b) { \ + a = (((a >> SH0) & 0xffffffff) << 0) | (((b >> SH0) & 0xffffffff) << 32); \ + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT32(a >> 0, 0) | NZBIT32(a >> 32, 1); \ + return a; \ + } \ + uint64_t HELPER(glue(iwmmxt_unpack, glue(S, ub)))(CPUARMState * env, uint64_t x) { \ + x = (((x >> SH0) & 0xff) << 0) | (((x >> SH1) & 0xff) << 16) | (((x >> SH2) & 0xff) << 32) | \ + (((x >> SH3) & 0xff) << 48); \ + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = \ + NZBIT16(x >> 0, 0) | NZBIT16(x >> 16, 1) | NZBIT16(x >> 32, 2) | NZBIT16(x >> 48, 3); \ + return x; \ + } \ + uint64_t HELPER(glue(iwmmxt_unpack, glue(S, uw)))(CPUARMState * env, uint64_t x) { \ + x = (((x >> SH0) & 0xffff) << 0) | (((x >> SH2) & 0xffff) << 32); \ + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT32(x >> 0, 0) | NZBIT32(x >> 32, 1); \ + return x; \ + } \ + uint64_t HELPER(glue(iwmmxt_unpack, glue(S, ul)))(CPUARMState * env, uint64_t x) { \ + x = (((x >> SH0) & 0xffffffff) << 0); \ + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT64(x >> 0); \ + return x; \ + } \ + uint64_t HELPER(glue(iwmmxt_unpack, glue(S, sb)))(CPUARMState * env, uint64_t x) { \ + x = ((uint64_t) EXTEND8H((x >> SH0) & 0xff) << 0) | ((uint64_t) EXTEND8H((x >> SH1) & 0xff) << 16) | \ + ((uint64_t) EXTEND8H((x >> SH2) & 0xff) << 32) | ((uint64_t) EXTEND8H((x >> SH3) & 0xff) << 48); \ + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = \ + NZBIT16(x >> 0, 0) | NZBIT16(x >> 16, 1) | NZBIT16(x >> 32, 2) | NZBIT16(x >> 48, 3); \ + return x; \ + } \ + uint64_t HELPER(glue(iwmmxt_unpack, glue(S, sw)))(CPUARMState * env, uint64_t x) { \ + x = ((uint64_t) EXTEND16((x >> SH0) & 0xffff) << 0) | ((uint64_t) EXTEND16((x >> SH2) & 0xffff) << 32); \ + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT32(x >> 0, 0) | NZBIT32(x >> 32, 1); \ + return x; \ + } \ + uint64_t HELPER(glue(iwmmxt_unpack, glue(S, sl)))(CPUARMState * env, uint64_t x) { \ + x = EXTEND32((x >> SH0) & 0xffffffff); \ + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT64(x >> 0); \ + return x; \ + } +IWMMXT_OP_UNPACK(l, 0, 8, 16, 24) +IWMMXT_OP_UNPACK(h, 32, 40, 48, 56) + +#define IWMMXT_OP_CMP(SUFF, Tb, Tw, Tl, O) \ + uint64_t HELPER(glue(iwmmxt_, glue(SUFF, b)))(CPUARMState * env, uint64_t a, uint64_t b) { \ + a = CMP(0, Tb, O, 0xff) | CMP(8, Tb, O, 0xff) | CMP(16, Tb, O, 0xff) | CMP(24, Tb, O, 0xff) | \ + CMP(32, Tb, O, 0xff) | CMP(40, Tb, O, 0xff) | CMP(48, Tb, O, 0xff) | CMP(56, Tb, O, 0xff); \ + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT8(a >> 0, 0) | NZBIT8(a >> 8, 1) | NZBIT8(a >> 16, 2) | \ + NZBIT8(a >> 24, 3) | NZBIT8(a >> 32, 4) | NZBIT8(a >> 40, 5) | \ + NZBIT8(a >> 48, 6) | NZBIT8(a >> 56, 7); \ + return a; \ + } \ + uint64_t HELPER(glue(iwmmxt_, glue(SUFF, w)))(CPUARMState * env, uint64_t a, uint64_t b) { \ + a = CMP(0, Tw, O, 0xffff) | CMP(16, Tw, O, 0xffff) | CMP(32, Tw, O, 0xffff) | CMP(48, Tw, O, 0xffff); \ + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = \ + NZBIT16(a >> 0, 0) | NZBIT16(a >> 16, 1) | NZBIT16(a >> 32, 2) | NZBIT16(a >> 48, 3); \ + return a; \ + } \ + uint64_t HELPER(glue(iwmmxt_, glue(SUFF, l)))(CPUARMState * env, uint64_t a, uint64_t b) { \ + a = CMP(0, Tl, O, 0xffffffff) | CMP(32, Tl, O, 0xffffffff); \ + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT32(a >> 0, 0) | NZBIT32(a >> 32, 1); \ + return a; \ + } +#define CMP(SHR, TYPE, OPER, MASK) \ + ((((TYPE)((a >> SHR) & MASK) OPER(TYPE)((b >> SHR) & MASK)) ? (uint64_t) MASK : 0) << SHR) +IWMMXT_OP_CMP(cmpeq, uint8_t, uint16_t, uint32_t, ==) +IWMMXT_OP_CMP(cmpgts, int8_t, int16_t, int32_t, >) +IWMMXT_OP_CMP(cmpgtu, uint8_t, uint16_t, uint32_t, >) +#undef CMP +#define CMP(SHR, TYPE, OPER, MASK) \ + ((((TYPE)((a >> SHR) & MASK) OPER(TYPE)((b >> SHR) & MASK)) ? a : b) & ((uint64_t) MASK << SHR)) +IWMMXT_OP_CMP(mins, int8_t, int16_t, int32_t, <) +IWMMXT_OP_CMP(minu, uint8_t, uint16_t, uint32_t, <) +IWMMXT_OP_CMP(maxs, int8_t, int16_t, int32_t, >) +IWMMXT_OP_CMP(maxu, uint8_t, uint16_t, uint32_t, >) +#undef CMP +#define CMP(SHR, TYPE, OPER, MASK) ((uint64_t)(((TYPE)((a >> SHR) & MASK) OPER(TYPE)((b >> SHR) & MASK)) & MASK) << SHR) +IWMMXT_OP_CMP(subn, uint8_t, uint16_t, uint32_t, -) +IWMMXT_OP_CMP(addn, uint8_t, uint16_t, uint32_t, +) +#undef CMP +/* TODO Signed- and Unsigned-Saturation */ +#define CMP(SHR, TYPE, OPER, MASK) ((uint64_t)(((TYPE)((a >> SHR) & MASK) OPER(TYPE)((b >> SHR) & MASK)) & MASK) << SHR) +IWMMXT_OP_CMP(subu, uint8_t, uint16_t, uint32_t, -) +IWMMXT_OP_CMP(addu, uint8_t, uint16_t, uint32_t, +) +IWMMXT_OP_CMP(subs, int8_t, int16_t, int32_t, -) +IWMMXT_OP_CMP(adds, int8_t, int16_t, int32_t, +) +#undef CMP +#undef IWMMXT_OP_CMP + +#define AVGB(SHR) (((((a >> SHR) & 0xff) + ((b >> SHR) & 0xff) + round) >> 1) << SHR) +#define IWMMXT_OP_AVGB(r) \ + uint64_t HELPER(iwmmxt_avgb##r)(CPUARMState * env, uint64_t a, uint64_t b) { \ + const int round = r; \ + a = AVGB(0) | AVGB(8) | AVGB(16) | AVGB(24) | AVGB(32) | AVGB(40) | AVGB(48) | AVGB(56); \ + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = \ + SIMD8_SET(ZBIT8((a >> 0) & 0xff), SIMD_ZBIT, 0) | SIMD8_SET(ZBIT8((a >> 8) & 0xff), SIMD_ZBIT, 1) | \ + SIMD8_SET(ZBIT8((a >> 16) & 0xff), SIMD_ZBIT, 2) | SIMD8_SET(ZBIT8((a >> 24) & 0xff), SIMD_ZBIT, 3) | \ + SIMD8_SET(ZBIT8((a >> 32) & 0xff), SIMD_ZBIT, 4) | SIMD8_SET(ZBIT8((a >> 40) & 0xff), SIMD_ZBIT, 5) | \ + SIMD8_SET(ZBIT8((a >> 48) & 0xff), SIMD_ZBIT, 6) | SIMD8_SET(ZBIT8((a >> 56) & 0xff), SIMD_ZBIT, 7); \ + return a; \ + } +IWMMXT_OP_AVGB(0) +IWMMXT_OP_AVGB(1) +#undef IWMMXT_OP_AVGB +#undef AVGB + +#define AVGW(SHR) (((((a >> SHR) & 0xffff) + ((b >> SHR) & 0xffff) + round) >> 1) << SHR) +#define IWMMXT_OP_AVGW(r) \ + uint64_t HELPER(iwmmxt_avgw##r)(CPUARMState * env, uint64_t a, uint64_t b) { \ + const int round = r; \ + a = AVGW(0) | AVGW(16) | AVGW(32) | AVGW(48); \ + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = SIMD16_SET(ZBIT16((a >> 0) & 0xffff), SIMD_ZBIT, 0) | \ + SIMD16_SET(ZBIT16((a >> 16) & 0xffff), SIMD_ZBIT, 1) | \ + SIMD16_SET(ZBIT16((a >> 32) & 0xffff), SIMD_ZBIT, 2) | \ + SIMD16_SET(ZBIT16((a >> 48) & 0xffff), SIMD_ZBIT, 3); \ + return a; \ + } +IWMMXT_OP_AVGW(0) +IWMMXT_OP_AVGW(1) +#undef IWMMXT_OP_AVGW +#undef AVGW + +uint64_t HELPER(iwmmxt_msadb)(uint64_t a, uint64_t b) { + a = ((((a >> 0) & 0xffff) * ((b >> 0) & 0xffff) + ((a >> 16) & 0xffff) * ((b >> 16) & 0xffff)) & 0xffffffff) | + ((((a >> 32) & 0xffff) * ((b >> 32) & 0xffff) + ((a >> 48) & 0xffff) * ((b >> 48) & 0xffff)) << 32); + return a; +} + +uint64_t HELPER(iwmmxt_align)(uint64_t a, uint64_t b, uint32_t n) { + a >>= n << 3; + a |= b << (64 - (n << 3)); + return a; +} + +uint64_t HELPER(iwmmxt_insr)(uint64_t x, uint32_t a, uint32_t b, uint32_t n) { + x &= ~((uint64_t) b << n); + x |= (uint64_t)(a & b) << n; + return x; +} + +uint32_t HELPER(iwmmxt_setpsr_nz)(uint64_t x) { + return SIMD64_SET((x == 0), SIMD_ZBIT) | SIMD64_SET((x & (1ULL << 63)), SIMD_NBIT); +} + +uint64_t HELPER(iwmmxt_bcstb)(uint32_t arg) { + arg &= 0xff; + return ((uint64_t) arg << 0) | ((uint64_t) arg << 8) | ((uint64_t) arg << 16) | ((uint64_t) arg << 24) | + ((uint64_t) arg << 32) | ((uint64_t) arg << 40) | ((uint64_t) arg << 48) | ((uint64_t) arg << 56); +} + +uint64_t HELPER(iwmmxt_bcstw)(uint32_t arg) { + arg &= 0xffff; + return ((uint64_t) arg << 0) | ((uint64_t) arg << 16) | ((uint64_t) arg << 32) | ((uint64_t) arg << 48); +} + +uint64_t HELPER(iwmmxt_bcstl)(uint32_t arg) { + return arg | ((uint64_t) arg << 32); +} + +uint64_t HELPER(iwmmxt_addcb)(uint64_t x) { + return ((x >> 0) & 0xff) + ((x >> 8) & 0xff) + ((x >> 16) & 0xff) + ((x >> 24) & 0xff) + ((x >> 32) & 0xff) + + ((x >> 40) & 0xff) + ((x >> 48) & 0xff) + ((x >> 56) & 0xff); +} + +uint64_t HELPER(iwmmxt_addcw)(uint64_t x) { + return ((x >> 0) & 0xffff) + ((x >> 16) & 0xffff) + ((x >> 32) & 0xffff) + ((x >> 48) & 0xffff); +} + +uint64_t HELPER(iwmmxt_addcl)(uint64_t x) { + return (x & 0xffffffff) + (x >> 32); +} + +uint32_t HELPER(iwmmxt_msbb)(uint64_t x) { + return ((x >> 7) & 0x01) | ((x >> 14) & 0x02) | ((x >> 21) & 0x04) | ((x >> 28) & 0x08) | ((x >> 35) & 0x10) | + ((x >> 42) & 0x20) | ((x >> 49) & 0x40) | ((x >> 56) & 0x80); +} + +uint32_t HELPER(iwmmxt_msbw)(uint64_t x) { + return ((x >> 15) & 0x01) | ((x >> 30) & 0x02) | ((x >> 45) & 0x04) | ((x >> 52) & 0x08); +} + +uint32_t HELPER(iwmmxt_msbl)(uint64_t x) { + return ((x >> 31) & 0x01) | ((x >> 62) & 0x02); +} + +/* FIXME: Split wCASF setting into a separate op to avoid env use. */ +uint64_t HELPER(iwmmxt_srlw)(CPUARMState *env, uint64_t x, uint32_t n) { + x = (((x & (0xffffll << 0)) >> n) & (0xffffll << 0)) | (((x & (0xffffll << 16)) >> n) & (0xffffll << 16)) | + (((x & (0xffffll << 32)) >> n) & (0xffffll << 32)) | (((x & (0xffffll << 48)) >> n) & (0xffffll << 48)); + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = + NZBIT16(x >> 0, 0) | NZBIT16(x >> 16, 1) | NZBIT16(x >> 32, 2) | NZBIT16(x >> 48, 3); + return x; +} + +uint64_t HELPER(iwmmxt_srll)(CPUARMState *env, uint64_t x, uint32_t n) { + x = ((x & (0xffffffffll << 0)) >> n) | ((x >> n) & (0xffffffffll << 32)); + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT32(x >> 0, 0) | NZBIT32(x >> 32, 1); + return x; +} + +uint64_t HELPER(iwmmxt_srlq)(CPUARMState *env, uint64_t x, uint32_t n) { + x >>= n; + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT64(x); + return x; +} + +uint64_t HELPER(iwmmxt_sllw)(CPUARMState *env, uint64_t x, uint32_t n) { + x = (((x & (0xffffll << 0)) << n) & (0xffffll << 0)) | (((x & (0xffffll << 16)) << n) & (0xffffll << 16)) | + (((x & (0xffffll << 32)) << n) & (0xffffll << 32)) | (((x & (0xffffll << 48)) << n) & (0xffffll << 48)); + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = + NZBIT16(x >> 0, 0) | NZBIT16(x >> 16, 1) | NZBIT16(x >> 32, 2) | NZBIT16(x >> 48, 3); + return x; +} + +uint64_t HELPER(iwmmxt_slll)(CPUARMState *env, uint64_t x, uint32_t n) { + x = ((x << n) & (0xffffffffll << 0)) | ((x & (0xffffffffll << 32)) << n); + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT32(x >> 0, 0) | NZBIT32(x >> 32, 1); + return x; +} + +uint64_t HELPER(iwmmxt_sllq)(CPUARMState *env, uint64_t x, uint32_t n) { + x <<= n; + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT64(x); + return x; +} + +uint64_t HELPER(iwmmxt_sraw)(CPUARMState *env, uint64_t x, uint32_t n) { + x = ((uint64_t)((EXTEND16(x >> 0) >> n) & 0xffff) << 0) | ((uint64_t)((EXTEND16(x >> 16) >> n) & 0xffff) << 16) | + ((uint64_t)((EXTEND16(x >> 32) >> n) & 0xffff) << 32) | ((uint64_t)((EXTEND16(x >> 48) >> n) & 0xffff) << 48); + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = + NZBIT16(x >> 0, 0) | NZBIT16(x >> 16, 1) | NZBIT16(x >> 32, 2) | NZBIT16(x >> 48, 3); + return x; +} + +uint64_t HELPER(iwmmxt_sral)(CPUARMState *env, uint64_t x, uint32_t n) { + x = (((EXTEND32(x >> 0) >> n) & 0xffffffff) << 0) | (((EXTEND32(x >> 32) >> n) & 0xffffffff) << 32); + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT32(x >> 0, 0) | NZBIT32(x >> 32, 1); + return x; +} + +uint64_t HELPER(iwmmxt_sraq)(CPUARMState *env, uint64_t x, uint32_t n) { + x = (int64_t) x >> n; + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT64(x); + return x; +} + +uint64_t HELPER(iwmmxt_rorw)(CPUARMState *env, uint64_t x, uint32_t n) { + x = ((((x & (0xffffll << 0)) >> n) | ((x & (0xffffll << 0)) << (16 - n))) & (0xffffll << 0)) | + ((((x & (0xffffll << 16)) >> n) | ((x & (0xffffll << 16)) << (16 - n))) & (0xffffll << 16)) | + ((((x & (0xffffll << 32)) >> n) | ((x & (0xffffll << 32)) << (16 - n))) & (0xffffll << 32)) | + ((((x & (0xffffll << 48)) >> n) | ((x & (0xffffll << 48)) << (16 - n))) & (0xffffll << 48)); + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = + NZBIT16(x >> 0, 0) | NZBIT16(x >> 16, 1) | NZBIT16(x >> 32, 2) | NZBIT16(x >> 48, 3); + return x; +} + +uint64_t HELPER(iwmmxt_rorl)(CPUARMState *env, uint64_t x, uint32_t n) { + x = ((x & (0xffffffffll << 0)) >> n) | ((x >> n) & (0xffffffffll << 32)) | ((x << (32 - n)) & (0xffffffffll << 0)) | + ((x & (0xffffffffll << 32)) << (32 - n)); + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT32(x >> 0, 0) | NZBIT32(x >> 32, 1); + return x; +} + +uint64_t HELPER(iwmmxt_rorq)(CPUARMState *env, uint64_t x, uint32_t n) { + x = (x >> n) | (x << (64 - n)); + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT64(x); + return x; +} + +uint64_t HELPER(iwmmxt_shufh)(CPUARMState *env, uint64_t x, uint32_t n) { + x = (((x >> ((n << 4) & 0x30)) & 0xffff) << 0) | (((x >> ((n << 2) & 0x30)) & 0xffff) << 16) | + (((x >> ((n << 0) & 0x30)) & 0xffff) << 32) | (((x >> ((n >> 2) & 0x30)) & 0xffff) << 48); + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = + NZBIT16(x >> 0, 0) | NZBIT16(x >> 16, 1) | NZBIT16(x >> 32, 2) | NZBIT16(x >> 48, 3); + return x; +} + +/* TODO: Unsigned-Saturation */ +uint64_t HELPER(iwmmxt_packuw)(CPUARMState *env, uint64_t a, uint64_t b) { + a = (((a >> 0) & 0xff) << 0) | (((a >> 16) & 0xff) << 8) | (((a >> 32) & 0xff) << 16) | (((a >> 48) & 0xff) << 24) | + (((b >> 0) & 0xff) << 32) | (((b >> 16) & 0xff) << 40) | (((b >> 32) & 0xff) << 48) | + (((b >> 48) & 0xff) << 56); + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT8(a >> 0, 0) | NZBIT8(a >> 8, 1) | NZBIT8(a >> 16, 2) | + NZBIT8(a >> 24, 3) | NZBIT8(a >> 32, 4) | NZBIT8(a >> 40, 5) | + NZBIT8(a >> 48, 6) | NZBIT8(a >> 56, 7); + return a; +} + +uint64_t HELPER(iwmmxt_packul)(CPUARMState *env, uint64_t a, uint64_t b) { + a = (((a >> 0) & 0xffff) << 0) | (((a >> 32) & 0xffff) << 16) | (((b >> 0) & 0xffff) << 32) | + (((b >> 32) & 0xffff) << 48); + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = + NZBIT16(a >> 0, 0) | NZBIT16(a >> 16, 1) | NZBIT16(a >> 32, 2) | NZBIT16(a >> 48, 3); + return a; +} + +uint64_t HELPER(iwmmxt_packuq)(CPUARMState *env, uint64_t a, uint64_t b) { + a = (a & 0xffffffff) | ((b & 0xffffffff) << 32); + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT32(a >> 0, 0) | NZBIT32(a >> 32, 1); + return a; +} + +/* TODO: Signed-Saturation */ +uint64_t HELPER(iwmmxt_packsw)(CPUARMState *env, uint64_t a, uint64_t b) { + a = (((a >> 0) & 0xff) << 0) | (((a >> 16) & 0xff) << 8) | (((a >> 32) & 0xff) << 16) | (((a >> 48) & 0xff) << 24) | + (((b >> 0) & 0xff) << 32) | (((b >> 16) & 0xff) << 40) | (((b >> 32) & 0xff) << 48) | + (((b >> 48) & 0xff) << 56); + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT8(a >> 0, 0) | NZBIT8(a >> 8, 1) | NZBIT8(a >> 16, 2) | + NZBIT8(a >> 24, 3) | NZBIT8(a >> 32, 4) | NZBIT8(a >> 40, 5) | + NZBIT8(a >> 48, 6) | NZBIT8(a >> 56, 7); + return a; +} + +uint64_t HELPER(iwmmxt_packsl)(CPUARMState *env, uint64_t a, uint64_t b) { + a = (((a >> 0) & 0xffff) << 0) | (((a >> 32) & 0xffff) << 16) | (((b >> 0) & 0xffff) << 32) | + (((b >> 32) & 0xffff) << 48); + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = + NZBIT16(a >> 0, 0) | NZBIT16(a >> 16, 1) | NZBIT16(a >> 32, 2) | NZBIT16(a >> 48, 3); + return a; +} + +uint64_t HELPER(iwmmxt_packsq)(CPUARMState *env, uint64_t a, uint64_t b) { + a = (a & 0xffffffff) | ((b & 0xffffffff) << 32); + env->iwmmxt.cregs[ARM_IWMMXT_wCASF] = NZBIT32(a >> 0, 0) | NZBIT32(a >> 32, 1); + return a; +} + +uint64_t HELPER(iwmmxt_muladdsl)(uint64_t c, uint32_t a, uint32_t b) { + return c + ((int32_t) EXTEND32(a) * (int32_t) EXTEND32(b)); +} + +uint64_t HELPER(iwmmxt_muladdsw)(uint64_t c, uint32_t a, uint32_t b) { + c += EXTEND32(EXTEND16S((a >> 0) & 0xffff) * EXTEND16S((b >> 0) & 0xffff)); + c += EXTEND32(EXTEND16S((a >> 16) & 0xffff) * EXTEND16S((b >> 16) & 0xffff)); + return c; +} + +uint64_t HELPER(iwmmxt_muladdswl)(uint64_t c, uint32_t a, uint32_t b) { + return c + (EXTEND32(EXTEND16S(a & 0xffff) * EXTEND16S(b & 0xffff))); +} diff --git a/src/target-arm/neon_helper.c b/src/target-arm/neon_helper.c new file mode 100644 index 0000000..8db7825 --- /dev/null +++ b/src/target-arm/neon_helper.c @@ -0,0 +1,1894 @@ +/* + * ARM NEON vector operations. + * + * Copyright (c) 2007, 2008 CodeSourcery. + * Written by Paul Brook + * + * This code is licensed under the GNU GPL v2. + */ +#include +#include + +#include "cpu.h" +#include "exec-all.h" +#include + +#define SIGNBIT (uint32_t) 0x80000000 +#define SIGNBIT64 ((uint64_t) 1 << 63) + +#define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] = CPSR_Q + +#define NEON_TYPE1(name, type) \ + typedef struct { type v1; } neon_##name; +#ifdef HOST_WORDS_BIGENDIAN +#define NEON_TYPE2(name, type) \ + typedef struct { \ + type v2; \ + type v1; \ + } neon_##name; +#define NEON_TYPE4(name, type) \ + typedef struct { \ + type v4; \ + type v3; \ + type v2; \ + type v1; \ + } neon_##name; +#else +#define NEON_TYPE2(name, type) \ + typedef struct { \ + type v1; \ + type v2; \ + } neon_##name; +#define NEON_TYPE4(name, type) \ + typedef struct { \ + type v1; \ + type v2; \ + type v3; \ + type v4; \ + } neon_##name; +#endif + +NEON_TYPE4(s8, int8_t) +NEON_TYPE4(u8, uint8_t) +NEON_TYPE2(s16, int16_t) +NEON_TYPE2(u16, uint16_t) +NEON_TYPE1(s32, int32_t) +NEON_TYPE1(u32, uint32_t) +#undef NEON_TYPE4 +#undef NEON_TYPE2 +#undef NEON_TYPE1 + +/* Copy from a uint32_t to a vector structure type. */ +#define NEON_UNPACK(vtype, dest, val) \ + do { \ + union { \ + vtype v; \ + uint32_t i; \ + } conv_u; \ + conv_u.i = (val); \ + dest = conv_u.v; \ + } while (0) + +/* Copy from a vector structure type to a uint32_t. */ +#define NEON_PACK(vtype, dest, val) \ + do { \ + union { \ + vtype v; \ + uint32_t i; \ + } conv_u; \ + conv_u.v = (val); \ + dest = conv_u.i; \ + } while (0) + +#define NEON_DO1 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); +#define NEON_DO2 \ + NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \ + NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); +#define NEON_DO4 \ + NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \ + NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \ + NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \ + NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4); + +#define NEON_VOP_BODY(vtype, n) \ + { \ + uint32_t res; \ + vtype vsrc1; \ + vtype vsrc2; \ + vtype vdest; \ + NEON_UNPACK(vtype, vsrc1, arg1); \ + NEON_UNPACK(vtype, vsrc2, arg2); \ + NEON_DO##n; \ + NEON_PACK(vtype, res, vdest); \ + return res; \ + } + +#define NEON_VOP(name, vtype, n) \ + uint32_t HELPER(glue(neon_, name))(uint32_t arg1, uint32_t arg2) NEON_VOP_BODY(vtype, n) + +#define NEON_VOP_ENV(name, vtype, n) \ + uint32_t HELPER(glue(neon_, name))(CPUARMState * env, uint32_t arg1, uint32_t arg2) NEON_VOP_BODY(vtype, n) + +/* Pairwise operations. */ +/* For 32-bit elements each segment only contains a single element, so + the elementwise and pairwise operations are the same. */ +#define NEON_PDO2 \ + NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \ + NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2); +#define NEON_PDO4 \ + NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \ + NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \ + NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \ + NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); + +#define NEON_POP(name, vtype, n) \ + uint32_t HELPER(glue(neon_, name))(uint32_t arg1, uint32_t arg2) { \ + uint32_t res; \ + vtype vsrc1; \ + vtype vsrc2; \ + vtype vdest; \ + NEON_UNPACK(vtype, vsrc1, arg1); \ + NEON_UNPACK(vtype, vsrc2, arg2); \ + NEON_PDO##n; \ + NEON_PACK(vtype, res, vdest); \ + return res; \ + } + +/* Unary operators. */ +#define NEON_VOP1(name, vtype, n) \ + uint32_t HELPER(glue(neon_, name))(uint32_t arg) { \ + vtype vsrc1; \ + vtype vdest; \ + NEON_UNPACK(vtype, vsrc1, arg); \ + NEON_DO##n; \ + NEON_PACK(vtype, arg, vdest); \ + return arg; \ + } + +#define NEON_USAT(dest, src1, src2, type) \ + do { \ + uint32_t tmp = (uint32_t) src1 + (uint32_t) src2; \ + if (tmp != (type) tmp) { \ + SET_QC(); \ + dest = ~0; \ + } else { \ + dest = tmp; \ + } \ + } while (0) +#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t) +NEON_VOP_ENV(qadd_u8, neon_u8, 4) +#undef NEON_FN +#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t) +NEON_VOP_ENV(qadd_u16, neon_u16, 2) +#undef NEON_FN +#undef NEON_USAT + +uint32_t HELPER(neon_qadd_u32)(CPUARMState *env, uint32_t a, uint32_t b) { + uint32_t res = a + b; + if (res < a) { + SET_QC(); + res = ~0; + } + return res; +} + +uint64_t HELPER(neon_qadd_u64)(CPUARMState *env, uint64_t src1, uint64_t src2) { + uint64_t res; + + res = src1 + src2; + if (res < src1) { + SET_QC(); + res = ~(uint64_t) 0; + } + return res; +} + +#define NEON_SSAT(dest, src1, src2, type) \ + do { \ + int32_t tmp = (uint32_t) src1 + (uint32_t) src2; \ + if (tmp != (type) tmp) { \ + SET_QC(); \ + if (src2 > 0) { \ + tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \ + } else { \ + tmp = 1 << (sizeof(type) * 8 - 1); \ + } \ + } \ + dest = tmp; \ + } while (0) +#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t) +NEON_VOP_ENV(qadd_s8, neon_s8, 4) +#undef NEON_FN +#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t) +NEON_VOP_ENV(qadd_s16, neon_s16, 2) +#undef NEON_FN +#undef NEON_SSAT + +uint32_t HELPER(neon_qadd_s32)(CPUARMState *env, uint32_t a, uint32_t b) { + uint32_t res = a + b; + if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { + SET_QC(); + res = ~(((int32_t) a >> 31) ^ SIGNBIT); + } + return res; +} + +uint64_t HELPER(neon_qadd_s64)(CPUARMState *env, uint64_t src1, uint64_t src2) { + uint64_t res; + + res = src1 + src2; + if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) { + SET_QC(); + res = ((int64_t) src1 >> 63) ^ ~SIGNBIT64; + } + return res; +} + +#define NEON_USAT(dest, src1, src2, type) \ + do { \ + uint32_t tmp = (uint32_t) src1 - (uint32_t) src2; \ + if (tmp != (type) tmp) { \ + SET_QC(); \ + dest = 0; \ + } else { \ + dest = tmp; \ + } \ + } while (0) +#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t) +NEON_VOP_ENV(qsub_u8, neon_u8, 4) +#undef NEON_FN +#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t) +NEON_VOP_ENV(qsub_u16, neon_u16, 2) +#undef NEON_FN +#undef NEON_USAT + +uint32_t HELPER(neon_qsub_u32)(CPUARMState *env, uint32_t a, uint32_t b) { + uint32_t res = a - b; + if (res > a) { + SET_QC(); + res = 0; + } + return res; +} + +uint64_t HELPER(neon_qsub_u64)(CPUARMState *env, uint64_t src1, uint64_t src2) { + uint64_t res; + + if (src1 < src2) { + SET_QC(); + res = 0; + } else { + res = src1 - src2; + } + return res; +} + +#define NEON_SSAT(dest, src1, src2, type) \ + do { \ + int32_t tmp = (uint32_t) src1 - (uint32_t) src2; \ + if (tmp != (type) tmp) { \ + SET_QC(); \ + if (src2 < 0) { \ + tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \ + } else { \ + tmp = 1 << (sizeof(type) * 8 - 1); \ + } \ + } \ + dest = tmp; \ + } while (0) +#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t) +NEON_VOP_ENV(qsub_s8, neon_s8, 4) +#undef NEON_FN +#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t) +NEON_VOP_ENV(qsub_s16, neon_s16, 2) +#undef NEON_FN +#undef NEON_SSAT + +uint32_t HELPER(neon_qsub_s32)(CPUARMState *env, uint32_t a, uint32_t b) { + uint32_t res = a - b; + if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { + SET_QC(); + res = ~(((int32_t) a >> 31) ^ SIGNBIT); + } + return res; +} + +uint64_t HELPER(neon_qsub_s64)(CPUARMState *env, uint64_t src1, uint64_t src2) { + uint64_t res; + + res = src1 - src2; + if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) { + SET_QC(); + res = ((int64_t) src1 >> 63) ^ ~SIGNBIT64; + } + return res; +} + +#define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1 +NEON_VOP(hadd_s8, neon_s8, 4) +NEON_VOP(hadd_u8, neon_u8, 4) +NEON_VOP(hadd_s16, neon_s16, 2) +NEON_VOP(hadd_u16, neon_u16, 2) +#undef NEON_FN + +int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2) { + int32_t dest; + + dest = (src1 >> 1) + (src2 >> 1); + if (src1 & src2 & 1) + dest++; + return dest; +} + +uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2) { + uint32_t dest; + + dest = (src1 >> 1) + (src2 >> 1); + if (src1 & src2 & 1) + dest++; + return dest; +} + +#define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1 +NEON_VOP(rhadd_s8, neon_s8, 4) +NEON_VOP(rhadd_u8, neon_u8, 4) +NEON_VOP(rhadd_s16, neon_s16, 2) +NEON_VOP(rhadd_u16, neon_u16, 2) +#undef NEON_FN + +int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2) { + int32_t dest; + + dest = (src1 >> 1) + (src2 >> 1); + if ((src1 | src2) & 1) + dest++; + return dest; +} + +uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2) { + uint32_t dest; + + dest = (src1 >> 1) + (src2 >> 1); + if ((src1 | src2) & 1) + dest++; + return dest; +} + +#define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1 +NEON_VOP(hsub_s8, neon_s8, 4) +NEON_VOP(hsub_u8, neon_u8, 4) +NEON_VOP(hsub_s16, neon_s16, 2) +NEON_VOP(hsub_u16, neon_u16, 2) +#undef NEON_FN + +int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2) { + int32_t dest; + + dest = (src1 >> 1) - (src2 >> 1); + if ((~src1) & src2 & 1) + dest--; + return dest; +} + +uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2) { + uint32_t dest; + + dest = (src1 >> 1) - (src2 >> 1); + if ((~src1) & src2 & 1) + dest--; + return dest; +} + +#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0 +NEON_VOP(cgt_s8, neon_s8, 4) +NEON_VOP(cgt_u8, neon_u8, 4) +NEON_VOP(cgt_s16, neon_s16, 2) +NEON_VOP(cgt_u16, neon_u16, 2) +NEON_VOP(cgt_s32, neon_s32, 1) +NEON_VOP(cgt_u32, neon_u32, 1) +#undef NEON_FN + +#define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0 +NEON_VOP(cge_s8, neon_s8, 4) +NEON_VOP(cge_u8, neon_u8, 4) +NEON_VOP(cge_s16, neon_s16, 2) +NEON_VOP(cge_u16, neon_u16, 2) +NEON_VOP(cge_s32, neon_s32, 1) +NEON_VOP(cge_u32, neon_u32, 1) +#undef NEON_FN + +#define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2 +NEON_VOP(min_s8, neon_s8, 4) +NEON_VOP(min_u8, neon_u8, 4) +NEON_VOP(min_s16, neon_s16, 2) +NEON_VOP(min_u16, neon_u16, 2) +NEON_VOP(min_s32, neon_s32, 1) +NEON_VOP(min_u32, neon_u32, 1) +NEON_POP(pmin_s8, neon_s8, 4) +NEON_POP(pmin_u8, neon_u8, 4) +NEON_POP(pmin_s16, neon_s16, 2) +NEON_POP(pmin_u16, neon_u16, 2) +#undef NEON_FN + +#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2 +NEON_VOP(max_s8, neon_s8, 4) +NEON_VOP(max_u8, neon_u8, 4) +NEON_VOP(max_s16, neon_s16, 2) +NEON_VOP(max_u16, neon_u16, 2) +NEON_VOP(max_s32, neon_s32, 1) +NEON_VOP(max_u32, neon_u32, 1) +NEON_POP(pmax_s8, neon_s8, 4) +NEON_POP(pmax_u8, neon_u8, 4) +NEON_POP(pmax_s16, neon_s16, 2) +NEON_POP(pmax_u16, neon_u16, 2) +#undef NEON_FN + +#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? (src1 - src2) : (src2 - src1) +NEON_VOP(abd_s8, neon_s8, 4) +NEON_VOP(abd_u8, neon_u8, 4) +NEON_VOP(abd_s16, neon_s16, 2) +NEON_VOP(abd_u16, neon_u16, 2) +NEON_VOP(abd_s32, neon_s32, 1) +NEON_VOP(abd_u32, neon_u32, 1) +#undef NEON_FN + +#define NEON_FN(dest, src1, src2) \ + do { \ + int8_t tmp; \ + tmp = (int8_t) src2; \ + if (tmp >= (ssize_t) sizeof(src1) * 8 || tmp <= -(ssize_t) sizeof(src1) * 8) { \ + dest = 0; \ + } else if (tmp < 0) { \ + dest = src1 >> -tmp; \ + } else { \ + dest = src1 << tmp; \ + } \ + } while (0) +NEON_VOP(shl_u8, neon_u8, 4) +NEON_VOP(shl_u16, neon_u16, 2) +NEON_VOP(shl_u32, neon_u32, 1) +#undef NEON_FN + +uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop) { + int8_t shift = (int8_t) shiftop; + if (shift >= 64 || shift <= -64) { + val = 0; + } else if (shift < 0) { + val >>= -shift; + } else { + val <<= shift; + } + return val; +} + +#define NEON_FN(dest, src1, src2) \ + do { \ + int8_t tmp; \ + tmp = (int8_t) src2; \ + if (tmp >= (ssize_t) sizeof(src1) * 8) { \ + dest = 0; \ + } else if (tmp <= -(ssize_t) sizeof(src1) * 8) { \ + dest = src1 >> (sizeof(src1) * 8 - 1); \ + } else if (tmp < 0) { \ + dest = src1 >> -tmp; \ + } else { \ + dest = src1 << tmp; \ + } \ + } while (0) +NEON_VOP(shl_s8, neon_s8, 4) +NEON_VOP(shl_s16, neon_s16, 2) +NEON_VOP(shl_s32, neon_s32, 1) +#undef NEON_FN + +uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop) { + int8_t shift = (int8_t) shiftop; + int64_t val = valop; + if (shift >= 64) { + val = 0; + } else if (shift <= -64) { + val >>= 63; + } else if (shift < 0) { + val >>= -shift; + } else { + val <<= shift; + } + return val; +} + +#define NEON_FN(dest, src1, src2) \ + do { \ + int8_t tmp; \ + tmp = (int8_t) src2; \ + if ((tmp >= (ssize_t) sizeof(src1) * 8) || (tmp <= -(ssize_t) sizeof(src1) * 8)) { \ + dest = 0; \ + } else if (tmp < 0) { \ + dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ + } else { \ + dest = src1 << tmp; \ + } \ + } while (0) +NEON_VOP(rshl_s8, neon_s8, 4) +NEON_VOP(rshl_s16, neon_s16, 2) +#undef NEON_FN + +/* The addition of the rounding constant may overflow, so we use an + * intermediate 64 bits accumulator. */ +uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop) { + int32_t dest; + int32_t val = (int32_t) valop; + int8_t shift = (int8_t) shiftop; + if ((shift >= 32) || (shift <= -32)) { + dest = 0; + } else if (shift < 0) { + int64_t big_dest = ((int64_t) val + (1 << (-1 - shift))); + dest = big_dest >> -shift; + } else { + dest = val << shift; + } + return dest; +} + +/* Handling addition overflow with 64 bits inputs values is more + * tricky than with 32 bits values. */ +uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop) { + int8_t shift = (int8_t) shiftop; + int64_t val = valop; + if ((shift >= 64) || (shift <= -64)) { + val = 0; + } else if (shift < 0) { + val >>= (-shift - 1); + if (val == INT64_MAX) { + /* In this case, it means that the rounding constant is 1, + * and the addition would overflow. Return the actual + * result directly. */ + val = 0x4000000000000000LL; + } else { + val++; + val >>= 1; + } + } else { + val <<= shift; + } + return val; +} + +#define NEON_FN(dest, src1, src2) \ + do { \ + int8_t tmp; \ + tmp = (int8_t) src2; \ + if (tmp >= (ssize_t) sizeof(src1) * 8 || tmp < -(ssize_t) sizeof(src1) * 8) { \ + dest = 0; \ + } else if (tmp == -(ssize_t) sizeof(src1) * 8) { \ + dest = src1 >> (-tmp - 1); \ + } else if (tmp < 0) { \ + dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ + } else { \ + dest = src1 << tmp; \ + } \ + } while (0) +NEON_VOP(rshl_u8, neon_u8, 4) +NEON_VOP(rshl_u16, neon_u16, 2) +#undef NEON_FN + +/* The addition of the rounding constant may overflow, so we use an + * intermediate 64 bits accumulator. */ +uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop) { + uint32_t dest; + int8_t shift = (int8_t) shiftop; + if (shift >= 32 || shift < -32) { + dest = 0; + } else if (shift == -32) { + dest = val >> 31; + } else if (shift < 0) { + uint64_t big_dest = ((uint64_t) val + (1 << (-1 - shift))); + dest = big_dest >> -shift; + } else { + dest = val << shift; + } + return dest; +} + +/* Handling addition overflow with 64 bits inputs values is more + * tricky than with 32 bits values. */ +uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop) { + int8_t shift = (uint8_t) shiftop; + if (shift >= 64 || shift < -64) { + val = 0; + } else if (shift == -64) { + /* Rounding a 1-bit result just preserves that bit. */ + val >>= 63; + } else if (shift < 0) { + val >>= (-shift - 1); + if (val == UINT64_MAX) { + /* In this case, it means that the rounding constant is 1, + * and the addition would overflow. Return the actual + * result directly. */ + val = 0x8000000000000000ULL; + } else { + val++; + val >>= 1; + } + } else { + val <<= shift; + } + return val; +} + +#define NEON_FN(dest, src1, src2) \ + do { \ + int8_t tmp; \ + tmp = (int8_t) src2; \ + if (tmp >= (ssize_t) sizeof(src1) * 8) { \ + if (src1) { \ + SET_QC(); \ + dest = ~0; \ + } else { \ + dest = 0; \ + } \ + } else if (tmp <= -(ssize_t) sizeof(src1) * 8) { \ + dest = 0; \ + } else if (tmp < 0) { \ + dest = src1 >> -tmp; \ + } else { \ + dest = src1 << tmp; \ + if ((dest >> tmp) != src1) { \ + SET_QC(); \ + dest = ~0; \ + } \ + } \ + } while (0) +NEON_VOP_ENV(qshl_u8, neon_u8, 4) +NEON_VOP_ENV(qshl_u16, neon_u16, 2) +NEON_VOP_ENV(qshl_u32, neon_u32, 1) +#undef NEON_FN + +uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop) { + int8_t shift = (int8_t) shiftop; + if (shift >= 64) { + if (val) { + val = ~(uint64_t) 0; + SET_QC(); + } + } else if (shift <= -64) { + val = 0; + } else if (shift < 0) { + val >>= -shift; + } else { + uint64_t tmp = val; + val <<= shift; + if ((val >> shift) != tmp) { + SET_QC(); + val = ~(uint64_t) 0; + } + } + return val; +} + +#define NEON_FN(dest, src1, src2) \ + do { \ + int8_t tmp; \ + tmp = (int8_t) src2; \ + if (tmp >= (ssize_t) sizeof(src1) * 8) { \ + if (src1) { \ + SET_QC(); \ + dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \ + if (src1 > 0) { \ + dest--; \ + } \ + } else { \ + dest = src1; \ + } \ + } else if (tmp <= -(ssize_t) sizeof(src1) * 8) { \ + dest = src1 >> 31; \ + } else if (tmp < 0) { \ + dest = src1 >> -tmp; \ + } else { \ + dest = src1 << tmp; \ + if ((dest >> tmp) != src1) { \ + SET_QC(); \ + dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \ + if (src1 > 0) { \ + dest--; \ + } \ + } \ + } \ + } while (0) +NEON_VOP_ENV(qshl_s8, neon_s8, 4) +NEON_VOP_ENV(qshl_s16, neon_s16, 2) +NEON_VOP_ENV(qshl_s32, neon_s32, 1) +#undef NEON_FN + +uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop) { + int8_t shift = (uint8_t) shiftop; + int64_t val = valop; + if (shift >= 64) { + if (val) { + SET_QC(); + val = (val >> 63) ^ ~SIGNBIT64; + } + } else if (shift <= -64) { + val >>= 63; + } else if (shift < 0) { + val >>= -shift; + } else { + int64_t tmp = val; + val <<= shift; + if ((val >> shift) != tmp) { + SET_QC(); + val = (tmp >> 63) ^ ~SIGNBIT64; + } + } + return val; +} + +#define NEON_FN(dest, src1, src2) \ + do { \ + if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \ + SET_QC(); \ + dest = 0; \ + } else { \ + int8_t tmp; \ + tmp = (int8_t) src2; \ + if (tmp >= (ssize_t) sizeof(src1) * 8) { \ + if (src1) { \ + SET_QC(); \ + dest = ~0; \ + } else { \ + dest = 0; \ + } \ + } else if (tmp <= -(ssize_t) sizeof(src1) * 8) { \ + dest = 0; \ + } else if (tmp < 0) { \ + dest = src1 >> -tmp; \ + } else { \ + dest = src1 << tmp; \ + if ((dest >> tmp) != src1) { \ + SET_QC(); \ + dest = ~0; \ + } \ + } \ + } \ + } while (0) +NEON_VOP_ENV(qshlu_s8, neon_u8, 4) +NEON_VOP_ENV(qshlu_s16, neon_u16, 2) +#undef NEON_FN + +uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop) { + if ((int32_t) valop < 0) { + SET_QC(); + return 0; + } + return helper_neon_qshl_u32(env, valop, shiftop); +} + +uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop) { + if ((int64_t) valop < 0) { + SET_QC(); + return 0; + } + return helper_neon_qshl_u64(env, valop, shiftop); +} + +/* FIXME: This is wrong. */ +#define NEON_FN(dest, src1, src2) \ + do { \ + int8_t tmp; \ + tmp = (int8_t) src2; \ + if (tmp >= (ssize_t) sizeof(src1) * 8) { \ + if (src1) { \ + SET_QC(); \ + dest = ~0; \ + } else { \ + dest = 0; \ + } \ + } else if (tmp < -(ssize_t) sizeof(src1) * 8) { \ + dest = 0; \ + } else if (tmp == -(ssize_t) sizeof(src1) * 8) { \ + dest = src1 >> (sizeof(src1) * 8 - 1); \ + } else if (tmp < 0) { \ + dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ + } else { \ + dest = src1 << tmp; \ + if ((dest >> tmp) != src1) { \ + SET_QC(); \ + dest = ~0; \ + } \ + } \ + } while (0) +NEON_VOP_ENV(qrshl_u8, neon_u8, 4) +NEON_VOP_ENV(qrshl_u16, neon_u16, 2) +#undef NEON_FN + +/* The addition of the rounding constant may overflow, so we use an + * intermediate 64 bits accumulator. */ +uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shiftop) { + uint32_t dest; + int8_t shift = (int8_t) shiftop; + if (shift >= 32) { + if (val) { + SET_QC(); + dest = ~0; + } else { + dest = 0; + } + } else if (shift < -32) { + dest = 0; + } else if (shift == -32) { + dest = val >> 31; + } else if (shift < 0) { + uint64_t big_dest = ((uint64_t) val + (1 << (-1 - shift))); + dest = big_dest >> -shift; + } else { + dest = val << shift; + if ((dest >> shift) != val) { + SET_QC(); + dest = ~0; + } + } + return dest; +} + +/* Handling addition overflow with 64 bits inputs values is more + * tricky than with 32 bits values. */ +uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop) { + int8_t shift = (int8_t) shiftop; + if (shift >= 64) { + if (val) { + SET_QC(); + val = ~0; + } + } else if (shift < -64) { + val = 0; + } else if (shift == -64) { + val >>= 63; + } else if (shift < 0) { + val >>= (-shift - 1); + if (val == UINT64_MAX) { + /* In this case, it means that the rounding constant is 1, + * and the addition would overflow. Return the actual + * result directly. */ + val = 0x8000000000000000ULL; + } else { + val++; + val >>= 1; + } + } else { + uint64_t tmp = val; + val <<= shift; + if ((val >> shift) != tmp) { + SET_QC(); + val = ~0; + } + } + return val; +} + +#define NEON_FN(dest, src1, src2) \ + do { \ + int8_t tmp; \ + tmp = (int8_t) src2; \ + if (tmp >= (ssize_t) sizeof(src1) * 8) { \ + if (src1) { \ + SET_QC(); \ + dest = (1 << (sizeof(src1) * 8 - 1)); \ + if (src1 > 0) { \ + dest--; \ + } \ + } else { \ + dest = 0; \ + } \ + } else if (tmp <= -(ssize_t) sizeof(src1) * 8) { \ + dest = 0; \ + } else if (tmp < 0) { \ + dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \ + } else { \ + dest = src1 << tmp; \ + if ((dest >> tmp) != src1) { \ + SET_QC(); \ + dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \ + if (src1 > 0) { \ + dest--; \ + } \ + } \ + } \ + } while (0) +// NEON_VOP_ENV(qrshl_s8, neon_s8, 4) +// NEON_VOP_ENV(qrshl_s16, neon_s16, 2) +#undef NEON_FN + +/* The addition of the rounding constant may overflow, so we use an + * intermediate 64 bits accumulator. */ +uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop) { + int32_t dest; + int32_t val = (int32_t) valop; + int8_t shift = (int8_t) shiftop; + if (shift >= 32) { + if (val) { + SET_QC(); + dest = (val >> 31) ^ ~SIGNBIT; + } else { + dest = 0; + } + } else if (shift <= -32) { + dest = 0; + } else if (shift < 0) { + int64_t big_dest = ((int64_t) val + (1 << (-1 - shift))); + dest = big_dest >> -shift; + } else { + dest = val << shift; + if ((dest >> shift) != val) { + SET_QC(); + dest = (val >> 31) ^ ~SIGNBIT; + } + } + return dest; +} + +/* Handling addition overflow with 64 bits inputs values is more + * tricky than with 32 bits values. */ +uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop) { + int8_t shift = (uint8_t) shiftop; + int64_t val = valop; + + if (shift >= 64) { + if (val) { + SET_QC(); + val = (val >> 63) ^ ~SIGNBIT64; + } + } else if (shift <= -64) { + val = 0; + } else if (shift < 0) { + val >>= (-shift - 1); + if (val == INT64_MAX) { + /* In this case, it means that the rounding constant is 1, + * and the addition would overflow. Return the actual + * result directly. */ + val = 0x4000000000000000ULL; + } else { + val++; + val >>= 1; + } + } else { + int64_t tmp = val; + val <<= shift; + if ((val >> shift) != tmp) { + SET_QC(); + val = (tmp >> 63) ^ ~SIGNBIT64; + } + } + return val; +} + +uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b) { + uint32_t mask; + mask = (a ^ b) & 0x80808080u; + a &= ~0x80808080u; + b &= ~0x80808080u; + return (a + b) ^ mask; +} + +uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b) { + uint32_t mask; + mask = (a ^ b) & 0x80008000u; + a &= ~0x80008000u; + b &= ~0x80008000u; + return (a + b) ^ mask; +} + +#define NEON_FN(dest, src1, src2) dest = src1 + src2 +NEON_POP(padd_u8, neon_u8, 4) +NEON_POP(padd_u16, neon_u16, 2) +#undef NEON_FN + +#define NEON_FN(dest, src1, src2) dest = src1 - src2 +NEON_VOP(sub_u8, neon_u8, 4) +NEON_VOP(sub_u16, neon_u16, 2) +#undef NEON_FN + +#define NEON_FN(dest, src1, src2) dest = src1 * src2 +NEON_VOP(mul_u8, neon_u8, 4) +NEON_VOP(mul_u16, neon_u16, 2) +#undef NEON_FN + +/* Polynomial multiplication is like integer multiplication except the + partial products are XORed, not added. */ +uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2) { + uint32_t mask; + uint32_t result; + result = 0; + while (op1) { + mask = 0; + if (op1 & 1) + mask |= 0xff; + if (op1 & (1 << 8)) + mask |= (0xff << 8); + if (op1 & (1 << 16)) + mask |= (0xff << 16); + if (op1 & (1 << 24)) + mask |= (0xff << 24); + result ^= op2 & mask; + op1 = (op1 >> 1) & 0x7f7f7f7f; + op2 = (op2 << 1) & 0xfefefefe; + } + return result; +} + +uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2) { + uint64_t result = 0; + uint64_t mask; + uint64_t op2ex = op2; + op2ex = (op2ex & 0xff) | ((op2ex & 0xff00) << 8) | ((op2ex & 0xff0000) << 16) | ((op2ex & 0xff000000) << 24); + while (op1) { + mask = 0; + if (op1 & 1) { + mask |= 0xffff; + } + if (op1 & (1 << 8)) { + mask |= (0xffffU << 16); + } + if (op1 & (1 << 16)) { + mask |= (0xffffULL << 32); + } + if (op1 & (1 << 24)) { + mask |= (0xffffULL << 48); + } + result ^= op2ex & mask; + op1 = (op1 >> 1) & 0x7f7f7f7f; + op2ex <<= 1; + } + return result; +} + +#define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0 +NEON_VOP(tst_u8, neon_u8, 4) +NEON_VOP(tst_u16, neon_u16, 2) +NEON_VOP(tst_u32, neon_u32, 1) +#undef NEON_FN + +#define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0 +NEON_VOP(ceq_u8, neon_u8, 4) +NEON_VOP(ceq_u16, neon_u16, 2) +NEON_VOP(ceq_u32, neon_u32, 1) +#undef NEON_FN + +#define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src +NEON_VOP1(abs_s8, neon_s8, 4) +NEON_VOP1(abs_s16, neon_s16, 2) +#undef NEON_FN + +/* Count Leading Sign/Zero Bits. */ +static inline int do_clz8(uint8_t x) { + int n; + for (n = 8; x; n--) + x >>= 1; + return n; +} + +static inline int do_clz16(uint16_t x) { + int n; + for (n = 16; x; n--) + x >>= 1; + return n; +} + +#define NEON_FN(dest, src, dummy) dest = do_clz8(src) +NEON_VOP1(clz_u8, neon_u8, 4) +#undef NEON_FN + +#define NEON_FN(dest, src, dummy) dest = do_clz16(src) +NEON_VOP1(clz_u16, neon_u16, 2) +#undef NEON_FN + +#define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1 +NEON_VOP1(cls_s8, neon_s8, 4) +#undef NEON_FN + +#define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1 +NEON_VOP1(cls_s16, neon_s16, 2) +#undef NEON_FN + +uint32_t HELPER(neon_cls_s32)(uint32_t x) { + int count; + if ((int32_t) x < 0) + x = ~x; + for (count = 32; x; count--) + x = x >> 1; + return count - 1; +} + +/* Bit count. */ +uint32_t HELPER(neon_cnt_u8)(uint32_t x) { + x = (x & 0x55555555) + ((x >> 1) & 0x55555555); + x = (x & 0x33333333) + ((x >> 2) & 0x33333333); + x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f); + return x; +} + +#define NEON_QDMULH16(dest, src1, src2, round) \ + do { \ + uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \ + if ((tmp ^ (tmp << 1)) & SIGNBIT) { \ + SET_QC(); \ + tmp = (tmp >> 31) ^ ~SIGNBIT; \ + } else { \ + tmp <<= 1; \ + } \ + if (round) { \ + int32_t old = tmp; \ + tmp += 1 << 15; \ + if ((int32_t) tmp < old) { \ + SET_QC(); \ + tmp = SIGNBIT - 1; \ + } \ + } \ + dest = tmp >> 16; \ + } while (0) +#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0) +NEON_VOP_ENV(qdmulh_s16, neon_s16, 2) +#undef NEON_FN +#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1) +NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2) +#undef NEON_FN +#undef NEON_QDMULH16 + +#define NEON_QDMULH32(dest, src1, src2, round) \ + do { \ + uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \ + if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \ + SET_QC(); \ + tmp = (tmp >> 63) ^ ~SIGNBIT64; \ + } else { \ + tmp <<= 1; \ + } \ + if (round) { \ + int64_t old = tmp; \ + tmp += (int64_t) 1 << 31; \ + if ((int64_t) tmp < old) { \ + SET_QC(); \ + tmp = SIGNBIT64 - 1; \ + } \ + } \ + dest = tmp >> 32; \ + } while (0) +#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0) +NEON_VOP_ENV(qdmulh_s32, neon_s32, 1) +#undef NEON_FN +#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1) +NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1) +#undef NEON_FN +#undef NEON_QDMULH32 + +uint32_t HELPER(neon_narrow_u8)(uint64_t x) { + return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u) | ((x >> 24) & 0xff000000u); +} + +uint32_t HELPER(neon_narrow_u16)(uint64_t x) { + return (x & 0xffffu) | ((x >> 16) & 0xffff0000u); +} + +uint32_t HELPER(neon_narrow_high_u8)(uint64_t x) { + return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00) | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000); +} + +uint32_t HELPER(neon_narrow_high_u16)(uint64_t x) { + return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000); +} + +uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x) { + x &= 0xff80ff80ff80ff80ull; + x += 0x0080008000800080ull; + return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00) | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000); +} + +uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x) { + x &= 0xffff8000ffff8000ull; + x += 0x0000800000008000ull; + return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000); +} + +uint32_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x) { + uint16_t s; + uint8_t d; + uint32_t res = 0; +#define SAT8(n) \ + s = x >> n; \ + if (s & 0x8000) { \ + SET_QC(); \ + } else { \ + if (s > 0xff) { \ + d = 0xff; \ + SET_QC(); \ + } else { \ + d = s; \ + } \ + res |= (uint32_t) d << (n / 2); \ + } + + SAT8(0); + SAT8(16); + SAT8(32); + SAT8(48); +#undef SAT8 + return res; +} + +uint32_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x) { + uint16_t s; + uint8_t d; + uint32_t res = 0; +#define SAT8(n) \ + s = x >> n; \ + if (s > 0xff) { \ + d = 0xff; \ + SET_QC(); \ + } else { \ + d = s; \ + } \ + res |= (uint32_t) d << (n / 2); + + SAT8(0); + SAT8(16); + SAT8(32); + SAT8(48); +#undef SAT8 + return res; +} + +uint32_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x) { + int16_t s; + uint8_t d; + uint32_t res = 0; +#define SAT8(n) \ + s = x >> n; \ + if (s != (int8_t) s) { \ + d = (s >> 15) ^ 0x7f; \ + SET_QC(); \ + } else { \ + d = s; \ + } \ + res |= (uint32_t) d << (n / 2); + + SAT8(0); + SAT8(16); + SAT8(32); + SAT8(48); +#undef SAT8 + return res; +} + +uint32_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x) { + uint32_t high; + uint32_t low; + low = x; + if (low & 0x80000000) { + low = 0; + SET_QC(); + } else if (low > 0xffff) { + low = 0xffff; + SET_QC(); + } + high = x >> 32; + if (high & 0x80000000) { + high = 0; + SET_QC(); + } else if (high > 0xffff) { + high = 0xffff; + SET_QC(); + } + return low | (high << 16); +} + +uint32_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x) { + uint32_t high; + uint32_t low; + low = x; + if (low > 0xffff) { + low = 0xffff; + SET_QC(); + } + high = x >> 32; + if (high > 0xffff) { + high = 0xffff; + SET_QC(); + } + return low | (high << 16); +} + +uint32_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x) { + int32_t low; + int32_t high; + low = x; + if (low != (int16_t) low) { + low = (low >> 31) ^ 0x7fff; + SET_QC(); + } + high = x >> 32; + if (high != (int16_t) high) { + high = (high >> 31) ^ 0x7fff; + SET_QC(); + } + return (uint16_t) low | (high << 16); +} + +uint32_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x) { + if (x & 0x8000000000000000ull) { + SET_QC(); + return 0; + } + if (x > 0xffffffffu) { + SET_QC(); + return 0xffffffffu; + } + return x; +} + +uint32_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x) { + if (x > 0xffffffffu) { + SET_QC(); + return 0xffffffffu; + } + return x; +} + +uint32_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x) { + if ((int64_t) x != (int32_t) x) { + SET_QC(); + return ((int64_t) x >> 63) ^ 0x7fffffff; + } + return x; +} + +uint64_t HELPER(neon_widen_u8)(uint32_t x) { + uint64_t tmp; + uint64_t ret; + ret = (uint8_t) x; + tmp = (uint8_t)(x >> 8); + ret |= tmp << 16; + tmp = (uint8_t)(x >> 16); + ret |= tmp << 32; + tmp = (uint8_t)(x >> 24); + ret |= tmp << 48; + return ret; +} + +uint64_t HELPER(neon_widen_s8)(uint32_t x) { + uint64_t tmp; + uint64_t ret; + ret = (uint16_t)(int8_t) x; + tmp = (uint16_t)(int8_t)(x >> 8); + ret |= tmp << 16; + tmp = (uint16_t)(int8_t)(x >> 16); + ret |= tmp << 32; + tmp = (uint16_t)(int8_t)(x >> 24); + ret |= tmp << 48; + return ret; +} + +uint64_t HELPER(neon_widen_u16)(uint32_t x) { + uint64_t high = (uint16_t)(x >> 16); + return ((uint16_t) x) | (high << 32); +} + +uint64_t HELPER(neon_widen_s16)(uint32_t x) { + uint64_t high = (int16_t)(x >> 16); + return ((uint32_t)(int16_t) x) | (high << 32); +} + +uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b) { + uint64_t mask; + mask = (a ^ b) & 0x8000800080008000ull; + a &= ~0x8000800080008000ull; + b &= ~0x8000800080008000ull; + return (a + b) ^ mask; +} + +uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b) { + uint64_t mask; + mask = (a ^ b) & 0x8000000080000000ull; + a &= ~0x8000000080000000ull; + b &= ~0x8000000080000000ull; + return (a + b) ^ mask; +} + +uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b) { + uint64_t tmp; + uint64_t tmp2; + + tmp = a & 0x0000ffff0000ffffull; + tmp += (a >> 16) & 0x0000ffff0000ffffull; + tmp2 = b & 0xffff0000ffff0000ull; + tmp2 += (b << 16) & 0xffff0000ffff0000ull; + return (tmp & 0xffff) | ((tmp >> 16) & 0xffff0000ull) | ((tmp2 << 16) & 0xffff00000000ull) | + (tmp2 & 0xffff000000000000ull); +} + +uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b) { + uint32_t low = a + (a >> 32); + uint32_t high = b + (b >> 32); + return low + ((uint64_t) high << 32); +} + +uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b) { + uint64_t mask; + mask = (a ^ ~b) & 0x8000800080008000ull; + a |= 0x8000800080008000ull; + b &= ~0x8000800080008000ull; + return (a - b) ^ mask; +} + +uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b) { + uint64_t mask; + mask = (a ^ ~b) & 0x8000000080000000ull; + a |= 0x8000000080000000ull; + b &= ~0x8000000080000000ull; + return (a - b) ^ mask; +} + +uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b) { + uint32_t x, y; + uint32_t low, high; + + x = a; + y = b; + low = x + y; + if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) { + SET_QC(); + low = ((int32_t) x >> 31) ^ ~SIGNBIT; + } + x = a >> 32; + y = b >> 32; + high = x + y; + if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) { + SET_QC(); + high = ((int32_t) x >> 31) ^ ~SIGNBIT; + } + return low | ((uint64_t) high << 32); +} + +uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b) { + uint64_t result; + + result = a + b; + if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) { + SET_QC(); + result = ((int64_t) a >> 63) ^ ~SIGNBIT64; + } + return result; +} + +/* We have to do the arithmetic in a larger type than + * the input type, because for example with a signed 32 bit + * op the absolute difference can overflow a signed 32 bit value. + */ +#define DO_ABD(dest, x, y, intype, arithtype) \ + do { \ + arithtype tmp_x = (intype)(x); \ + arithtype tmp_y = (intype)(y); \ + dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \ + } while (0) + +uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b) { + uint64_t tmp; + uint64_t result; + DO_ABD(result, a, b, uint8_t, uint32_t); + DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t); + result |= tmp << 16; + DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t); + result |= tmp << 32; + DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t); + result |= tmp << 48; + return result; +} + +uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b) { + uint64_t tmp; + uint64_t result; + DO_ABD(result, a, b, int8_t, int32_t); + DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t); + result |= tmp << 16; + DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t); + result |= tmp << 32; + DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t); + result |= tmp << 48; + return result; +} + +uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b) { + uint64_t tmp; + uint64_t result; + DO_ABD(result, a, b, uint16_t, uint32_t); + DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t); + return result | (tmp << 32); +} + +uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b) { + uint64_t tmp; + uint64_t result; + DO_ABD(result, a, b, int16_t, int32_t); + DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t); + return result | (tmp << 32); +} + +uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b) { + uint64_t result; + DO_ABD(result, a, b, uint32_t, uint64_t); + return result; +} + +uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b) { + uint64_t result; + DO_ABD(result, a, b, int32_t, int64_t); + return result; +} +#undef DO_ABD + +/* Widening multiply. Named type is the source type. */ +#define DO_MULL(dest, x, y, type1, type2) \ + do { \ + type1 tmp_x = x; \ + type1 tmp_y = y; \ + dest = (type2)((type2) tmp_x * (type2) tmp_y); \ + } while (0) + +uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b) { + uint64_t tmp; + uint64_t result; + + DO_MULL(result, a, b, uint8_t, uint16_t); + DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t); + result |= tmp << 16; + DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t); + result |= tmp << 32; + DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t); + result |= tmp << 48; + return result; +} + +uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b) { + uint64_t tmp; + uint64_t result; + + DO_MULL(result, a, b, int8_t, uint16_t); + DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t); + result |= tmp << 16; + DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t); + result |= tmp << 32; + DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t); + result |= tmp << 48; + return result; +} + +uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b) { + uint64_t tmp; + uint64_t result; + + DO_MULL(result, a, b, uint16_t, uint32_t); + DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t); + return result | (tmp << 32); +} + +uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b) { + uint64_t tmp; + uint64_t result; + + DO_MULL(result, a, b, int16_t, uint32_t); + DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t); + return result | (tmp << 32); +} + +uint64_t HELPER(neon_negl_u16)(uint64_t x) { + uint16_t tmp; + uint64_t result; + result = (uint16_t) -x; + tmp = -(x >> 16); + result |= (uint64_t) tmp << 16; + tmp = -(x >> 32); + result |= (uint64_t) tmp << 32; + tmp = -(x >> 48); + result |= (uint64_t) tmp << 48; + return result; +} + +uint64_t HELPER(neon_negl_u32)(uint64_t x) { + uint32_t low = -x; + uint32_t high = -(x >> 32); + return low | ((uint64_t) high << 32); +} + +/* FIXME: There should be a native op for this. */ +uint64_t HELPER(neon_negl_u64)(uint64_t x) { + return -x; +} + +/* Saturnating sign manuipulation. */ +/* ??? Make these use NEON_VOP1 */ +#define DO_QABS8(x) \ + do { \ + if (x == (int8_t) 0x80) { \ + x = 0x7f; \ + SET_QC(); \ + } else if (x < 0) { \ + x = -x; \ + } \ + } while (0) +uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x) { + neon_s8 vec; + NEON_UNPACK(neon_s8, vec, x); + DO_QABS8(vec.v1); + DO_QABS8(vec.v2); + DO_QABS8(vec.v3); + DO_QABS8(vec.v4); + NEON_PACK(neon_s8, x, vec); + return x; +} +#undef DO_QABS8 + +#define DO_QNEG8(x) \ + do { \ + if (x == (int8_t) 0x80) { \ + x = 0x7f; \ + SET_QC(); \ + } else { \ + x = -x; \ + } \ + } while (0) +uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x) { + neon_s8 vec; + NEON_UNPACK(neon_s8, vec, x); + DO_QNEG8(vec.v1); + DO_QNEG8(vec.v2); + DO_QNEG8(vec.v3); + DO_QNEG8(vec.v4); + NEON_PACK(neon_s8, x, vec); + return x; +} +#undef DO_QNEG8 + +#define DO_QABS16(x) \ + do { \ + if (x == (int16_t) 0x8000) { \ + x = 0x7fff; \ + SET_QC(); \ + } else if (x < 0) { \ + x = -x; \ + } \ + } while (0) +uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x) { + neon_s16 vec; + NEON_UNPACK(neon_s16, vec, x); + DO_QABS16(vec.v1); + DO_QABS16(vec.v2); + NEON_PACK(neon_s16, x, vec); + return x; +} +#undef DO_QABS16 + +#define DO_QNEG16(x) \ + do { \ + if (x == (int16_t) 0x8000) { \ + x = 0x7fff; \ + SET_QC(); \ + } else { \ + x = -x; \ + } \ + } while (0) +uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x) { + neon_s16 vec; + NEON_UNPACK(neon_s16, vec, x); + DO_QNEG16(vec.v1); + DO_QNEG16(vec.v2); + NEON_PACK(neon_s16, x, vec); + return x; +} +#undef DO_QNEG16 + +uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x) { + if (x == SIGNBIT) { + SET_QC(); + x = ~SIGNBIT; + } else if ((int32_t) x < 0) { + x = -x; + } + return x; +} + +uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x) { + if (x == SIGNBIT) { + SET_QC(); + x = ~SIGNBIT; + } else { + x = -x; + } + return x; +} + +/* NEON Float helpers. */ +uint32_t HELPER(neon_min_f32)(uint32_t a, uint32_t b, void *fpstp) { + float_status *fpst = fpstp; + return float32_val(float32_min(make_float32(a), make_float32(b), fpst)); +} + +uint32_t HELPER(neon_max_f32)(uint32_t a, uint32_t b, void *fpstp) { + float_status *fpst = fpstp; + return float32_val(float32_max(make_float32(a), make_float32(b), fpst)); +} + +uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp) { + float_status *fpst = fpstp; + float32 f0 = make_float32(a); + float32 f1 = make_float32(b); + return float32_val(float32_abs(float32_sub(f0, f1, fpst))); +} + +/* Floating point comparisons produce an integer result. + * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do. + * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires. + */ +uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp) { + float_status *fpst = fpstp; + return -float32_eq_quiet(make_float32(a), make_float32(b), fpst); +} + +uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp) { + float_status *fpst = fpstp; + return -float32_le(make_float32(b), make_float32(a), fpst); +} + +uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp) { + float_status *fpst = fpstp; + return -float32_lt(make_float32(b), make_float32(a), fpst); +} + +uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp) { + float_status *fpst = fpstp; + float32 f0 = float32_abs(make_float32(a)); + float32 f1 = float32_abs(make_float32(b)); + return -float32_le(f1, f0, fpst); +} + +uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp) { + float_status *fpst = fpstp; + float32 f0 = float32_abs(make_float32(a)); + float32 f1 = float32_abs(make_float32(b)); + return -float32_lt(f1, f0, fpst); +} + +#define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1)) + +void HELPER(neon_qunzip8)(CPUARMState *env, uint32_t rd, uint32_t rm) { + uint64_t zm0 = float64_val(env->vfp.regs[rm]); + uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); + uint64_t zd0 = float64_val(env->vfp.regs[rd]); + uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); + uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8) | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24) | + (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40) | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56); + uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8) | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24) | + (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40) | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56); + uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8) | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24) | + (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40) | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56); + uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8) | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24) | + (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40) | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rm + 1] = make_float64(m1); + env->vfp.regs[rd] = make_float64(d0); + env->vfp.regs[rd + 1] = make_float64(d1); +} + +void HELPER(neon_qunzip16)(CPUARMState *env, uint32_t rd, uint32_t rm) { + uint64_t zm0 = float64_val(env->vfp.regs[rm]); + uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); + uint64_t zd0 = float64_val(env->vfp.regs[rd]); + uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); + uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16) | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48); + uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16) | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48); + uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16) | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48); + uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16) | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rm + 1] = make_float64(m1); + env->vfp.regs[rd] = make_float64(d0); + env->vfp.regs[rd + 1] = make_float64(d1); +} + +void HELPER(neon_qunzip32)(CPUARMState *env, uint32_t rd, uint32_t rm) { + uint64_t zm0 = float64_val(env->vfp.regs[rm]); + uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); + uint64_t zd0 = float64_val(env->vfp.regs[rd]); + uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); + uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32); + uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32); + uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32); + uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rm + 1] = make_float64(m1); + env->vfp.regs[rd] = make_float64(d0); + env->vfp.regs[rd + 1] = make_float64(d1); +} + +void HELPER(neon_unzip8)(CPUARMState *env, uint32_t rd, uint32_t rm) { + uint64_t zm = float64_val(env->vfp.regs[rm]); + uint64_t zd = float64_val(env->vfp.regs[rd]); + uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8) | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24) | + (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40) | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56); + uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8) | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24) | + (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40) | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rd] = make_float64(d0); +} + +void HELPER(neon_unzip16)(CPUARMState *env, uint32_t rd, uint32_t rm) { + uint64_t zm = float64_val(env->vfp.regs[rm]); + uint64_t zd = float64_val(env->vfp.regs[rd]); + uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16) | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48); + uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16) | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rd] = make_float64(d0); +} + +void HELPER(neon_qzip8)(CPUARMState *env, uint32_t rd, uint32_t rm) { + uint64_t zm0 = float64_val(env->vfp.regs[rm]); + uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); + uint64_t zd0 = float64_val(env->vfp.regs[rd]); + uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); + uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8) | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24) | + (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40) | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56); + uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8) | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24) | + (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40) | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56); + uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8) | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24) | + (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40) | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56); + uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8) | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24) | + (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40) | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rm + 1] = make_float64(m1); + env->vfp.regs[rd] = make_float64(d0); + env->vfp.regs[rd + 1] = make_float64(d1); +} + +void HELPER(neon_qzip16)(CPUARMState *env, uint32_t rd, uint32_t rm) { + uint64_t zm0 = float64_val(env->vfp.regs[rm]); + uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); + uint64_t zd0 = float64_val(env->vfp.regs[rd]); + uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); + uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16) | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48); + uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16) | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48); + uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16) | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48); + uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16) | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rm + 1] = make_float64(m1); + env->vfp.regs[rd] = make_float64(d0); + env->vfp.regs[rd + 1] = make_float64(d1); +} + +void HELPER(neon_qzip32)(CPUARMState *env, uint32_t rd, uint32_t rm) { + uint64_t zm0 = float64_val(env->vfp.regs[rm]); + uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]); + uint64_t zd0 = float64_val(env->vfp.regs[rd]); + uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]); + uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32); + uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32); + uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32); + uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rm + 1] = make_float64(m1); + env->vfp.regs[rd] = make_float64(d0); + env->vfp.regs[rd + 1] = make_float64(d1); +} + +void HELPER(neon_zip8)(CPUARMState *env, uint32_t rd, uint32_t rm) { + uint64_t zm = float64_val(env->vfp.regs[rm]); + uint64_t zd = float64_val(env->vfp.regs[rd]); + uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8) | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24) | + (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40) | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56); + uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8) | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24) | + (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40) | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rd] = make_float64(d0); +} + +void HELPER(neon_zip16)(CPUARMState *env, uint32_t rd, uint32_t rm) { + uint64_t zm = float64_val(env->vfp.regs[rm]); + uint64_t zd = float64_val(env->vfp.regs[rd]); + uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16) | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48); + uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16) | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48); + env->vfp.regs[rm] = make_float64(m0); + env->vfp.regs[rd] = make_float64(d0); +} diff --git a/src/target-arm/op_addsub.h b/src/target-arm/op_addsub.h new file mode 100644 index 0000000..0e9098c --- /dev/null +++ b/src/target-arm/op_addsub.h @@ -0,0 +1,100 @@ +/* + * ARMv6 integer SIMD operations. + * + * Copyright (c) 2007 CodeSourcery. + * Written by Paul Brook + * + * This code is licensed under the GPL. + */ + +#ifdef ARITH_GE +#define GE_ARG , void *gep +#define DECLARE_GE uint32_t ge = 0 +#define SET_GE *(uint32_t *) gep = ge +#else +#define GE_ARG +#define DECLARE_GE \ + do { \ + } while (0) +#define SET_GE \ + do { \ + } while (0) +#endif + +#define RESULT(val, n, width) res |= ((uint32_t)(glue(glue(uint, width), _t))(val)) << (n * width) + +uint32_t HELPER(glue(PFX, add16))(uint32_t a, uint32_t b GE_ARG) { + uint32_t res = 0; + DECLARE_GE; + + ADD16(a, b, 0); + ADD16(a >> 16, b >> 16, 1); + SET_GE; + return res; +} + +uint32_t HELPER(glue(PFX, add8))(uint32_t a, uint32_t b GE_ARG) { + uint32_t res = 0; + DECLARE_GE; + + ADD8(a, b, 0); + ADD8(a >> 8, b >> 8, 1); + ADD8(a >> 16, b >> 16, 2); + ADD8(a >> 24, b >> 24, 3); + SET_GE; + return res; +} + +uint32_t HELPER(glue(PFX, sub16))(uint32_t a, uint32_t b GE_ARG) { + uint32_t res = 0; + DECLARE_GE; + + SUB16(a, b, 0); + SUB16(a >> 16, b >> 16, 1); + SET_GE; + return res; +} + +uint32_t HELPER(glue(PFX, sub8))(uint32_t a, uint32_t b GE_ARG) { + uint32_t res = 0; + DECLARE_GE; + + SUB8(a, b, 0); + SUB8(a >> 8, b >> 8, 1); + SUB8(a >> 16, b >> 16, 2); + SUB8(a >> 24, b >> 24, 3); + SET_GE; + return res; +} + +uint32_t HELPER(glue(PFX, subaddx))(uint32_t a, uint32_t b GE_ARG) { + uint32_t res = 0; + DECLARE_GE; + + ADD16(a, b >> 16, 0); + SUB16(a >> 16, b, 1); + SET_GE; + return res; +} + +uint32_t HELPER(glue(PFX, addsubx))(uint32_t a, uint32_t b GE_ARG) { + uint32_t res = 0; + DECLARE_GE; + + SUB16(a, b >> 16, 0); + ADD16(a >> 16, b, 1); + SET_GE; + return res; +} + +#undef GE_ARG +#undef DECLARE_GE +#undef SET_GE +#undef RESULT + +#undef ARITH_GE +#undef PFX +#undef ADD16 +#undef SUB16 +#undef ADD8 +#undef SUB8 diff --git a/src/target-arm/op_helper.c b/src/target-arm/op_helper.c new file mode 100644 index 0000000..8b9f2ea --- /dev/null +++ b/src/target-arm/op_helper.c @@ -0,0 +1,510 @@ +/// Copyright (C) 2003 Fabrice Bellard +/// Copyright (C) 2010 Dependable Systems Laboratory, EPFL +/// Copyright (C) 2017 Adrian Herrera +/// Copyrights of all contributions belong to their respective owners. +/// +/// This library is free software; you can redistribute it and/or +/// modify it under the terms of the GNU Library General Public +/// License as published by the Free Software Foundation; either +/// version 2 of the License, or (at your option) any later version. +/// +/// This library is distributed in the hope that it will be useful, +/// but WITHOUT ANY WARRANTY; without even the implied warranty of +/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +/// Library General Public License for more details. +/// +/// You should have received a copy of the GNU Library General Public +/// License along with this library; if not, see . + +#include "cpu-defs.h" +#include "cpu.h" + +#include + +#define SIGNBIT (uint32_t) 0x80000000 +#define SIGNBIT64 ((uint64_t) 1 << 63) + +// SYMBEX: Keep the environment in a variable +struct CPUARMState *env = 0; + +static void raise_exception(int tt) { + env->exception_index = tt; + cpu_loop_exit(env); +} + +uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, uint32_t rn, uint32_t maxindex) { + uint32_t val; + uint32_t tmp; + int index; + int shift; + uint64_t *table; + table = (uint64_t *) &env->vfp.regs[rn]; + val = 0; + for (shift = 0; shift < 32; shift += 8) { + index = (ireg >> shift) & 0xff; + if (index < maxindex) { + tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff; + val |= tmp << shift; + } else { + val |= def & (0xff << shift); + } + } + return val; +} + +#include "softmmu_exec.h" + +#define MMUSUFFIX _mmu + +#define SHIFT 0 +#include "softmmu_template.h" + +#define SHIFT 1 +#include "softmmu_template.h" + +#define SHIFT 2 +#include "softmmu_template.h" + +#define SHIFT 3 +#include "softmmu_template.h" + +#if defined(CONFIG_SYMBEX) && !defined(SYMBEX_LLVM_LIB) +#undef MMUSUFFIX +#define MMUSUFFIX _mmu_symb +#define _raw _raw_symb + +#define SHIFT 0 +#include "softmmu_template.h" + +#define SHIFT 1 +#include "softmmu_template.h" + +#define SHIFT 2 +#include "softmmu_template.h" + +#define SHIFT 3 +#include "softmmu_template.h" + +#undef _raw + +#endif + +#ifdef CONFIG_SYMBEX +#include + +/* This will be called from S2EExecutor if running concretely; It will + in turn call the real ARM IRQ handler with current CPUARMState.*/ +uint32_t se_get_active_armv7m_external_irq(int serial) { + return se_helper_get_active_armv7m_external_irq(env, serial); +} + +void se_set_armv7m_external_irq(int irq_num) { + se_helper_set_armv7m_external_irq(env, irq_num); + cpu_exit(env);//exit cpu loop to invoke the interrupt immediately +} + +void se_enable_all_armv7m_external_irq(int serial) { + se_helper_enable_all_armv7m_external_irq(env, serial); +} + +void se_enable_systick_irq(int mode) { + se_helper_enable_systick_irq(env, mode); +} +void se_do_interrupt_arm(void) +{ + se_helper_do_interrupt_arm(env); +} +#endif +/* try to fill the TLB and return an exception if error. If retaddr is + NULL, it means that the function was called in C code (i.e. not + from generated code or from helper.c) */ +/* XXX: fix it to restore all registers */ +void tlb_fill(CPUArchState *env1, target_ulong addr, target_ulong page_addr, int is_write, int mmu_idx, void *retaddr) { + CPUArchState *saved_env; + int ret; + + saved_env = env; + + if (env != env1) + env = env1; + +#ifdef CONFIG_SYMBEX + if (unlikely(*g_sqi.events.on_tlb_miss_signals_count)) { + g_sqi.events.on_tlb_miss(addr, is_write, retaddr); + } + ret = cpu_arm_handle_mmu_fault(env, page_addr, is_write, mmu_idx); +#else + ret = cpu_arm_handle_mmu_fault(env, addr, is_write, mmu_idx); +#endif + + if (unlikely(ret)) { + +#ifdef CONFIG_SYMBEX + /* In S2E we pass page address instead of addr to cpu_arm_handle_mmu_fault, + since the latter can be symbolic while the former is always concrete. + To compensate, we reset fault address here. */ + if (env->exception_index == EXCP_PREFETCH_ABORT || env->exception_index == EXCP_DATA_ABORT) { + assert(1 && "handle coprocessor exception properly"); + } +#endif + +#ifdef CONFIG_SYMBEX + if (unlikely(*g_sqi.events.on_page_fault_signals_count)) { + g_sqi.events.on_page_fault(addr, is_write, retaddr); + } +#endif + + raise_exception(env->exception_index); + } + if (saved_env != env) + env = saved_env; +} + +/* FIXME: Pass an axplicit pointer to QF to CPUARMState, and move saturating + instructions into helper.c */ +uint32_t HELPER(add_setq)(uint32_t a, uint32_t b) { + uint32_t res = a + b; + if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) + env->QF = 1; + return res; +} + +uint32_t HELPER(add_saturate)(uint32_t a, uint32_t b) { + uint32_t res = a + b; + if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { + env->QF = 1; + res = ~(((int32_t) a >> 31) ^ SIGNBIT); + } + return res; +} + +uint32_t HELPER(sub_saturate)(uint32_t a, uint32_t b) { + uint32_t res = a - b; + if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { + env->QF = 1; + res = ~(((int32_t) a >> 31) ^ SIGNBIT); + } + return res; +} + +uint32_t HELPER(double_saturate)(int32_t val) { + uint32_t res; + if (val >= 0x40000000) { + res = ~SIGNBIT; + env->QF = 1; + } else if (val <= (int32_t) 0xc0000000) { + res = SIGNBIT; + env->QF = 1; + } else { + res = val << 1; + } + return res; +} + +uint32_t HELPER(add_usaturate)(uint32_t a, uint32_t b) { + uint32_t res = a + b; + if (res < a) { + env->QF = 1; + res = ~0; + } + return res; +} + +uint32_t HELPER(sub_usaturate)(uint32_t a, uint32_t b) { + uint32_t res = a - b; + if (res > a) { + env->QF = 1; + res = 0; + } + return res; +} + +/* Signed saturation. */ +static inline uint32_t do_ssat(int32_t val, int shift) { + int32_t top; + uint32_t mask; + + top = val >> shift; + mask = (1u << shift) - 1; + if (top > 0) { + env->QF = 1; + return mask; + } else if (top < -1) { + env->QF = 1; + return ~mask; + } + return val; +} + +/* Unsigned saturation. */ +static inline uint32_t do_usat(int32_t val, int shift) { + uint32_t max; + + max = (1u << shift) - 1; + if (val < 0) { + env->QF = 1; + return 0; + } else if (val > max) { + env->QF = 1; + return max; + } + return val; +} + +/* Signed saturate. */ +uint32_t HELPER(ssat)(uint32_t x, uint32_t shift) { + return do_ssat(x, shift); +} + +/* Dual halfword signed saturate. */ +uint32_t HELPER(ssat16)(uint32_t x, uint32_t shift) { + uint32_t res; + + res = (uint16_t) do_ssat((int16_t) x, shift); + res |= do_ssat(((int32_t) x) >> 16, shift) << 16; + return res; +} + +/* Unsigned saturate. */ +uint32_t HELPER(usat)(uint32_t x, uint32_t shift) { + return do_usat(x, shift); +} + +/* Dual halfword unsigned saturate. */ +uint32_t HELPER(usat16)(uint32_t x, uint32_t shift) { + uint32_t res; + + res = (uint16_t) do_usat((int16_t) x, shift); + res |= do_usat(((int32_t) x) >> 16, shift) << 16; + return res; +} + +/* Sign/zero extend */ +uint32_t HELPER(sxtb16)(uint32_t x) { + uint32_t res; + res = (uint16_t)(int8_t) x; + res |= (uint32_t)(int8_t)(x >> 16) << 16; + return res; +} + +uint32_t HELPER(uxtb16)(uint32_t x) { + uint32_t res; + res = (uint16_t)(uint8_t) x; + res |= (uint32_t)(uint8_t)(x >> 16) << 16; + return res; +} + +uint32_t HELPER(clz)(uint32_t x) { + uint32_t res; + res = (uint32_t) clz32(x); + return res; +} + +int32_t HELPER(sdiv)(int32_t num, int32_t den) { + if (den == 0) + return 0; + if (num == INT_MIN && den == -1) + return INT_MIN; + return num / den; +} + +uint32_t HELPER(udiv)(uint32_t num, uint32_t den) { + if (den == 0) + return 0; + return num / den; +} + +uint32_t HELPER(rbit)(uint32_t x) { + x = ((x & 0xff000000) >> 24) | ((x & 0x00ff0000) >> 8) | ((x & 0x0000ff00) << 8) | ((x & 0x000000ff) << 24); + x = ((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4); + x = ((x & 0x88888888) >> 3) | ((x & 0x44444444) >> 1) | ((x & 0x22222222) << 1) | ((x & 0x11111111) << 3); + return x; +} + +uint32_t HELPER(abs)(uint32_t x) { + return ((int32_t) x < 0) ? -x : x; +} + +void HELPER(wfi)(void) { + env->exception_index = EXCP_HLT; + env->halted = 1; + cpu_loop_exit(env); +} + +void HELPER(exception)(uint32_t excp) { + env->exception_index = excp; + cpu_loop_exit(env); +} + +uint32_t HELPER(cpsr_read)(CPUARMState *env) { + return cpsr_read(env) & ~CPSR_EXEC; +} + +void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask) { + cpsr_write(env, val, mask); +} + +/* Access to user mode registers from privileged modes. */ +uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno) { + uint32_t val; + + if (regno == 13) { + val = RR_cpu(env, banked_r13[0]); + } else if (regno == 14) { + val = RR_cpu(env, banked_r14[0]); + } else if (regno == 15) { + val = env->regs[regno]; + } else if (regno >= 8 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { + val = RR_cpu(env, usr_regs[regno - 8]); + } else { + val = RR_cpu(env, regs[regno]); + } + return val; +} + +void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val) { + if (regno == 13) { + WR_cpu(env, banked_r13[0], val); + } else if (regno == 14) { + WR_cpu(env, banked_r14[0], val); + } else if (regno == 15) { + env->regs[regno] = val; + } else if (regno >= 8 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { + WR_cpu(env, usr_regs[regno - 8], val); + } else { + WR_cpu(env, regs[regno], val); + } +} + +/* ??? Flag setting arithmetic is awkward because we need to do comparisons. + The only way to do that in TCG is a conditional branch, which clobbers + all our temporaries. For now implement these as helper functions. */ + +uint32_t HELPER(add_cc)(CPUARMState *env, uint32_t a, uint32_t b) { + uint32_t result; + result = a + b; + WR_cpu(env, NF, result); + WR_cpu(env, ZF, result); + WR_cpu(env, CF, (result < a)); + WR_cpu(env, VF, ((a ^ b ^ -1) & (a ^ result))); + return result; +} + +uint32_t HELPER(adc_cc)(CPUARMState *env, uint32_t a, uint32_t b) { + uint32_t result; + if (!(RR_cpu(env, CF))) { + result = a + b; + WR_cpu(env, CF, (result < a)); + } else { + result = a + b + 1; + WR_cpu(env, CF, (result <= a)); + } + WR_cpu(env, VF, ((a ^ b ^ -1) & (a ^ result))); + WR_cpu(env, NF, result); + WR_cpu(env, ZF, result); + return result; +} + +uint32_t HELPER(sub_cc)(CPUARMState *env, uint32_t a, uint32_t b) { + uint32_t result; + result = a - b; + WR_cpu(env, NF, result); + WR_cpu(env, ZF, result); + WR_cpu(env, CF, (a >= b)); + WR_cpu(env, VF, ((a ^ b) & (a ^ result))); + return result; +} + +uint32_t HELPER(sbc_cc)(CPUARMState *env, uint32_t a, uint32_t b) { + uint32_t result; + if (!(RR_cpu(env, CF))) { + result = a - b - 1; + WR_cpu(env, CF, (a > b)); + } else { + result = a - b; + WR_cpu(env, CF, (a >= b)); + } + WR_cpu(env, VF, ((a ^ b) & (a ^ result))); + WR_cpu(env, NF, result); + WR_cpu(env, ZF, result); + return result; +} + +/* Similarly for variable shift instructions. */ + +uint32_t HELPER(shl)(uint32_t x, uint32_t i) { + int shift = i & 0xff; + if (shift >= 32) + return 0; + return x << shift; +} + +uint32_t HELPER(shr)(uint32_t x, uint32_t i) { + int shift = i & 0xff; + if (shift >= 32) + return 0; + return (uint32_t) x >> shift; +} + +uint32_t HELPER(sar)(uint32_t x, uint32_t i) { + int shift = i & 0xff; + if (shift >= 32) + shift = 31; + return (int32_t) x >> shift; +} + +uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i) { + int shift = i & 0xff; + if (shift >= 32) { + if (shift == 32) + WR_cpu(env, CF, (x & 1)); + else + WR_cpu(env, CF, 0); + return 0; + } else if (shift != 0) { + WR_cpu(env, CF, ((x >> (32 - shift)) & 1)); + return x << shift; + } + return x; +} + +uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i) { + int shift = i & 0xff; + if (shift >= 32) { + if (shift == 32) + WR_cpu(env, CF, ((x >> 31) & 1)); + else + WR_cpu(env, CF, 0); + return 0; + } else if (shift != 0) { + WR_cpu(env, CF, ((x >> (shift - 1)) & 1)); + return x >> shift; + } + return x; +} + +uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i) { + int shift = i & 0xff; + if (shift >= 32) { + WR_cpu(env, CF, ((x >> 31) & 1)); + return (int32_t) x >> 31; + } else if (shift != 0) { + WR_cpu(env, CF, ((x >> (shift - 1)) & 1)); + return (int32_t) x >> shift; + } + return x; +} + +uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i) { + int shift1, shift; + shift1 = i & 0xff; + shift = shift1 & 0x1f; + if (shift == 0) { + if (shift1 != 0) + WR_cpu(env, CF, ((x >> 31) & 1)); + return x; + } else { + WR_cpu(env, CF, ((x >> (shift - 1)) & 1)); + return ((uint32_t) x >> shift) | (x << (32 - shift)); + } +} diff --git a/src/target-arm/translate.c b/src/target-arm/translate.c new file mode 100644 index 0000000..c4aa518 --- /dev/null +++ b/src/target-arm/translate.c @@ -0,0 +1,10686 @@ +/* + * ARM translation + * + * Copyright (c) 2003 Fabrice Bellard + * Copyright (c) 2005-2007 CodeSourcery + * Copyright (c) 2007 OpenedHand, Ltd. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see . + */ +#include +#include +#include +#include +#include + +// clang-format off +#include "cpu.h" +#include +// clang-format on + +#include + +#ifdef CONFIG_SYMBEX +#include +#endif + +//#define DEBUG_TS + +#ifdef DEBUG_TS +#define TPRINTF(...) printf(__VA_ARGS__) +#else +#define TPRINTF(...) +#endif + +#define ENABLE_ARCH_4T arm_feature(env, ARM_FEATURE_V4T) +#define ENABLE_ARCH_5 arm_feature(env, ARM_FEATURE_V5) +/* currently all emulated v5 cores are also v5TE, so don't bother */ +#define ENABLE_ARCH_5TE arm_feature(env, ARM_FEATURE_V5) +#define ENABLE_ARCH_5J 0 +#define ENABLE_ARCH_6 arm_feature(env, ARM_FEATURE_V6) +#define ENABLE_ARCH_6K arm_feature(env, ARM_FEATURE_V6K) +#define ENABLE_ARCH_6T2 arm_feature(env, ARM_FEATURE_THUMB2) +#define ENABLE_ARCH_7 arm_feature(env, ARM_FEATURE_V7) + +#define ARCH(x) \ + do { \ + if (!ENABLE_ARCH_##x) \ + goto illegal_op; \ + } while (0) + +/* internal defines */ +typedef struct DisasContext { + target_ulong pc; + int is_jmp; + /* Nonzero if this instruction has been conditionally skipped. */ + int condjmp; + /* The label that will be jumped to when the instruction is skipped. */ + TCGLabel *condlabel; + /* Thumb-2 condtional execution bits. */ + int condexec_mask; + int condexec_cond; + struct TranslationBlock *tb; + int singlestep_enabled; + int thumb; + int bswap_code; +#if !defined(CONFIG_USER_ONLY) + int user; +#endif + int vfp_enabled; + int vec_len; + int vec_stride; +#ifdef CONFIG_SYMBEX + void *cpuState; + target_ulong insPc; /* pc of the instruction being translated */ + int useNextPc; /* indicates whether nextPc is valid */ + target_ulong nextPc; /* pc of the instruction following insPc */ + int enable_jmp_im; + int done_instr_end; /* 1 when onTranslateInstructionEnd was called */ + + // Pointer to tcg pointer for the current instruction + uint16_t *ins_opc; + TCGArg *ins_arg; + + int done_reg_access_end; /* 1 when onTranslateRegisterAccess was called */ + int instrument; /* 1 when it is ok to call plugin code */ + int invalid_instr; /* tb contains invalid instruction */ +#endif + CPUARMState *env; +} DisasContext; +#ifdef CONFIG_SYMBEX +#define SET_TB_TYPE(t) s->tb->se_tb_type = t; +#else +#define SET_TB_TYPE(t) +#endif + +#if defined(CONFIG_USER_ONLY) +#define IS_USER(s) 1 +#else +#define IS_USER(s) (s->user) +#endif + +/* These instructions trap after executing, so defer them until after the + conditional executions state has been updated. */ +#define DISAS_WFI 4 +#define DISAS_SWI 5 + +/* We reuse the same 64-bit temporaries for efficiency. */ +static TCGv_i64 cpu_V0, cpu_V1, cpu_M0; +static TCGv_i32 cpu_R[16]; +static TCGv_i32 cpu_exclusive_addr; +static TCGv_i32 cpu_exclusive_val; +static TCGv_i32 cpu_exclusive_high; +#ifdef CONFIG_USER_ONLY +static TCGv_i32 cpu_exclusive_test; +static TCGv_i32 cpu_exclusive_info; +#endif + +/* FIXME: These should be removed. */ +static TCGv cpu_F0s, cpu_F1s; +static TCGv_i64 cpu_F0d, cpu_F1d; + +//#include "gen-icount.h" + +static const char *regnames[] = {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", + "r8", "r9", "r10", "r11", "r12", "r13", "r14", "pc"}; +#ifdef CONFIG_SYMBEX +static inline void instr_translate_compute_reg_mask_end(DisasContext *dc) { + uint64_t rmask, wmask, accesses_mem; + + if (dc->done_reg_access_end) { + return; + } + + tcg_calc_regmask(tcg_ctx, &rmask, &wmask, &accesses_mem); + + // First six bits denote access to flags registers + env ptr + rmask >>= 6; + wmask >>= 6; + + g_sqi.events.on_translate_register_access(dc->tb, dc->insPc, rmask, wmask, (int) accesses_mem); + + dc->done_reg_access_end = 1; +} +#endif + +#ifdef CONFIG_SYMBEX +void *g_invokeCallRetInstrumentation __attribute__((weak)); + +static inline void instr_gen_call_ret(DisasContext *s, int isCall) { + if (likely(!*g_sqi.events.on_call_return_signals_count)) { + return; + } + + int instrument = g_sqi.events.on_call_return_translate(s->pc, isCall); + if (!instrument) { + return; + } + TPRINTF("NOT Implenmented %d", instrument); + +/* int clabel = gen_new_label(); + + tcg_gen_movi_i32(cpu_tmp1_i32, (uintptr_t) &g_invokeCallRetInstrumentation); + + tcg_gen_ld_i32(cpu_tmp1_i32, TCGV_NAT_TO_PTR(cpu_tmp1_i32), 0); + tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_tmp1_i32, 0, clabel); + + tcg_gen_movi_tl(cpu_T[1], s->insPc); + + if (isCall) { + gen_helper_se_call(cpu_T[1]); + } else { + gen_helper_se_ret(cpu_T[1]); + } + + gen_set_label(clabel); +*/ +} + +static inline void gen_instr_end(DisasContext *s) { + if (unlikely(*g_sqi.events.on_translate_instruction_end_signals_count && s->instrument)) + g_sqi.events.on_translate_instruction_end(s, s->tb, s->insPc, s->useNextPc ? s->nextPc : (uint64_t) -1); +} + +static inline void gen_eob_event(DisasContext *s, int static_target, target_ulong target_pc) { + gen_instr_end(s); + + if (unlikely(*g_sqi.events.on_translate_block_end_signals_count && s->instrument)) + g_sqi.events.on_translate_block_end(s->tb, s->insPc, static_target, target_pc); + + if (unlikely(*g_sqi.events.on_call_return_signals_count && s->instrument)) { + if (s->tb->se_tb_type == TB_CALL || s->tb->se_tb_type == TB_CALL_IND) { + instr_gen_call_ret(s, 1); + } else if (s->tb->se_tb_type == TB_RET) { + instr_gen_call_ret(s, 0); + } + } + + s->done_instr_end = 1; +} + +#endif +/* initialize TCG globals. */ +void arm_translate_init(void) { + int i; + + for (i = 0; i < 16; i++) { + cpu_R[i] = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, regs[i]), regnames[i]); + } + cpu_exclusive_addr = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, exclusive_addr), "exclusive_addr"); + cpu_exclusive_val = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, exclusive_val), "exclusive_val"); + cpu_exclusive_high = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, exclusive_high), "exclusive_high"); +#ifdef CONFIG_USER_ONLY + cpu_exclusive_test = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, exclusive_test), "exclusive_test"); + cpu_exclusive_info = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, exclusive_info), "exclusive_info"); +#endif +} + +static inline void gen_tb_start(TranslationBlock *tb) { + if (tb->cflags & CF_HAS_INTERRUPT_EXIT) { + TCGv_i32 exit_request; + + tcg_ctx->exitreq_label = gen_new_label(); + exit_request = tcg_temp_new_i32(); + tcg_gen_ld_i32(exit_request, cpu_env, offsetof(CPUState, exit_request)); + + tcg_gen_brcondi_i32(TCG_COND_NE, exit_request, 0, tcg_ctx->exitreq_label); + + tcg_temp_free_i32(exit_request); + } +} + +static inline void gen_tb_end(TranslationBlock *tb) { + if (tb->cflags & CF_HAS_INTERRUPT_EXIT) { + assert(tcg_ctx->exitreq_label); + gen_set_label(tcg_ctx->exitreq_label); + tcg_gen_exit_tb(tb, TB_EXIT_REQUESTED); + } +} + +static inline TCGv load_cpu_offset(int offset) { + TCGv tmp = tcg_temp_new_i32(); + tcg_gen_ld_i32(tmp, cpu_env, offset); + return tmp; +} + +#define load_cpu_field(name) load_cpu_offset(offsetof(CPUARMState, name)) + +static inline void store_cpu_offset(TCGv var, int offset) { + tcg_gen_st_i32(var, cpu_env, offset); + tcg_temp_free_i32(var); +} + +#define store_cpu_field(var, name) store_cpu_offset(var, offsetof(CPUARMState, name)) + +/* Set a variable to the value of a CPU register. */ +static void load_reg_var(DisasContext *s, TCGv var, int reg) { + if (reg == 15) { + uint32_t addr; + /* normaly, since we updated PC, we need only to add one insn */ + if (s->thumb) + addr = (long) s->pc + 2; + else + addr = (long) s->pc + 4; + tcg_gen_movi_i32(var, addr); + } else { + tcg_gen_mov_i32(var, cpu_R[reg]); + } +} + +/* Create a new temporary and set it to the value of a CPU register. */ +static inline TCGv load_reg(DisasContext *s, int reg) { + TCGv tmp = tcg_temp_new_i32(); + load_reg_var(s, tmp, reg); + return tmp; +} + +/* Set a CPU register. The source must be a temporary and will be + marked as dead. */ +static void store_reg(DisasContext *s, int reg, TCGv var) { + if (reg == 15) { + tcg_gen_andi_i32(var, var, ~1); + s->is_jmp = DISAS_JUMP; + } + tcg_gen_mov_i32(cpu_R[reg], var); + tcg_temp_free_i32(var); +} + +/* Value extensions. */ +#define gen_uxtb(var) tcg_gen_ext8u_i32(var, var) +#define gen_uxth(var) tcg_gen_ext16u_i32(var, var) +#define gen_sxtb(var) tcg_gen_ext8s_i32(var, var) +#define gen_sxth(var) tcg_gen_ext16s_i32(var, var) + +#define gen_sxtb16(var) gen_helper_sxtb16(var, var) +#define gen_uxtb16(var) gen_helper_uxtb16(var, var) + +static inline void gen_set_cpsr(TCGv var, uint32_t mask) { + TCGv tmp_mask = tcg_const_i32(mask); + gen_helper_cpsr_write(cpu_env, var, tmp_mask); + tcg_temp_free_i32(tmp_mask); +} +/* Set NZCV flags from the high 4 bits of var. */ +#define gen_set_nzcv(var) gen_set_cpsr(var, CPSR_NZCV) + +static void gen_exception(int excp) { + TCGv tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, excp); + gen_helper_exception(tmp); + tcg_temp_free_i32(tmp); +} + +static void gen_smul_dual(TCGv a, TCGv b) { + TCGv tmp1 = tcg_temp_new_i32(); + TCGv tmp2 = tcg_temp_new_i32(); + tcg_gen_ext16s_i32(tmp1, a); + tcg_gen_ext16s_i32(tmp2, b); + tcg_gen_mul_i32(tmp1, tmp1, tmp2); + tcg_temp_free_i32(tmp2); + tcg_gen_sari_i32(a, a, 16); + tcg_gen_sari_i32(b, b, 16); + tcg_gen_mul_i32(b, b, a); + tcg_gen_mov_i32(a, tmp1); + tcg_temp_free_i32(tmp1); +} + +/* Byteswap each halfword. */ +static void gen_rev16(TCGv var) { + TCGv tmp = tcg_temp_new_i32(); + tcg_gen_shri_i32(tmp, var, 8); + tcg_gen_andi_i32(tmp, tmp, 0x00ff00ff); + tcg_gen_shli_i32(var, var, 8); + tcg_gen_andi_i32(var, var, 0xff00ff00); + tcg_gen_or_i32(var, var, tmp); + tcg_temp_free_i32(tmp); +} + +/* Byteswap low halfword and sign extend. */ +static void gen_revsh(TCGv var) { + tcg_gen_ext16u_i32(var, var); + tcg_gen_bswap16_i32(var, var); + tcg_gen_ext16s_i32(var, var); +} + +/* Unsigned bitfield extract. */ +static void gen_ubfx(TCGv var, int shift, uint32_t mask) { + if (shift) + tcg_gen_shri_i32(var, var, shift); + tcg_gen_andi_i32(var, var, mask); +} + +/* Signed bitfield extract. */ +static void gen_sbfx(TCGv var, int shift, int width) { + uint32_t signbit; + + if (shift) + tcg_gen_sari_i32(var, var, shift); + if (shift + width < 32) { + signbit = 1u << (width - 1); + tcg_gen_andi_i32(var, var, (1u << width) - 1); + tcg_gen_xori_i32(var, var, signbit); + tcg_gen_subi_i32(var, var, signbit); + } +} + +/* Bitfield insertion. Insert val into base. Clobbers base and val. */ +static void gen_bfi(TCGv dest, TCGv base, TCGv val, int shift, uint32_t mask) { + tcg_gen_andi_i32(val, val, mask); + tcg_gen_shli_i32(val, val, shift); + tcg_gen_andi_i32(base, base, ~(mask << shift)); + tcg_gen_or_i32(dest, base, val); +} + +/* Return (b << 32) + a. Mark inputs as dead */ +static TCGv_i64 gen_addq_msw(TCGv_i64 a, TCGv b) { + TCGv_i64 tmp64 = tcg_temp_new_i64(); + + tcg_gen_extu_i32_i64(tmp64, b); + tcg_temp_free_i32(b); + tcg_gen_shli_i64(tmp64, tmp64, 32); + tcg_gen_add_i64(a, tmp64, a); + + tcg_temp_free_i64(tmp64); + return a; +} + +/* Return (b << 32) - a. Mark inputs as dead. */ +static TCGv_i64 gen_subq_msw(TCGv_i64 a, TCGv b) { + TCGv_i64 tmp64 = tcg_temp_new_i64(); + + tcg_gen_extu_i32_i64(tmp64, b); + tcg_temp_free_i32(b); + tcg_gen_shli_i64(tmp64, tmp64, 32); + tcg_gen_sub_i64(a, tmp64, a); + + tcg_temp_free_i64(tmp64); + return a; +} + +/* FIXME: Most targets have native widening multiplication. + It would be good to use that instead of a full wide multiply. */ +/* 32x32->64 multiply. Marks inputs as dead. */ +static TCGv_i64 gen_mulu_i64_i32(TCGv a, TCGv b) { + TCGv_i64 tmp1 = tcg_temp_new_i64(); + TCGv_i64 tmp2 = tcg_temp_new_i64(); + + tcg_gen_extu_i32_i64(tmp1, a); + tcg_temp_free_i32(a); + tcg_gen_extu_i32_i64(tmp2, b); + tcg_temp_free_i32(b); + tcg_gen_mul_i64(tmp1, tmp1, tmp2); + tcg_temp_free_i64(tmp2); + return tmp1; +} + +static TCGv_i64 gen_muls_i64_i32(TCGv a, TCGv b) { + TCGv_i64 tmp1 = tcg_temp_new_i64(); + TCGv_i64 tmp2 = tcg_temp_new_i64(); + + tcg_gen_ext_i32_i64(tmp1, a); + tcg_temp_free_i32(a); + tcg_gen_ext_i32_i64(tmp2, b); + tcg_temp_free_i32(b); + tcg_gen_mul_i64(tmp1, tmp1, tmp2); + tcg_temp_free_i64(tmp2); + return tmp1; +} + +/* Swap low and high halfwords. */ +static void gen_swap_half(TCGv var) { + TCGv tmp = tcg_temp_new_i32(); + tcg_gen_shri_i32(tmp, var, 16); + tcg_gen_shli_i32(var, var, 16); + tcg_gen_or_i32(var, var, tmp); + tcg_temp_free_i32(tmp); +} + +/* Dual 16-bit add. Result placed in t0 and t1 is marked as dead. + tmp = (t0 ^ t1) & 0x8000; + t0 &= ~0x8000; + t1 &= ~0x8000; + t0 = (t0 + t1) ^ tmp; + */ + +static void gen_add16(TCGv t0, TCGv t1) { + TCGv tmp = tcg_temp_new_i32(); + tcg_gen_xor_i32(tmp, t0, t1); + tcg_gen_andi_i32(tmp, tmp, 0x8000); + tcg_gen_andi_i32(t0, t0, ~0x8000); + tcg_gen_andi_i32(t1, t1, ~0x8000); + tcg_gen_add_i32(t0, t0, t1); + tcg_gen_xor_i32(t0, t0, tmp); + tcg_temp_free_i32(tmp); + tcg_temp_free_i32(t1); +} + +#define gen_set_CF(var) tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, CF)) + +/* Set CF to the top bit of var. */ +static void gen_set_CF_bit31(TCGv var) { + TCGv tmp = tcg_temp_new_i32(); + tcg_gen_shri_i32(tmp, var, 31); + gen_set_CF(tmp); + tcg_temp_free_i32(tmp); +} + +/* Set N and Z flags from var. */ +static inline void gen_logic_CC(TCGv var) { + tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, NF)); + tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, ZF)); +} + +/* T0 += T1 + CF. */ +static void gen_adc(TCGv t0, TCGv t1) { + TCGv tmp; + tcg_gen_add_i32(t0, t0, t1); + tmp = load_cpu_field(CF); + tcg_gen_add_i32(t0, t0, tmp); + tcg_temp_free_i32(tmp); +} + +/* dest = T0 + T1 + CF. */ +static void gen_add_carry(TCGv dest, TCGv t0, TCGv t1) { + TCGv tmp; + tcg_gen_add_i32(dest, t0, t1); + tmp = load_cpu_field(CF); + tcg_gen_add_i32(dest, dest, tmp); + tcg_temp_free_i32(tmp); +} + +/* dest = T0 - T1 + CF - 1. */ +static void gen_sub_carry(TCGv dest, TCGv t0, TCGv t1) { + TCGv tmp; + tcg_gen_sub_i32(dest, t0, t1); + tmp = load_cpu_field(CF); + tcg_gen_add_i32(dest, dest, tmp); + tcg_gen_subi_i32(dest, dest, 1); + tcg_temp_free_i32(tmp); +} + +/* FIXME: Implement this natively. */ +#define tcg_gen_abs_i32(t0, t1) gen_helper_abs(t0, t1) + +static void shifter_out_im(TCGv var, int shift) { + TCGv tmp = tcg_temp_new_i32(); + if (shift == 0) { + tcg_gen_andi_i32(tmp, var, 1); + } else { + tcg_gen_shri_i32(tmp, var, shift); + if (shift != 31) + tcg_gen_andi_i32(tmp, tmp, 1); + } + gen_set_CF(tmp); + tcg_temp_free_i32(tmp); +} + +/* Shift by immediate. Includes special handling for shift == 0. */ +static inline void gen_arm_shift_im(TCGv var, int shiftop, int shift, int flags) { + switch (shiftop) { + case 0: /* LSL */ + if (shift != 0) { + if (flags) + shifter_out_im(var, 32 - shift); + tcg_gen_shli_i32(var, var, shift); + } + break; + case 1: /* LSR */ + if (shift == 0) { + if (flags) { + tcg_gen_shri_i32(var, var, 31); + gen_set_CF(var); + } + tcg_gen_movi_i32(var, 0); + } else { + if (flags) + shifter_out_im(var, shift - 1); + tcg_gen_shri_i32(var, var, shift); + } + break; + case 2: /* ASR */ + if (shift == 0) + shift = 32; + if (flags) + shifter_out_im(var, shift - 1); + if (shift == 32) + shift = 31; + tcg_gen_sari_i32(var, var, shift); + break; + case 3: /* ROR/RRX */ + if (shift != 0) { + if (flags) + shifter_out_im(var, shift - 1); + tcg_gen_rotri_i32(var, var, shift); + break; + } else { + TCGv tmp = load_cpu_field(CF); + if (flags) + shifter_out_im(var, 0); + tcg_gen_shri_i32(var, var, 1); + tcg_gen_shli_i32(tmp, tmp, 31); + tcg_gen_or_i32(var, var, tmp); + tcg_temp_free_i32(tmp); + } + } +}; + +static inline void gen_arm_shift_reg(TCGv var, int shiftop, TCGv shift, int flags) { + if (flags) { + switch (shiftop) { + case 0: + gen_helper_shl_cc(var, cpu_env, var, shift); + break; + case 1: + gen_helper_shr_cc(var, cpu_env, var, shift); + break; + case 2: + gen_helper_sar_cc(var, cpu_env, var, shift); + break; + case 3: + gen_helper_ror_cc(var, cpu_env, var, shift); + break; + } + } else { + switch (shiftop) { + case 0: + gen_helper_shl(var, var, shift); + break; + case 1: + gen_helper_shr(var, var, shift); + break; + case 2: + gen_helper_sar(var, var, shift); + break; + case 3: + tcg_gen_andi_i32(shift, shift, 0x1f); + tcg_gen_rotr_i32(var, var, shift); + break; + } + } + tcg_temp_free_i32(shift); +} + +#define PAS_OP(pfx) \ + switch (op2) { \ + case 0: \ + gen_pas_helper(glue(pfx, add16)); \ + break; \ + case 1: \ + gen_pas_helper(glue(pfx, addsubx)); \ + break; \ + case 2: \ + gen_pas_helper(glue(pfx, subaddx)); \ + break; \ + case 3: \ + gen_pas_helper(glue(pfx, sub16)); \ + break; \ + case 4: \ + gen_pas_helper(glue(pfx, add8)); \ + break; \ + case 7: \ + gen_pas_helper(glue(pfx, sub8)); \ + break; \ + } +static void gen_arm_parallel_addsub(int op1, int op2, TCGv a, TCGv b) { + TCGv_ptr tmp; + + switch (op1) { +#define gen_pas_helper(name) glue(gen_helper_, name)(a, a, b, tmp) + case 1: + tmp = tcg_temp_new_ptr(); + tcg_gen_addi_ptr(tmp, cpu_env, offsetof(CPUARMState, GE)); + PAS_OP(s) + tcg_temp_free_ptr(tmp); + break; + case 5: + tmp = tcg_temp_new_ptr(); + tcg_gen_addi_ptr(tmp, cpu_env, offsetof(CPUARMState, GE)); + PAS_OP(u) + tcg_temp_free_ptr(tmp); + break; +#undef gen_pas_helper +#define gen_pas_helper(name) glue(gen_helper_, name)(a, a, b) + case 2: + PAS_OP(q); + break; + case 3: + PAS_OP(sh); + break; + case 6: + PAS_OP(uq); + break; + case 7: + PAS_OP(uh); + break; +#undef gen_pas_helper + } +} +#undef PAS_OP + +/* For unknown reasons Arm and Thumb-2 use arbitrarily different encodings. */ +#define PAS_OP(pfx) \ + switch (op1) { \ + case 0: \ + gen_pas_helper(glue(pfx, add8)); \ + break; \ + case 1: \ + gen_pas_helper(glue(pfx, add16)); \ + break; \ + case 2: \ + gen_pas_helper(glue(pfx, addsubx)); \ + break; \ + case 4: \ + gen_pas_helper(glue(pfx, sub8)); \ + break; \ + case 5: \ + gen_pas_helper(glue(pfx, sub16)); \ + break; \ + case 6: \ + gen_pas_helper(glue(pfx, subaddx)); \ + break; \ + } +static void gen_thumb2_parallel_addsub(int op1, int op2, TCGv a, TCGv b) { + TCGv_ptr tmp; + + switch (op2) { +#define gen_pas_helper(name) glue(gen_helper_, name)(a, a, b, tmp) + case 0: + tmp = tcg_temp_new_ptr(); + tcg_gen_addi_ptr(tmp, cpu_env, offsetof(CPUARMState, GE)); + PAS_OP(s) + tcg_temp_free_ptr(tmp); + break; + case 4: + tmp = tcg_temp_new_ptr(); + tcg_gen_addi_ptr(tmp, cpu_env, offsetof(CPUARMState, GE)); + PAS_OP(u) + tcg_temp_free_ptr(tmp); + break; +#undef gen_pas_helper +#define gen_pas_helper(name) glue(gen_helper_, name)(a, a, b) + case 1: + PAS_OP(q); + break; + case 2: + PAS_OP(sh); + break; + case 5: + PAS_OP(uq); + break; + case 6: + PAS_OP(uh); + break; +#undef gen_pas_helper + } +} +#undef PAS_OP + +static void gen_test_cc(int cc, TCGLabel *label) { + TCGv tmp; + TCGv tmp2; + + TCGv_i32 value; + TCGCond cond; + + switch (cc) { + case 0: /* eq: Z */ + case 1: /* ne: !Z */ + cond = TCG_COND_EQ; + value = load_cpu_field(ZF); + break; + case 2: /* cs: C */ + case 3: /* cc: !C */ + cond = TCG_COND_NE; + value = load_cpu_field(CF); + break; + case 4: /* mi: N */ + case 5: /* pl: !N */ + cond = TCG_COND_LT; + value = load_cpu_field(NF); + break; + case 6: /* vs: V */ + case 7: /* vc: !V */ + cond = TCG_COND_LT; + value = load_cpu_field(VF); + break; + case 8: /* hi: C && !Z */ + case 9: /* ls: !C || Z */ + cond = TCG_COND_NE; + value = tcg_temp_new_i32(); + tmp = load_cpu_field(CF); + tmp2 = load_cpu_field(ZF); + /* CF is 1 for C, so -CF is an all-bits-set mask for C; + ZF is non-zero for !Z; so AND the two subexpressions. */ + tcg_gen_neg_i32(value, tmp); + tcg_gen_and_i32(value, value, tmp2); + tcg_temp_free_i32(tmp); + tcg_temp_free_i32(tmp2); + break; + case 10: /* ge: N == V -> N ^ V == 0 */ + case 11: /* lt: N != V -> N ^ V != 0 */ + cond = TCG_COND_GE; + value = tcg_temp_new_i32(); + tmp = load_cpu_field(VF); + tmp2 = load_cpu_field(NF); + tcg_gen_xor_i32(value, tmp, tmp2); + tcg_temp_free_i32(tmp); + tcg_temp_free_i32(tmp2); + break; + case 12: /* gt: !Z && N == V */ + case 13: /* le: Z || N != V */ + cond = TCG_COND_NE; + value = tcg_temp_new_i32(); + tmp = load_cpu_field(VF); + tmp2 = load_cpu_field(NF); + /* (N == V) is equal to the sign bit of ~(NF ^ VF). Propagate + * the sign bit then AND with ZF to yield the result. */ + tcg_gen_xor_i32(value, tmp, tmp2); + tcg_gen_sari_i32(value, value, 31); + tcg_temp_free_i32(tmp); + tcg_temp_free_i32(tmp2); + tmp = load_cpu_field(ZF); + tcg_gen_andc_i32(value, tmp, value); + tcg_temp_free_i32(tmp); + break; + case 14: /* always */ + case 15: /* always */ + /* Use the ALWAYS condition, which will fold early. + * It doesn't matter what we use for the value. */ + cond = TCG_COND_ALWAYS; + value = load_cpu_field(ZF); + goto no_invert; + default: + fprintf(stderr, "Bad condition code 0x%x\n", cc); + abort(); + } + + if (cc & 1) { + cond = tcg_invert_cond(cond); + } + + no_invert: + tcg_gen_brcondi_i32(cond, value, 0, label); + tcg_temp_free_i32(value); +} + +static const uint8_t table_logic_cc[16] = { + 1, /* and */ + 1, /* xor */ + 0, /* sub */ + 0, /* rsb */ + 0, /* add */ + 0, /* adc */ + 0, /* sbc */ + 0, /* rsc */ + 1, /* andl */ + 1, /* xorl */ + 0, /* cmp */ + 0, /* cmn */ + 1, /* orr */ + 1, /* mov */ + 1, /* bic */ + 1, /* mvn */ +}; + +/* Set PC and Thumb state from an immediate address. */ +static inline void gen_bx_im(DisasContext *s, uint32_t addr) { + TCGv tmp; + SET_TB_TYPE(TB_CALL_IND); + s->is_jmp = DISAS_UPDATE; + if (s->thumb != (addr & 1)) { + tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, addr & 1); + tcg_gen_st_i32(tmp, cpu_env, offsetof(CPUARMState, thumb)); + tcg_temp_free_i32(tmp); + } + tcg_gen_movi_i32(cpu_R[15], addr & ~1); +} + +/* Set PC and Thumb state from var. var is marked as dead. */ +static inline void gen_bx(DisasContext *s, TCGv var) { + s->is_jmp = DISAS_UPDATE; + tcg_gen_andi_i32(cpu_R[15], var, ~1); + tcg_gen_andi_i32(var, var, 1); + store_cpu_field(var, thumb); +} + +/* Variant of store_reg which uses branch&exchange logic when storing + to r15 in ARM architecture v7 and above. The source must be a temporary + and will be marked as dead. */ +static inline void store_reg_bx(CPUARMState *env, DisasContext *s, int reg, TCGv var) { + if (reg == 15 && ENABLE_ARCH_7) { + gen_bx(s, var); + } else { + store_reg(s, reg, var); + } +} + +/* Variant of store_reg which uses branch&exchange logic when storing + * to r15 in ARM architecture v5T and above. This is used for storing + * the results of a LDR/LDM/POP into r15, and corresponds to the cases + * in the ARM ARM which use the LoadWritePC() pseudocode function. */ +static inline void store_reg_from_load(CPUARMState *env, DisasContext *s, int reg, TCGv var) { + if (reg == 15 && ENABLE_ARCH_5) { + gen_bx(s, var); + + } else { + store_reg(s, reg, var); + } +} + +static inline TCGv gen_ld8s(TCGv addr, int index) { + TCGv tmp = tcg_temp_new_i32(); + tcg_gen_qemu_ld8s(tmp, addr, index); + return tmp; +} +static inline TCGv gen_ld8u(TCGv addr, int index) { + TCGv tmp = tcg_temp_new_i32(); + tcg_gen_qemu_ld8u(tmp, addr, index); + return tmp; +} +static inline TCGv gen_ld16s(TCGv addr, int index) { + TCGv tmp = tcg_temp_new_i32(); + tcg_gen_qemu_ld16s(tmp, addr, index); + return tmp; +} +static inline TCGv gen_ld16u(TCGv addr, int index) { + TCGv tmp = tcg_temp_new_i32(); + tcg_gen_qemu_ld16u(tmp, addr, index); + return tmp; +} +static inline TCGv gen_ld32(TCGv addr, int index) { + TCGv tmp = tcg_temp_new_i32(); + tcg_gen_qemu_ld32u(tmp, addr, index); + return tmp; +} +static inline TCGv_i64 gen_ld64(TCGv addr, int index) { + TCGv_i64 tmp = tcg_temp_new_i64(); + tcg_gen_qemu_ld64(tmp, addr, index); + return tmp; +} +static inline void gen_st8(TCGv val, TCGv addr, int index) { + tcg_gen_qemu_st8(val, addr, index); + tcg_temp_free_i32(val); +} +static inline void gen_st16(TCGv val, TCGv addr, int index) { + tcg_gen_qemu_st16(val, addr, index); + tcg_temp_free_i32(val); +} +static inline void gen_st32(TCGv val, TCGv addr, int index) { + tcg_gen_qemu_st32(val, addr, index); + tcg_temp_free_i32(val); +} +static inline void gen_st64(TCGv_i64 val, TCGv addr, int index) { + tcg_gen_qemu_st64(val, addr, index); + tcg_temp_free_i64(val); +} + +static inline void gen_set_pc_im(uint32_t val) { + tcg_gen_movi_i32(cpu_R[15], val); +} + +/* Force a TB lookup after an instruction that changes the CPU state. */ +static inline void gen_lookup_tb(DisasContext *s) { + tcg_gen_movi_i32(cpu_R[15], s->pc & ~1); + s->is_jmp = DISAS_UPDATE; +} + +static inline void gen_add_data_offset(DisasContext *s, unsigned int insn, TCGv var) { + int val, rm, shift, shiftop; + TCGv offset; + + if (!(insn & (1 << 25))) { + /* immediate */ + val = insn & 0xfff; + if (!(insn & (1 << 23))) + val = -val; + if (val != 0) + tcg_gen_addi_i32(var, var, val); + } else { + /* shift/register */ + rm = (insn) &0xf; + shift = (insn >> 7) & 0x1f; + shiftop = (insn >> 5) & 3; + offset = load_reg(s, rm); + gen_arm_shift_im(offset, shiftop, shift, 0); + if (!(insn & (1 << 23))) + tcg_gen_sub_i32(var, var, offset); + else + tcg_gen_add_i32(var, var, offset); + tcg_temp_free_i32(offset); + } +} + +static inline void gen_add_datah_offset(DisasContext *s, unsigned int insn, int extra, TCGv var) { + int val, rm; + TCGv offset; + + if (insn & (1 << 22)) { + /* immediate */ + val = (insn & 0xf) | ((insn >> 4) & 0xf0); + if (!(insn & (1 << 23))) + val = -val; + val += extra; + if (val != 0) + tcg_gen_addi_i32(var, var, val); + } else { + /* register */ + if (extra) + tcg_gen_addi_i32(var, var, extra); + rm = (insn) &0xf; + offset = load_reg(s, rm); + if (!(insn & (1 << 23))) + tcg_gen_sub_i32(var, var, offset); + else + tcg_gen_add_i32(var, var, offset); + tcg_temp_free_i32(offset); + } +} + +static TCGv_ptr get_fpstatus_ptr(int neon) { + TCGv_ptr statusptr = tcg_temp_new_ptr(); + int offset; + if (neon) { + offset = offsetof(CPUARMState, vfp.standard_fp_status); + } else { + offset = offsetof(CPUARMState, vfp.fp_status); + } + tcg_gen_addi_ptr(statusptr, cpu_env, offset); + return statusptr; +} + +#define VFP_OP2(name) \ + static inline void gen_vfp_##name(int dp) { \ + TCGv_ptr fpst = get_fpstatus_ptr(0); \ + if (dp) { \ + gen_helper_vfp_##name##d(cpu_F0d, cpu_F0d, cpu_F1d, fpst); \ + } else { \ + gen_helper_vfp_##name##s(cpu_F0s, cpu_F0s, cpu_F1s, fpst); \ + } \ + tcg_temp_free_ptr(fpst); \ + } + +VFP_OP2(add) +VFP_OP2(sub) +VFP_OP2(mul) +VFP_OP2(div) + +#undef VFP_OP2 + +static inline void gen_vfp_F1_mul(int dp) { + /* Like gen_vfp_mul() but put result in F1 */ + TCGv_ptr fpst = get_fpstatus_ptr(0); + if (dp) { + gen_helper_vfp_muld(cpu_F1d, cpu_F0d, cpu_F1d, fpst); + } else { + gen_helper_vfp_muls(cpu_F1s, cpu_F0s, cpu_F1s, fpst); + } + tcg_temp_free_ptr(fpst); +} + +static inline void gen_vfp_F1_neg(int dp) { + /* Like gen_vfp_neg() but put result in F1 */ + if (dp) { + gen_helper_vfp_negd(cpu_F1d, cpu_F0d); + } else { + gen_helper_vfp_negs(cpu_F1s, cpu_F0s); + } +} + +static inline void gen_vfp_abs(int dp) { + if (dp) + gen_helper_vfp_absd(cpu_F0d, cpu_F0d); + else + gen_helper_vfp_abss(cpu_F0s, cpu_F0s); +} + +static inline void gen_vfp_neg(int dp) { + if (dp) + gen_helper_vfp_negd(cpu_F0d, cpu_F0d); + else + gen_helper_vfp_negs(cpu_F0s, cpu_F0s); +} + +static inline void gen_vfp_sqrt(int dp) { + if (dp) + gen_helper_vfp_sqrtd(cpu_F0d, cpu_F0d, cpu_env); + else + gen_helper_vfp_sqrts(cpu_F0s, cpu_F0s, cpu_env); +} + +static inline void gen_vfp_cmp(int dp) { + if (dp) + gen_helper_vfp_cmpd(cpu_F0d, cpu_F1d, cpu_env); + else + gen_helper_vfp_cmps(cpu_F0s, cpu_F1s, cpu_env); +} + +static inline void gen_vfp_cmpe(int dp) { + if (dp) + gen_helper_vfp_cmped(cpu_F0d, cpu_F1d, cpu_env); + else + gen_helper_vfp_cmpes(cpu_F0s, cpu_F1s, cpu_env); +} + +static inline void gen_vfp_F1_ld0(int dp) { + if (dp) + tcg_gen_movi_i64(cpu_F1d, 0); + else + tcg_gen_movi_i32(cpu_F1s, 0); +} + +#define VFP_GEN_ITOF(name) \ + static inline void gen_vfp_##name(int dp, int neon) { \ + TCGv_ptr statusptr = get_fpstatus_ptr(neon); \ + if (dp) { \ + gen_helper_vfp_##name##d(cpu_F0d, cpu_F0s, statusptr); \ + } else { \ + gen_helper_vfp_##name##s(cpu_F0s, cpu_F0s, statusptr); \ + } \ + tcg_temp_free_ptr(statusptr); \ + } + +VFP_GEN_ITOF(uito) +VFP_GEN_ITOF(sito) +#undef VFP_GEN_ITOF + +#define VFP_GEN_FTOI(name) \ + static inline void gen_vfp_##name(int dp, int neon) { \ + TCGv_ptr statusptr = get_fpstatus_ptr(neon); \ + if (dp) { \ + gen_helper_vfp_##name##d(cpu_F0s, cpu_F0d, statusptr); \ + } else { \ + gen_helper_vfp_##name##s(cpu_F0s, cpu_F0s, statusptr); \ + } \ + tcg_temp_free_ptr(statusptr); \ + } + +VFP_GEN_FTOI(toui) +VFP_GEN_FTOI(touiz) +VFP_GEN_FTOI(tosi) +VFP_GEN_FTOI(tosiz) +#undef VFP_GEN_FTOI + +#define VFP_GEN_FIX(name) \ + static inline void gen_vfp_##name(int dp, int shift, int neon) { \ + TCGv tmp_shift = tcg_const_i32(shift); \ + TCGv_ptr statusptr = get_fpstatus_ptr(neon); \ + if (dp) { \ + gen_helper_vfp_##name##d(cpu_F0d, cpu_F0d, tmp_shift, statusptr); \ + } else { \ + gen_helper_vfp_##name##s(cpu_F0s, cpu_F0s, tmp_shift, statusptr); \ + } \ + tcg_temp_free_i32(tmp_shift); \ + tcg_temp_free_ptr(statusptr); \ + } +VFP_GEN_FIX(tosh) +VFP_GEN_FIX(tosl) +VFP_GEN_FIX(touh) +VFP_GEN_FIX(toul) +VFP_GEN_FIX(shto) +VFP_GEN_FIX(slto) +VFP_GEN_FIX(uhto) +VFP_GEN_FIX(ulto) +#undef VFP_GEN_FIX + +static inline void gen_vfp_ld(DisasContext *s, int dp, TCGv addr) { + if (dp) + tcg_gen_qemu_ld64(cpu_F0d, addr, IS_USER(s)); + else + tcg_gen_qemu_ld32u(cpu_F0s, addr, IS_USER(s)); +} + +static inline void gen_vfp_st(DisasContext *s, int dp, TCGv addr) { + if (dp) + tcg_gen_qemu_st64(cpu_F0d, addr, IS_USER(s)); + else + tcg_gen_qemu_st32(cpu_F0s, addr, IS_USER(s)); +} + +static inline long vfp_reg_offset(int dp, int reg) { + if (dp) + return offsetof(CPUARMState, vfp.regs[reg]); + else if (reg & 1) { + return offsetof(CPUARMState, vfp.regs[reg >> 1]) + offsetof(CPU_DoubleU, l.upper); + } else { + return offsetof(CPUARMState, vfp.regs[reg >> 1]) + offsetof(CPU_DoubleU, l.lower); + } +} + +/* Return the offset of a 32-bit piece of a NEON register. + zero is the least significant end of the register. */ +static inline long neon_reg_offset(int reg, int n) { + int sreg; + sreg = reg * 2 + n; + return vfp_reg_offset(0, sreg); +} + +static TCGv neon_load_reg(int reg, int pass) { + TCGv tmp = tcg_temp_new_i32(); + tcg_gen_ld_i32(tmp, cpu_env, neon_reg_offset(reg, pass)); + return tmp; +} + +static void neon_store_reg(int reg, int pass, TCGv var) { + tcg_gen_st_i32(var, cpu_env, neon_reg_offset(reg, pass)); + tcg_temp_free_i32(var); +} + +static inline void neon_load_reg64(TCGv_i64 var, int reg) { + tcg_gen_ld_i64(var, cpu_env, vfp_reg_offset(1, reg)); +} + +static inline void neon_store_reg64(TCGv_i64 var, int reg) { + tcg_gen_st_i64(var, cpu_env, vfp_reg_offset(1, reg)); +} + +#define tcg_gen_ld_f32 tcg_gen_ld_i32 +#define tcg_gen_ld_f64 tcg_gen_ld_i64 +#define tcg_gen_st_f32 tcg_gen_st_i32 +#define tcg_gen_st_f64 tcg_gen_st_i64 + +static inline void gen_mov_F0_vreg(int dp, int reg) { + if (dp) + tcg_gen_ld_f64(cpu_F0d, cpu_env, vfp_reg_offset(dp, reg)); + else + tcg_gen_ld_f32(cpu_F0s, cpu_env, vfp_reg_offset(dp, reg)); +} + +static inline void gen_mov_F1_vreg(int dp, int reg) { + if (dp) + tcg_gen_ld_f64(cpu_F1d, cpu_env, vfp_reg_offset(dp, reg)); + else + tcg_gen_ld_f32(cpu_F1s, cpu_env, vfp_reg_offset(dp, reg)); +} + +static inline void gen_mov_vreg_F0(int dp, int reg) { + if (dp) + tcg_gen_st_f64(cpu_F0d, cpu_env, vfp_reg_offset(dp, reg)); + else + tcg_gen_st_f32(cpu_F0s, cpu_env, vfp_reg_offset(dp, reg)); +} + +#define ARM_CP_RW_BIT (1 << 20) + +static inline void iwmmxt_load_reg(TCGv_i64 var, int reg) { + tcg_gen_ld_i64(var, cpu_env, offsetof(CPUARMState, iwmmxt.regs[reg])); +} + +static inline void iwmmxt_store_reg(TCGv_i64 var, int reg) { + tcg_gen_st_i64(var, cpu_env, offsetof(CPUARMState, iwmmxt.regs[reg])); +} + +static inline TCGv iwmmxt_load_creg(int reg) { + TCGv var = tcg_temp_new_i32(); + tcg_gen_ld_i32(var, cpu_env, offsetof(CPUARMState, iwmmxt.cregs[reg])); + return var; +} + +static inline void iwmmxt_store_creg(int reg, TCGv var) { + tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, iwmmxt.cregs[reg])); + tcg_temp_free_i32(var); +} + +static inline void gen_op_iwmmxt_movq_wRn_M0(int rn) { + iwmmxt_store_reg(cpu_M0, rn); +} + +static inline void gen_op_iwmmxt_movq_M0_wRn(int rn) { + iwmmxt_load_reg(cpu_M0, rn); +} + +static inline void gen_op_iwmmxt_orq_M0_wRn(int rn) { + iwmmxt_load_reg(cpu_V1, rn); + tcg_gen_or_i64(cpu_M0, cpu_M0, cpu_V1); +} + +static inline void gen_op_iwmmxt_andq_M0_wRn(int rn) { + iwmmxt_load_reg(cpu_V1, rn); + tcg_gen_and_i64(cpu_M0, cpu_M0, cpu_V1); +} + +static inline void gen_op_iwmmxt_xorq_M0_wRn(int rn) { + iwmmxt_load_reg(cpu_V1, rn); + tcg_gen_xor_i64(cpu_M0, cpu_M0, cpu_V1); +} + +#define IWMMXT_OP(name) \ + static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) { \ + iwmmxt_load_reg(cpu_V1, rn); \ + gen_helper_iwmmxt_##name(cpu_M0, cpu_M0, cpu_V1); \ + } + +#define IWMMXT_OP_ENV(name) \ + static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) { \ + iwmmxt_load_reg(cpu_V1, rn); \ + gen_helper_iwmmxt_##name(cpu_M0, cpu_env, cpu_M0, cpu_V1); \ + } + +#define IWMMXT_OP_ENV_SIZE(name) \ + IWMMXT_OP_ENV(name##b) \ + IWMMXT_OP_ENV(name##w) \ + IWMMXT_OP_ENV(name##l) + +#define IWMMXT_OP_ENV1(name) \ + static inline void gen_op_iwmmxt_##name##_M0(void) { \ + gen_helper_iwmmxt_##name(cpu_M0, cpu_env, cpu_M0); \ + } + +IWMMXT_OP(maddsq) +IWMMXT_OP(madduq) +IWMMXT_OP(sadb) +IWMMXT_OP(sadw) +IWMMXT_OP(mulslw) +IWMMXT_OP(mulshw) +IWMMXT_OP(mululw) +IWMMXT_OP(muluhw) +IWMMXT_OP(macsw) +IWMMXT_OP(macuw) + +IWMMXT_OP_ENV_SIZE(unpackl) +IWMMXT_OP_ENV_SIZE(unpackh) + +IWMMXT_OP_ENV1(unpacklub) +IWMMXT_OP_ENV1(unpackluw) +IWMMXT_OP_ENV1(unpacklul) +IWMMXT_OP_ENV1(unpackhub) +IWMMXT_OP_ENV1(unpackhuw) +IWMMXT_OP_ENV1(unpackhul) +IWMMXT_OP_ENV1(unpacklsb) +IWMMXT_OP_ENV1(unpacklsw) +IWMMXT_OP_ENV1(unpacklsl) +IWMMXT_OP_ENV1(unpackhsb) +IWMMXT_OP_ENV1(unpackhsw) +IWMMXT_OP_ENV1(unpackhsl) + +IWMMXT_OP_ENV_SIZE(cmpeq) +IWMMXT_OP_ENV_SIZE(cmpgtu) +IWMMXT_OP_ENV_SIZE(cmpgts) + +IWMMXT_OP_ENV_SIZE(mins) +IWMMXT_OP_ENV_SIZE(minu) +IWMMXT_OP_ENV_SIZE(maxs) +IWMMXT_OP_ENV_SIZE(maxu) + +IWMMXT_OP_ENV_SIZE(subn) +IWMMXT_OP_ENV_SIZE(addn) +IWMMXT_OP_ENV_SIZE(subu) +IWMMXT_OP_ENV_SIZE(addu) +IWMMXT_OP_ENV_SIZE(subs) +IWMMXT_OP_ENV_SIZE(adds) + +IWMMXT_OP_ENV(avgb0) +IWMMXT_OP_ENV(avgb1) +IWMMXT_OP_ENV(avgw0) +IWMMXT_OP_ENV(avgw1) + +// IWMMXT_OP(msadb) + +IWMMXT_OP_ENV(packuw) +IWMMXT_OP_ENV(packul) +IWMMXT_OP_ENV(packuq) +IWMMXT_OP_ENV(packsw) +IWMMXT_OP_ENV(packsl) +IWMMXT_OP_ENV(packsq) + +static void gen_op_iwmmxt_set_mup(void) { + TCGv tmp; + tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]); + tcg_gen_ori_i32(tmp, tmp, 2); + store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]); +} + +static void gen_op_iwmmxt_set_cup(void) { + TCGv tmp; + tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]); + tcg_gen_ori_i32(tmp, tmp, 1); + store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]); +} + +static void gen_op_iwmmxt_setpsr_nz(void) { + TCGv tmp = tcg_temp_new_i32(); + gen_helper_iwmmxt_setpsr_nz(tmp, cpu_M0); + store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCASF]); +} + +static inline void gen_op_iwmmxt_addl_M0_wRn(int rn) { + iwmmxt_load_reg(cpu_V1, rn); + tcg_gen_ext32u_i64(cpu_V1, cpu_V1); + tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1); +} + +static inline int gen_iwmmxt_address(DisasContext *s, uint32_t insn, TCGv dest) { + int rd; + uint32_t offset; + TCGv tmp; + + rd = (insn >> 16) & 0xf; + tmp = load_reg(s, rd); + + offset = (insn & 0xff) << ((insn >> 7) & 2); + if (insn & (1 << 24)) { + /* Pre indexed */ + if (insn & (1 << 23)) + tcg_gen_addi_i32(tmp, tmp, offset); + else + tcg_gen_addi_i32(tmp, tmp, -offset); + tcg_gen_mov_i32(dest, tmp); + if (insn & (1 << 21)) + store_reg(s, rd, tmp); + else + tcg_temp_free_i32(tmp); + } else if (insn & (1 << 21)) { + /* Post indexed */ + tcg_gen_mov_i32(dest, tmp); + if (insn & (1 << 23)) + tcg_gen_addi_i32(tmp, tmp, offset); + else + tcg_gen_addi_i32(tmp, tmp, -offset); + store_reg(s, rd, tmp); + } else if (!(insn & (1 << 23))) + return 1; + return 0; +} + +static inline int gen_iwmmxt_shift(uint32_t insn, uint32_t mask, TCGv dest) { + int rd = (insn >> 0) & 0xf; + TCGv tmp; + + if (insn & (1 << 8)) { + if (rd < ARM_IWMMXT_wCGR0 || rd > ARM_IWMMXT_wCGR3) { + return 1; + } else { + tmp = iwmmxt_load_creg(rd); + } + } else { + tmp = tcg_temp_new_i32(); + iwmmxt_load_reg(cpu_V0, rd); + tcg_gen_trunc_i64_tl(tmp, cpu_V0); + } + tcg_gen_andi_i32(tmp, tmp, mask); + tcg_gen_mov_i32(dest, tmp); + tcg_temp_free_i32(tmp); + return 0; +} + +/* Disassemble an iwMMXt instruction. Returns nonzero if an error occurred + (ie. an undefined instruction). */ +static int disas_iwmmxt_insn(CPUARMState *env, DisasContext *s, uint32_t insn) { + int rd, wrd; + int rdhi, rdlo, rd0, rd1, i; + TCGv addr; + TCGv tmp, tmp2, tmp3; + + if ((insn & 0x0e000e00) == 0x0c000000) { + if ((insn & 0x0fe00ff0) == 0x0c400000) { + wrd = insn & 0xf; + rdlo = (insn >> 12) & 0xf; + rdhi = (insn >> 16) & 0xf; + if (insn & ARM_CP_RW_BIT) { /* TMRRC */ + iwmmxt_load_reg(cpu_V0, wrd); + tcg_gen_trunc_i64_tl(cpu_R[rdlo], cpu_V0); + tcg_gen_shri_i64(cpu_V0, cpu_V0, 32); + tcg_gen_trunc_i64_tl(cpu_R[rdhi], cpu_V0); + } else { /* TMCRR */ + tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]); + iwmmxt_store_reg(cpu_V0, wrd); + gen_op_iwmmxt_set_mup(); + } + return 0; + } + + wrd = (insn >> 12) & 0xf; + addr = tcg_temp_new_i32(); + if (gen_iwmmxt_address(s, insn, addr)) { + tcg_temp_free_i32(addr); + return 1; + } + if (insn & ARM_CP_RW_BIT) { + if ((insn >> 28) == 0xf) { /* WLDRW wCx */ + tmp = tcg_temp_new_i32(); + tcg_gen_qemu_ld32u(tmp, addr, IS_USER(s)); + iwmmxt_store_creg(wrd, tmp); + } else { + i = 1; + if (insn & (1 << 8)) { + if (insn & (1 << 22)) { /* WLDRD */ + tcg_gen_qemu_ld64(cpu_M0, addr, IS_USER(s)); + i = 0; + } else { /* WLDRW wRd */ + tmp = gen_ld32(addr, IS_USER(s)); + } + } else { + if (insn & (1 << 22)) { /* WLDRH */ + tmp = gen_ld16u(addr, IS_USER(s)); + } else { /* WLDRB */ + tmp = gen_ld8u(addr, IS_USER(s)); + } + } + if (i) { + tcg_gen_extu_i32_i64(cpu_M0, tmp); + tcg_temp_free_i32(tmp); + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + } + } else { + if ((insn >> 28) == 0xf) { /* WSTRW wCx */ + tmp = iwmmxt_load_creg(wrd); + gen_st32(tmp, addr, IS_USER(s)); + } else { + gen_op_iwmmxt_movq_M0_wRn(wrd); + tmp = tcg_temp_new_i32(); + if (insn & (1 << 8)) { + if (insn & (1 << 22)) { /* WSTRD */ + tcg_temp_free_i32(tmp); + tcg_gen_qemu_st64(cpu_M0, addr, IS_USER(s)); + } else { /* WSTRW wRd */ + tcg_gen_trunc_i64_tl(tmp, cpu_M0); + gen_st32(tmp, addr, IS_USER(s)); + } + } else { + if (insn & (1 << 22)) { /* WSTRH */ + tcg_gen_trunc_i64_tl(tmp, cpu_M0); + gen_st16(tmp, addr, IS_USER(s)); + } else { /* WSTRB */ + tcg_gen_trunc_i64_tl(tmp, cpu_M0); + gen_st8(tmp, addr, IS_USER(s)); + } + } + } + } + tcg_temp_free_i32(addr); + return 0; + } + + if ((insn & 0x0f000000) != 0x0e000000) + return 1; + + switch (((insn >> 12) & 0xf00) | ((insn >> 4) & 0xff)) { + case 0x000: /* WOR */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 0) & 0xf; + rd1 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + gen_op_iwmmxt_orq_M0_wRn(rd1); + gen_op_iwmmxt_setpsr_nz(); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x011: /* TMCR */ + if (insn & 0xf) + return 1; + rd = (insn >> 12) & 0xf; + wrd = (insn >> 16) & 0xf; + switch (wrd) { + case ARM_IWMMXT_wCID: + case ARM_IWMMXT_wCASF: + break; + case ARM_IWMMXT_wCon: + gen_op_iwmmxt_set_cup(); + /* Fall through. */ + case ARM_IWMMXT_wCSSF: + tmp = iwmmxt_load_creg(wrd); + tmp2 = load_reg(s, rd); + tcg_gen_andc_i32(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + iwmmxt_store_creg(wrd, tmp); + break; + case ARM_IWMMXT_wCGR0: + case ARM_IWMMXT_wCGR1: + case ARM_IWMMXT_wCGR2: + case ARM_IWMMXT_wCGR3: + gen_op_iwmmxt_set_cup(); + tmp = load_reg(s, rd); + iwmmxt_store_creg(wrd, tmp); + break; + default: + return 1; + } + break; + case 0x100: /* WXOR */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 0) & 0xf; + rd1 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + gen_op_iwmmxt_xorq_M0_wRn(rd1); + gen_op_iwmmxt_setpsr_nz(); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x111: /* TMRC */ + if (insn & 0xf) + return 1; + rd = (insn >> 12) & 0xf; + wrd = (insn >> 16) & 0xf; + tmp = iwmmxt_load_creg(wrd); + store_reg(s, rd, tmp); + break; + case 0x300: /* WANDN */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 0) & 0xf; + rd1 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + tcg_gen_neg_i64(cpu_M0, cpu_M0); + gen_op_iwmmxt_andq_M0_wRn(rd1); + gen_op_iwmmxt_setpsr_nz(); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x200: /* WAND */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 0) & 0xf; + rd1 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + gen_op_iwmmxt_andq_M0_wRn(rd1); + gen_op_iwmmxt_setpsr_nz(); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x810: + case 0xa10: /* WMADD */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 0) & 0xf; + rd1 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + if (insn & (1 << 21)) + gen_op_iwmmxt_maddsq_M0_wRn(rd1); + else + gen_op_iwmmxt_madduq_M0_wRn(rd1); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x10e: + case 0x50e: + case 0x90e: + case 0xd0e: /* WUNPCKIL */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 0: + gen_op_iwmmxt_unpacklb_M0_wRn(rd1); + break; + case 1: + gen_op_iwmmxt_unpacklw_M0_wRn(rd1); + break; + case 2: + gen_op_iwmmxt_unpackll_M0_wRn(rd1); + break; + case 3: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x10c: + case 0x50c: + case 0x90c: + case 0xd0c: /* WUNPCKIH */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 0: + gen_op_iwmmxt_unpackhb_M0_wRn(rd1); + break; + case 1: + gen_op_iwmmxt_unpackhw_M0_wRn(rd1); + break; + case 2: + gen_op_iwmmxt_unpackhl_M0_wRn(rd1); + break; + case 3: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x012: + case 0x112: + case 0x412: + case 0x512: /* WSAD */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + if (insn & (1 << 22)) + gen_op_iwmmxt_sadw_M0_wRn(rd1); + else + gen_op_iwmmxt_sadb_M0_wRn(rd1); + if (!(insn & (1 << 20))) + gen_op_iwmmxt_addl_M0_wRn(wrd); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x010: + case 0x110: + case 0x210: + case 0x310: /* WMUL */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + if (insn & (1 << 21)) { + if (insn & (1 << 20)) + gen_op_iwmmxt_mulshw_M0_wRn(rd1); + else + gen_op_iwmmxt_mulslw_M0_wRn(rd1); + } else { + if (insn & (1 << 20)) + gen_op_iwmmxt_muluhw_M0_wRn(rd1); + else + gen_op_iwmmxt_mululw_M0_wRn(rd1); + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x410: + case 0x510: + case 0x610: + case 0x710: /* WMAC */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + if (insn & (1 << 21)) + gen_op_iwmmxt_macsw_M0_wRn(rd1); + else + gen_op_iwmmxt_macuw_M0_wRn(rd1); + if (!(insn & (1 << 20))) { + iwmmxt_load_reg(cpu_V1, wrd); + tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1); + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x006: + case 0x406: + case 0x806: + case 0xc06: /* WCMPEQ */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 0: + gen_op_iwmmxt_cmpeqb_M0_wRn(rd1); + break; + case 1: + gen_op_iwmmxt_cmpeqw_M0_wRn(rd1); + break; + case 2: + gen_op_iwmmxt_cmpeql_M0_wRn(rd1); + break; + case 3: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x800: + case 0x900: + case 0xc00: + case 0xd00: /* WAVG2 */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + if (insn & (1 << 22)) { + if (insn & (1 << 20)) + gen_op_iwmmxt_avgw1_M0_wRn(rd1); + else + gen_op_iwmmxt_avgw0_M0_wRn(rd1); + } else { + if (insn & (1 << 20)) + gen_op_iwmmxt_avgb1_M0_wRn(rd1); + else + gen_op_iwmmxt_avgb0_M0_wRn(rd1); + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x802: + case 0x902: + case 0xa02: + case 0xb02: /* WALIGNR */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + tmp = iwmmxt_load_creg(ARM_IWMMXT_wCGR0 + ((insn >> 20) & 3)); + tcg_gen_andi_i32(tmp, tmp, 7); + iwmmxt_load_reg(cpu_V1, rd1); + gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, tmp); + tcg_temp_free_i32(tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x601: + case 0x605: + case 0x609: + case 0x60d: /* TINSR */ + if (((insn >> 6) & 3) == 3) + return 1; + rd = (insn >> 12) & 0xf; + wrd = (insn >> 16) & 0xf; + tmp = load_reg(s, rd); + gen_op_iwmmxt_movq_M0_wRn(wrd); + switch ((insn >> 6) & 3) { + case 0: + tmp2 = tcg_const_i32(0xff); + tmp3 = tcg_const_i32((insn & 7) << 3); + break; + case 1: + tmp2 = tcg_const_i32(0xffff); + tmp3 = tcg_const_i32((insn & 3) << 4); + break; + case 2: + tmp2 = tcg_const_i32(0xffffffff); + tmp3 = tcg_const_i32((insn & 1) << 5); + break; + default: + tmp2 = NULL; + tmp3 = NULL; + } + gen_helper_iwmmxt_insr(cpu_M0, cpu_M0, tmp, tmp2, tmp3); + tcg_temp_free(tmp3); + tcg_temp_free(tmp2); + tcg_temp_free_i32(tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x107: + case 0x507: + case 0x907: + case 0xd07: /* TEXTRM */ + rd = (insn >> 12) & 0xf; + wrd = (insn >> 16) & 0xf; + if (rd == 15 || ((insn >> 22) & 3) == 3) + return 1; + gen_op_iwmmxt_movq_M0_wRn(wrd); + tmp = tcg_temp_new_i32(); + switch ((insn >> 22) & 3) { + case 0: + tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 7) << 3); + tcg_gen_trunc_i64_tl(tmp, cpu_M0); + if (insn & 8) { + tcg_gen_ext8s_i32(tmp, tmp); + } else { + tcg_gen_andi_i32(tmp, tmp, 0xff); + } + break; + case 1: + tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 3) << 4); + tcg_gen_trunc_i64_tl(tmp, cpu_M0); + if (insn & 8) { + tcg_gen_ext16s_i32(tmp, tmp); + } else { + tcg_gen_andi_i32(tmp, tmp, 0xffff); + } + break; + case 2: + tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 1) << 5); + tcg_gen_trunc_i64_tl(tmp, cpu_M0); + break; + } + store_reg(s, rd, tmp); + break; + case 0x117: + case 0x517: + case 0x917: + case 0xd17: /* TEXTRC */ + if ((insn & 0x000ff008) != 0x0003f000 || ((insn >> 22) & 3) == 3) + return 1; + tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF); + switch ((insn >> 22) & 3) { + case 0: + tcg_gen_shri_i32(tmp, tmp, ((insn & 7) << 2) + 0); + break; + case 1: + tcg_gen_shri_i32(tmp, tmp, ((insn & 3) << 3) + 4); + break; + case 2: + tcg_gen_shri_i32(tmp, tmp, ((insn & 1) << 4) + 12); + break; + } + tcg_gen_shli_i32(tmp, tmp, 28); + gen_set_nzcv(tmp); + tcg_temp_free_i32(tmp); + break; + case 0x401: + case 0x405: + case 0x409: + case 0x40d: /* TBCST */ + if (((insn >> 6) & 3) == 3) + return 1; + rd = (insn >> 12) & 0xf; + wrd = (insn >> 16) & 0xf; + tmp = load_reg(s, rd); + switch ((insn >> 6) & 3) { + case 0: + gen_helper_iwmmxt_bcstb(cpu_M0, tmp); + break; + case 1: + gen_helper_iwmmxt_bcstw(cpu_M0, tmp); + break; + case 2: + gen_helper_iwmmxt_bcstl(cpu_M0, tmp); + break; + } + tcg_temp_free_i32(tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x113: + case 0x513: + case 0x913: + case 0xd13: /* TANDC */ + if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3) + return 1; + tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF); + tmp2 = tcg_temp_new_i32(); + tcg_gen_mov_i32(tmp2, tmp); + switch ((insn >> 22) & 3) { + case 0: + for (i = 0; i < 7; i++) { + tcg_gen_shli_i32(tmp2, tmp2, 4); + tcg_gen_and_i32(tmp, tmp, tmp2); + } + break; + case 1: + for (i = 0; i < 3; i++) { + tcg_gen_shli_i32(tmp2, tmp2, 8); + tcg_gen_and_i32(tmp, tmp, tmp2); + } + break; + case 2: + tcg_gen_shli_i32(tmp2, tmp2, 16); + tcg_gen_and_i32(tmp, tmp, tmp2); + break; + } + gen_set_nzcv(tmp); + tcg_temp_free_i32(tmp2); + tcg_temp_free_i32(tmp); + break; + case 0x01c: + case 0x41c: + case 0x81c: + case 0xc1c: /* WACC */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 0: + gen_helper_iwmmxt_addcb(cpu_M0, cpu_M0); + break; + case 1: + gen_helper_iwmmxt_addcw(cpu_M0, cpu_M0); + break; + case 2: + gen_helper_iwmmxt_addcl(cpu_M0, cpu_M0); + break; + case 3: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x115: + case 0x515: + case 0x915: + case 0xd15: /* TORC */ + if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3) + return 1; + tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF); + tmp2 = tcg_temp_new_i32(); + tcg_gen_mov_i32(tmp2, tmp); + switch ((insn >> 22) & 3) { + case 0: + for (i = 0; i < 7; i++) { + tcg_gen_shli_i32(tmp2, tmp2, 4); + tcg_gen_or_i32(tmp, tmp, tmp2); + } + break; + case 1: + for (i = 0; i < 3; i++) { + tcg_gen_shli_i32(tmp2, tmp2, 8); + tcg_gen_or_i32(tmp, tmp, tmp2); + } + break; + case 2: + tcg_gen_shli_i32(tmp2, tmp2, 16); + tcg_gen_or_i32(tmp, tmp, tmp2); + break; + } + gen_set_nzcv(tmp); + tcg_temp_free_i32(tmp2); + tcg_temp_free_i32(tmp); + break; + case 0x103: + case 0x503: + case 0x903: + case 0xd03: /* TMOVMSK */ + rd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + if ((insn & 0xf) != 0 || ((insn >> 22) & 3) == 3) + return 1; + gen_op_iwmmxt_movq_M0_wRn(rd0); + tmp = tcg_temp_new_i32(); + switch ((insn >> 22) & 3) { + case 0: + gen_helper_iwmmxt_msbb(tmp, cpu_M0); + break; + case 1: + gen_helper_iwmmxt_msbw(tmp, cpu_M0); + break; + case 2: + gen_helper_iwmmxt_msbl(tmp, cpu_M0); + break; + } + store_reg(s, rd, tmp); + break; + case 0x106: + case 0x306: + case 0x506: + case 0x706: /* WCMPGT */ + case 0x906: + case 0xb06: + case 0xd06: + case 0xf06: + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 0: + if (insn & (1 << 21)) + gen_op_iwmmxt_cmpgtsb_M0_wRn(rd1); + else + gen_op_iwmmxt_cmpgtub_M0_wRn(rd1); + break; + case 1: + if (insn & (1 << 21)) + gen_op_iwmmxt_cmpgtsw_M0_wRn(rd1); + else + gen_op_iwmmxt_cmpgtuw_M0_wRn(rd1); + break; + case 2: + if (insn & (1 << 21)) + gen_op_iwmmxt_cmpgtsl_M0_wRn(rd1); + else + gen_op_iwmmxt_cmpgtul_M0_wRn(rd1); + break; + case 3: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x00e: + case 0x20e: + case 0x40e: + case 0x60e: /* WUNPCKEL */ + case 0x80e: + case 0xa0e: + case 0xc0e: + case 0xe0e: + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 0: + if (insn & (1 << 21)) + gen_op_iwmmxt_unpacklsb_M0(); + else + gen_op_iwmmxt_unpacklub_M0(); + break; + case 1: + if (insn & (1 << 21)) + gen_op_iwmmxt_unpacklsw_M0(); + else + gen_op_iwmmxt_unpackluw_M0(); + break; + case 2: + if (insn & (1 << 21)) + gen_op_iwmmxt_unpacklsl_M0(); + else + gen_op_iwmmxt_unpacklul_M0(); + break; + case 3: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x00c: + case 0x20c: + case 0x40c: + case 0x60c: /* WUNPCKEH */ + case 0x80c: + case 0xa0c: + case 0xc0c: + case 0xe0c: + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 0: + if (insn & (1 << 21)) + gen_op_iwmmxt_unpackhsb_M0(); + else + gen_op_iwmmxt_unpackhub_M0(); + break; + case 1: + if (insn & (1 << 21)) + gen_op_iwmmxt_unpackhsw_M0(); + else + gen_op_iwmmxt_unpackhuw_M0(); + break; + case 2: + if (insn & (1 << 21)) + gen_op_iwmmxt_unpackhsl_M0(); + else + gen_op_iwmmxt_unpackhul_M0(); + break; + case 3: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x204: + case 0x604: + case 0xa04: + case 0xe04: /* WSRL */ + case 0x214: + case 0x614: + case 0xa14: + case 0xe14: + if (((insn >> 22) & 3) == 0) + return 1; + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + tmp = tcg_temp_new_i32(); + if (gen_iwmmxt_shift(insn, 0xff, tmp)) { + tcg_temp_free_i32(tmp); + return 1; + } + switch ((insn >> 22) & 3) { + case 1: + gen_helper_iwmmxt_srlw(cpu_M0, cpu_env, cpu_M0, tmp); + break; + case 2: + gen_helper_iwmmxt_srll(cpu_M0, cpu_env, cpu_M0, tmp); + break; + case 3: + gen_helper_iwmmxt_srlq(cpu_M0, cpu_env, cpu_M0, tmp); + break; + } + tcg_temp_free_i32(tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x004: + case 0x404: + case 0x804: + case 0xc04: /* WSRA */ + case 0x014: + case 0x414: + case 0x814: + case 0xc14: + if (((insn >> 22) & 3) == 0) + return 1; + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + tmp = tcg_temp_new_i32(); + if (gen_iwmmxt_shift(insn, 0xff, tmp)) { + tcg_temp_free_i32(tmp); + return 1; + } + switch ((insn >> 22) & 3) { + case 1: + gen_helper_iwmmxt_sraw(cpu_M0, cpu_env, cpu_M0, tmp); + break; + case 2: + gen_helper_iwmmxt_sral(cpu_M0, cpu_env, cpu_M0, tmp); + break; + case 3: + gen_helper_iwmmxt_sraq(cpu_M0, cpu_env, cpu_M0, tmp); + break; + } + tcg_temp_free_i32(tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x104: + case 0x504: + case 0x904: + case 0xd04: /* WSLL */ + case 0x114: + case 0x514: + case 0x914: + case 0xd14: + if (((insn >> 22) & 3) == 0) + return 1; + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + tmp = tcg_temp_new_i32(); + if (gen_iwmmxt_shift(insn, 0xff, tmp)) { + tcg_temp_free_i32(tmp); + return 1; + } + switch ((insn >> 22) & 3) { + case 1: + gen_helper_iwmmxt_sllw(cpu_M0, cpu_env, cpu_M0, tmp); + break; + case 2: + gen_helper_iwmmxt_slll(cpu_M0, cpu_env, cpu_M0, tmp); + break; + case 3: + gen_helper_iwmmxt_sllq(cpu_M0, cpu_env, cpu_M0, tmp); + break; + } + tcg_temp_free_i32(tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x304: + case 0x704: + case 0xb04: + case 0xf04: /* WROR */ + case 0x314: + case 0x714: + case 0xb14: + case 0xf14: + if (((insn >> 22) & 3) == 0) + return 1; + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + tmp = tcg_temp_new_i32(); + switch ((insn >> 22) & 3) { + case 1: + if (gen_iwmmxt_shift(insn, 0xf, tmp)) { + tcg_temp_free_i32(tmp); + return 1; + } + gen_helper_iwmmxt_rorw(cpu_M0, cpu_env, cpu_M0, tmp); + break; + case 2: + if (gen_iwmmxt_shift(insn, 0x1f, tmp)) { + tcg_temp_free_i32(tmp); + return 1; + } + gen_helper_iwmmxt_rorl(cpu_M0, cpu_env, cpu_M0, tmp); + break; + case 3: + if (gen_iwmmxt_shift(insn, 0x3f, tmp)) { + tcg_temp_free_i32(tmp); + return 1; + } + gen_helper_iwmmxt_rorq(cpu_M0, cpu_env, cpu_M0, tmp); + break; + } + tcg_temp_free_i32(tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x116: + case 0x316: + case 0x516: + case 0x716: /* WMIN */ + case 0x916: + case 0xb16: + case 0xd16: + case 0xf16: + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 0: + if (insn & (1 << 21)) + gen_op_iwmmxt_minsb_M0_wRn(rd1); + else + gen_op_iwmmxt_minub_M0_wRn(rd1); + break; + case 1: + if (insn & (1 << 21)) + gen_op_iwmmxt_minsw_M0_wRn(rd1); + else + gen_op_iwmmxt_minuw_M0_wRn(rd1); + break; + case 2: + if (insn & (1 << 21)) + gen_op_iwmmxt_minsl_M0_wRn(rd1); + else + gen_op_iwmmxt_minul_M0_wRn(rd1); + break; + case 3: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x016: + case 0x216: + case 0x416: + case 0x616: /* WMAX */ + case 0x816: + case 0xa16: + case 0xc16: + case 0xe16: + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 0: + if (insn & (1 << 21)) + gen_op_iwmmxt_maxsb_M0_wRn(rd1); + else + gen_op_iwmmxt_maxub_M0_wRn(rd1); + break; + case 1: + if (insn & (1 << 21)) + gen_op_iwmmxt_maxsw_M0_wRn(rd1); + else + gen_op_iwmmxt_maxuw_M0_wRn(rd1); + break; + case 2: + if (insn & (1 << 21)) + gen_op_iwmmxt_maxsl_M0_wRn(rd1); + else + gen_op_iwmmxt_maxul_M0_wRn(rd1); + break; + case 3: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x002: + case 0x102: + case 0x202: + case 0x302: /* WALIGNI */ + case 0x402: + case 0x502: + case 0x602: + case 0x702: + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + tmp = tcg_const_i32((insn >> 20) & 3); + iwmmxt_load_reg(cpu_V1, rd1); + gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, tmp); + tcg_temp_free(tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x01a: + case 0x11a: + case 0x21a: + case 0x31a: /* WSUB */ + case 0x41a: + case 0x51a: + case 0x61a: + case 0x71a: + case 0x81a: + case 0x91a: + case 0xa1a: + case 0xb1a: + case 0xc1a: + case 0xd1a: + case 0xe1a: + case 0xf1a: + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 20) & 0xf) { + case 0x0: + gen_op_iwmmxt_subnb_M0_wRn(rd1); + break; + case 0x1: + gen_op_iwmmxt_subub_M0_wRn(rd1); + break; + case 0x3: + gen_op_iwmmxt_subsb_M0_wRn(rd1); + break; + case 0x4: + gen_op_iwmmxt_subnw_M0_wRn(rd1); + break; + case 0x5: + gen_op_iwmmxt_subuw_M0_wRn(rd1); + break; + case 0x7: + gen_op_iwmmxt_subsw_M0_wRn(rd1); + break; + case 0x8: + gen_op_iwmmxt_subnl_M0_wRn(rd1); + break; + case 0x9: + gen_op_iwmmxt_subul_M0_wRn(rd1); + break; + case 0xb: + gen_op_iwmmxt_subsl_M0_wRn(rd1); + break; + default: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x01e: + case 0x11e: + case 0x21e: + case 0x31e: /* WSHUFH */ + case 0x41e: + case 0x51e: + case 0x61e: + case 0x71e: + case 0x81e: + case 0x91e: + case 0xa1e: + case 0xb1e: + case 0xc1e: + case 0xd1e: + case 0xe1e: + case 0xf1e: + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + tmp = tcg_const_i32(((insn >> 16) & 0xf0) | (insn & 0x0f)); + gen_helper_iwmmxt_shufh(cpu_M0, cpu_env, cpu_M0, tmp); + tcg_temp_free(tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x018: + case 0x118: + case 0x218: + case 0x318: /* WADD */ + case 0x418: + case 0x518: + case 0x618: + case 0x718: + case 0x818: + case 0x918: + case 0xa18: + case 0xb18: + case 0xc18: + case 0xd18: + case 0xe18: + case 0xf18: + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 20) & 0xf) { + case 0x0: + gen_op_iwmmxt_addnb_M0_wRn(rd1); + break; + case 0x1: + gen_op_iwmmxt_addub_M0_wRn(rd1); + break; + case 0x3: + gen_op_iwmmxt_addsb_M0_wRn(rd1); + break; + case 0x4: + gen_op_iwmmxt_addnw_M0_wRn(rd1); + break; + case 0x5: + gen_op_iwmmxt_adduw_M0_wRn(rd1); + break; + case 0x7: + gen_op_iwmmxt_addsw_M0_wRn(rd1); + break; + case 0x8: + gen_op_iwmmxt_addnl_M0_wRn(rd1); + break; + case 0x9: + gen_op_iwmmxt_addul_M0_wRn(rd1); + break; + case 0xb: + gen_op_iwmmxt_addsl_M0_wRn(rd1); + break; + default: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x008: + case 0x108: + case 0x208: + case 0x308: /* WPACK */ + case 0x408: + case 0x508: + case 0x608: + case 0x708: + case 0x808: + case 0x908: + case 0xa08: + case 0xb08: + case 0xc08: + case 0xd08: + case 0xe08: + case 0xf08: + if (!(insn & (1 << 20)) || ((insn >> 22) & 3) == 0) + return 1; + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 1: + if (insn & (1 << 21)) + gen_op_iwmmxt_packsw_M0_wRn(rd1); + else + gen_op_iwmmxt_packuw_M0_wRn(rd1); + break; + case 2: + if (insn & (1 << 21)) + gen_op_iwmmxt_packsl_M0_wRn(rd1); + else + gen_op_iwmmxt_packul_M0_wRn(rd1); + break; + case 3: + if (insn & (1 << 21)) + gen_op_iwmmxt_packsq_M0_wRn(rd1); + else + gen_op_iwmmxt_packuq_M0_wRn(rd1); + break; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x201: + case 0x203: + case 0x205: + case 0x207: + case 0x209: + case 0x20b: + case 0x20d: + case 0x20f: + case 0x211: + case 0x213: + case 0x215: + case 0x217: + case 0x219: + case 0x21b: + case 0x21d: + case 0x21f: + wrd = (insn >> 5) & 0xf; + rd0 = (insn >> 12) & 0xf; + rd1 = (insn >> 0) & 0xf; + if (rd0 == 0xf || rd1 == 0xf) + return 1; + gen_op_iwmmxt_movq_M0_wRn(wrd); + tmp = load_reg(s, rd0); + tmp2 = load_reg(s, rd1); + switch ((insn >> 16) & 0xf) { + case 0x0: /* TMIA */ + gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2); + break; + case 0x8: /* TMIAPH */ + gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2); + break; + case 0xc: + case 0xd: + case 0xe: + case 0xf: /* TMIAxy */ + if (insn & (1 << 16)) + tcg_gen_shri_i32(tmp, tmp, 16); + if (insn & (1 << 17)) + tcg_gen_shri_i32(tmp2, tmp2, 16); + gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2); + break; + default: + tcg_temp_free_i32(tmp2); + tcg_temp_free_i32(tmp); + return 1; + } + tcg_temp_free_i32(tmp2); + tcg_temp_free_i32(tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + default: + return 1; + } + + return 0; +} + +/* Disassemble an XScale DSP instruction. Returns nonzero if an error occurred + (ie. an undefined instruction). */ +static int disas_dsp_insn(CPUARMState *env, DisasContext *s, uint32_t insn) { + int acc, rd0, rd1, rdhi, rdlo; + TCGv tmp, tmp2; + + if ((insn & 0x0ff00f10) == 0x0e200010) { + /* Multiply with Internal Accumulate Format */ + rd0 = (insn >> 12) & 0xf; + rd1 = insn & 0xf; + acc = (insn >> 5) & 7; + + if (acc != 0) + return 1; + + tmp = load_reg(s, rd0); + tmp2 = load_reg(s, rd1); + switch ((insn >> 16) & 0xf) { + case 0x0: /* MIA */ + gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2); + break; + case 0x8: /* MIAPH */ + gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2); + break; + case 0xc: /* MIABB */ + case 0xd: /* MIABT */ + case 0xe: /* MIATB */ + case 0xf: /* MIATT */ + if (insn & (1 << 16)) + tcg_gen_shri_i32(tmp, tmp, 16); + if (insn & (1 << 17)) + tcg_gen_shri_i32(tmp2, tmp2, 16); + gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2); + break; + default: + return 1; + } + tcg_temp_free_i32(tmp2); + tcg_temp_free_i32(tmp); + + gen_op_iwmmxt_movq_wRn_M0(acc); + return 0; + } + + if ((insn & 0x0fe00ff8) == 0x0c400000) { + /* Internal Accumulator Access Format */ + rdhi = (insn >> 16) & 0xf; + rdlo = (insn >> 12) & 0xf; + acc = insn & 7; + + if (acc != 0) + return 1; + + if (insn & ARM_CP_RW_BIT) { /* MRA */ + iwmmxt_load_reg(cpu_V0, acc); + tcg_gen_trunc_i64_tl(cpu_R[rdlo], cpu_V0); + tcg_gen_shri_i64(cpu_V0, cpu_V0, 32); + tcg_gen_trunc_i64_tl(cpu_R[rdhi], cpu_V0); + tcg_gen_andi_i32(cpu_R[rdhi], cpu_R[rdhi], (1 << (40 - 32)) - 1); + } else { /* MAR */ + tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]); + iwmmxt_store_reg(cpu_V0, acc); + } + return 0; + } + + return 1; +} + +/* Disassemble system coprocessor instruction. Return nonzero if + instruction is not defined. */ +static int disas_cp_insn(CPUARMState *env, DisasContext *s, uint32_t insn) { + TCGv tmp, tmp2; + uint32_t rd = (insn >> 12) & 0xf; + uint32_t cp = (insn >> 8) & 0xf; + if (IS_USER(s)) { + return 1; + } + + if (insn & ARM_CP_RW_BIT) { + if (!env->cp[cp].cp_read) + return 1; + gen_set_pc_im(s->pc); + tmp = tcg_temp_new_i32(); + tmp2 = tcg_const_i32(insn); + gen_helper_get_cp(tmp, cpu_env, tmp2); + tcg_temp_free(tmp2); + store_reg(s, rd, tmp); + } else { + if (!env->cp[cp].cp_write) + return 1; + gen_set_pc_im(s->pc); + tmp = load_reg(s, rd); + tmp2 = tcg_const_i32(insn); + gen_helper_set_cp(cpu_env, tmp2, tmp); + tcg_temp_free(tmp2); + tcg_temp_free_i32(tmp); + } + return 0; +} + +static int cp15_user_ok(CPUARMState *env, uint32_t insn) { + int cpn = (insn >> 16) & 0xf; + int cpm = insn & 0xf; + int op = ((insn >> 5) & 7) | ((insn >> 18) & 0x38); + + if (arm_feature(env, ARM_FEATURE_V7) && cpn == 9) { + /* Performance monitor registers fall into three categories: + * (a) always UNDEF in usermode + * (b) UNDEF only if PMUSERENR.EN is 0 + * (c) always read OK and UNDEF on write (PMUSERENR only) + */ + if ((cpm == 12 && (op < 6)) || (cpm == 13 && (op < 3))) { + return env->cp15.c9_pmuserenr; + } else if (cpm == 14 && op == 0 && (insn & ARM_CP_RW_BIT)) { + /* PMUSERENR, read only */ + return 1; + } + return 0; + } + + if (cpn == 13 && cpm == 0) { + /* TLS register. */ + if (op == 2 || (op == 3 && (insn & ARM_CP_RW_BIT))) + return 1; + } + return 0; +} + +static int cp15_tls_load_store(CPUARMState *env, DisasContext *s, uint32_t insn, uint32_t rd) { + TCGv tmp; + int cpn = (insn >> 16) & 0xf; + int cpm = insn & 0xf; + int op = ((insn >> 5) & 7) | ((insn >> 18) & 0x38); + + if (!arm_feature(env, ARM_FEATURE_V6K)) + return 0; + + if (!(cpn == 13 && cpm == 0)) + return 0; + + if (insn & ARM_CP_RW_BIT) { + switch (op) { + case 2: + tmp = load_cpu_field(cp15.c13_tls1); + break; + case 3: + tmp = load_cpu_field(cp15.c13_tls2); + break; + case 4: + tmp = load_cpu_field(cp15.c13_tls3); + break; + default: + return 0; + } + store_reg(s, rd, tmp); + + } else { + tmp = load_reg(s, rd); + switch (op) { + case 2: + store_cpu_field(tmp, cp15.c13_tls1); + break; + case 3: + store_cpu_field(tmp, cp15.c13_tls2); + break; + case 4: + store_cpu_field(tmp, cp15.c13_tls3); + break; + default: + tcg_temp_free_i32(tmp); + return 0; + } + } + return 1; +} + +/* Disassemble system coprocessor (cp15) instruction. Return nonzero if + instruction is not defined. */ +static int disas_cp15_insn(CPUARMState *env, DisasContext *s, uint32_t insn) { + uint32_t rd; + TCGv tmp, tmp2; + + /* M profile cores use memory mapped registers instead of cp15. */ + if (arm_feature(env, ARM_FEATURE_M)) + return 1; + + if ((insn & (1 << 25)) == 0) { + if (insn & (1 << 20)) { + /* mrrc */ + return 1; + } + /* mcrr. Used for block cache operations, so implement as no-op. */ + return 0; + } + if ((insn & (1 << 4)) == 0) { + /* cdp */ + return 1; + } + /* We special case a number of cp15 instructions which were used + * for things which are real instructions in ARMv7. This allows + * them to work in linux-user mode which doesn't provide functional + * get_cp15/set_cp15 helpers, and is more efficient anyway. + */ + switch ((insn & 0x0fff0fff)) { + case 0x0e070f90: + /* 0,c7,c0,4: Standard v6 WFI (also used in some pre-v6 cores). + * In v7, this must NOP. + */ + if (IS_USER(s)) { + return 1; + } + if (!arm_feature(env, ARM_FEATURE_V7)) { + /* Wait for interrupt. */ + gen_set_pc_im(s->pc); + s->is_jmp = DISAS_WFI; + } + return 0; + case 0x0e070f58: + /* 0,c7,c8,2: Not all pre-v6 cores implemented this WFI, + * so this is slightly over-broad. + */ + if (!IS_USER(s) && !arm_feature(env, ARM_FEATURE_V6)) { + /* Wait for interrupt. */ + gen_set_pc_im(s->pc); + s->is_jmp = DISAS_WFI; + return 0; + } + /* Otherwise continue to handle via helper function. + * In particular, on v7 and some v6 cores this is one of + * the VA-PA registers. + */ + break; + case 0x0e070f3d: + /* 0,c7,c13,1: prefetch-by-MVA in v6, NOP in v7 */ + if (arm_feature(env, ARM_FEATURE_V6)) { + return IS_USER(s) ? 1 : 0; + } + break; + case 0x0e070f95: /* 0,c7,c5,4 : ISB */ + case 0x0e070f9a: /* 0,c7,c10,4: DSB */ + case 0x0e070fba: /* 0,c7,c10,5: DMB */ + /* Barriers in both v6 and v7 */ + if (arm_feature(env, ARM_FEATURE_V6)) { + return 0; + } + break; + default: + break; + } + + if (IS_USER(s) && !cp15_user_ok(env, insn)) { + return 1; + } + + rd = (insn >> 12) & 0xf; + + if (cp15_tls_load_store(env, s, insn, rd)) + return 0; + + tmp2 = tcg_const_i32(insn); + if (insn & ARM_CP_RW_BIT) { + tmp = tcg_temp_new_i32(); + gen_helper_get_cp15(tmp, cpu_env, tmp2); + /* If the destination register is r15 then sets condition codes. */ + if (rd != 15) + store_reg(s, rd, tmp); + else + tcg_temp_free_i32(tmp); + } else { + tmp = load_reg(s, rd); + gen_helper_set_cp15(cpu_env, tmp2, tmp); + tcg_temp_free_i32(tmp); + /* Normally we would always end the TB here, but Linux + * arch/arm/mach-pxa/sleep.S expects two instructions following + * an MMU enable to execute from cache. Imitate this behaviour. */ + if (!arm_feature(env, ARM_FEATURE_XSCALE) || (insn & 0x0fff0fff) != 0x0e010f10) + gen_lookup_tb(s); + } + tcg_temp_free_i32(tmp2); + return 0; +} + +#define VFP_REG_SHR(x, n) (((n) > 0) ? (x) >> (n) : (x) << -(n)) +#define VFP_SREG(insn, bigbit, smallbit) ((VFP_REG_SHR(insn, bigbit - 1) & 0x1e) | (((insn) >> (smallbit)) & 1)) +#define VFP_DREG(reg, insn, bigbit, smallbit) \ + do { \ + if (arm_feature(env, ARM_FEATURE_VFP3)) { \ + reg = (((insn) >> (bigbit)) & 0x0f) | (((insn) >> ((smallbit) -4)) & 0x10); \ + } else { \ + if (insn & (1 << (smallbit))) \ + return 1; \ + reg = ((insn) >> (bigbit)) & 0x0f; \ + } \ + } while (0) + +#define VFP_SREG_D(insn) VFP_SREG(insn, 12, 22) +#define VFP_DREG_D(reg, insn) VFP_DREG(reg, insn, 12, 22) +#define VFP_SREG_N(insn) VFP_SREG(insn, 16, 7) +#define VFP_DREG_N(reg, insn) VFP_DREG(reg, insn, 16, 7) +#define VFP_SREG_M(insn) VFP_SREG(insn, 0, 5) +#define VFP_DREG_M(reg, insn) VFP_DREG(reg, insn, 0, 5) + +/* Move between integer and VFP cores. */ +static TCGv gen_vfp_mrs(void) { + TCGv tmp = tcg_temp_new_i32(); + tcg_gen_mov_i32(tmp, cpu_F0s); + return tmp; +} + +static void gen_vfp_msr(TCGv tmp) { + tcg_gen_mov_i32(cpu_F0s, tmp); + tcg_temp_free_i32(tmp); +} + +static void gen_neon_dup_u8(TCGv var, int shift) { + TCGv tmp = tcg_temp_new_i32(); + if (shift) + tcg_gen_shri_i32(var, var, shift); + tcg_gen_ext8u_i32(var, var); + tcg_gen_shli_i32(tmp, var, 8); + tcg_gen_or_i32(var, var, tmp); + tcg_gen_shli_i32(tmp, var, 16); + tcg_gen_or_i32(var, var, tmp); + tcg_temp_free_i32(tmp); +} + +static void gen_neon_dup_low16(TCGv var) { + TCGv tmp = tcg_temp_new_i32(); + tcg_gen_ext16u_i32(var, var); + tcg_gen_shli_i32(tmp, var, 16); + tcg_gen_or_i32(var, var, tmp); + tcg_temp_free_i32(tmp); +} + +static void gen_neon_dup_high16(TCGv var) { + TCGv tmp = tcg_temp_new_i32(); + tcg_gen_andi_i32(var, var, 0xffff0000); + tcg_gen_shri_i32(tmp, var, 16); + tcg_gen_or_i32(var, var, tmp); + tcg_temp_free_i32(tmp); +} + +static TCGv gen_load_and_replicate(DisasContext *s, TCGv addr, int size) { + /* Load a single Neon element and replicate into a 32 bit TCG reg */ + TCGv tmp; + switch (size) { + case 0: + tmp = gen_ld8u(addr, IS_USER(s)); + gen_neon_dup_u8(tmp, 0); + break; + case 1: + tmp = gen_ld16u(addr, IS_USER(s)); + gen_neon_dup_low16(tmp); + break; + case 2: + tmp = gen_ld32(addr, IS_USER(s)); + break; + default: /* Avoid compiler warnings. */ + abort(); + } + return tmp; +} + +/* Disassemble a VFP instruction. Returns nonzero if an error occurred + (ie. an undefined instruction). */ +static int disas_vfp_insn(CPUARMState *env, DisasContext *s, uint32_t insn) { + uint32_t rd, rn, rm, op, i, n, offset, delta_d, delta_m, bank_mask; + int dp, veclen; + TCGv addr; + TCGv tmp; + TCGv tmp2; + + if (!arm_feature(env, ARM_FEATURE_VFP)) + return 1; + + if (!s->vfp_enabled) { + /* VFP disabled. Only allow fmxr/fmrx to/from some control regs. */ + if ((insn & 0x0fe00fff) != 0x0ee00a10) + return 1; + rn = (insn >> 16) & 0xf; + if (rn != ARM_VFP_FPSID && rn != ARM_VFP_FPEXC && rn != ARM_VFP_MVFR1 && rn != ARM_VFP_MVFR0) + return 1; + } + dp = ((insn & 0xf00) == 0xb00); + switch ((insn >> 24) & 0xf) { + case 0xe: + if (insn & (1 << 4)) { + /* single register transfer */ + rd = (insn >> 12) & 0xf; + if (dp) { + int size; + int pass; + + VFP_DREG_N(rn, insn); + if (insn & 0xf) + return 1; + if (insn & 0x00c00060 && !arm_feature(env, ARM_FEATURE_NEON)) + return 1; + + pass = (insn >> 21) & 1; + if (insn & (1 << 22)) { + size = 0; + offset = ((insn >> 5) & 3) * 8; + } else if (insn & (1 << 5)) { + size = 1; + offset = (insn & (1 << 6)) ? 16 : 0; + } else { + size = 2; + offset = 0; + } + if (insn & ARM_CP_RW_BIT) { + /* vfp->arm */ + tmp = neon_load_reg(rn, pass); + switch (size) { + case 0: + if (offset) + tcg_gen_shri_i32(tmp, tmp, offset); + if (insn & (1 << 23)) + gen_uxtb(tmp); + else + gen_sxtb(tmp); + break; + case 1: + if (insn & (1 << 23)) { + if (offset) { + tcg_gen_shri_i32(tmp, tmp, 16); + } else { + gen_uxth(tmp); + } + } else { + if (offset) { + tcg_gen_sari_i32(tmp, tmp, 16); + } else { + gen_sxth(tmp); + } + } + break; + case 2: + break; + } + store_reg(s, rd, tmp); + } else { + /* arm->vfp */ + tmp = load_reg(s, rd); + if (insn & (1 << 23)) { + /* VDUP */ + if (size == 0) { + gen_neon_dup_u8(tmp, 0); + } else if (size == 1) { + gen_neon_dup_low16(tmp); + } + for (n = 0; n <= pass * 2; n++) { + tmp2 = tcg_temp_new_i32(); + tcg_gen_mov_i32(tmp2, tmp); + neon_store_reg(rn, n, tmp2); + } + neon_store_reg(rn, n, tmp); + } else { + /* VMOV */ + switch (size) { + case 0: + tmp2 = neon_load_reg(rn, pass); + gen_bfi(tmp, tmp2, tmp, offset, 0xff); + tcg_temp_free_i32(tmp2); + break; + case 1: + tmp2 = neon_load_reg(rn, pass); + gen_bfi(tmp, tmp2, tmp, offset, 0xffff); + tcg_temp_free_i32(tmp2); + break; + case 2: + break; + } + neon_store_reg(rn, pass, tmp); + } + } + } else { /* !dp */ + if ((insn & 0x6f) != 0x00) + return 1; + rn = VFP_SREG_N(insn); + if (insn & ARM_CP_RW_BIT) { + /* vfp->arm */ + if (insn & (1 << 21)) { + /* system register */ + rn >>= 1; + + switch (rn) { + case ARM_VFP_FPSID: + /* VFP2 allows access to FSID from userspace. + VFP3 restricts all id registers to privileged + accesses. */ + if (IS_USER(s) && arm_feature(env, ARM_FEATURE_VFP3)) + return 1; + tmp = load_cpu_field(vfp.xregs[rn]); + break; + case ARM_VFP_FPEXC: + if (IS_USER(s)) + return 1; + tmp = load_cpu_field(vfp.xregs[rn]); + break; + case ARM_VFP_FPINST: + case ARM_VFP_FPINST2: + /* Not present in VFP3. */ + if (IS_USER(s) || arm_feature(env, ARM_FEATURE_VFP3)) + return 1; + tmp = load_cpu_field(vfp.xregs[rn]); + break; + case ARM_VFP_FPSCR: + if (rd == 15) { + tmp = load_cpu_field(vfp.xregs[ARM_VFP_FPSCR]); + tcg_gen_andi_i32(tmp, tmp, 0xf0000000); + } else { + tmp = tcg_temp_new_i32(); + gen_helper_vfp_get_fpscr(tmp, cpu_env); + } + break; + case ARM_VFP_MVFR0: + case ARM_VFP_MVFR1: + if (IS_USER(s) || !arm_feature(env, ARM_FEATURE_MVFR)) + return 1; + tmp = load_cpu_field(vfp.xregs[rn]); + break; + default: + return 1; + } + } else { + gen_mov_F0_vreg(0, rn); + tmp = gen_vfp_mrs(); + } + if (rd == 15) { + /* Set the 4 flag bits in the CPSR. */ + gen_set_nzcv(tmp); + tcg_temp_free_i32(tmp); + } else { + store_reg(s, rd, tmp); + } + } else { + /* arm->vfp */ + tmp = load_reg(s, rd); + if (insn & (1 << 21)) { + rn >>= 1; + /* system register */ + switch (rn) { + case ARM_VFP_FPSID: + case ARM_VFP_MVFR0: + case ARM_VFP_MVFR1: + /* Writes are ignored. */ + break; + case ARM_VFP_FPSCR: + gen_helper_vfp_set_fpscr(cpu_env, tmp); + tcg_temp_free_i32(tmp); + gen_lookup_tb(s); + break; + case ARM_VFP_FPEXC: + if (IS_USER(s)) + return 1; + /* TODO: VFP subarchitecture support. + * For now, keep the EN bit only */ + tcg_gen_andi_i32(tmp, tmp, 1 << 30); + store_cpu_field(tmp, vfp.xregs[rn]); + gen_lookup_tb(s); + break; + case ARM_VFP_FPINST: + case ARM_VFP_FPINST2: + store_cpu_field(tmp, vfp.xregs[rn]); + break; + default: + return 1; + } + } else { + gen_vfp_msr(tmp); + gen_mov_vreg_F0(0, rn); + } + } + } + } else { + /* data processing */ + /* The opcode is in bits 23, 21, 20 and 6. */ + op = ((insn >> 20) & 8) | ((insn >> 19) & 6) | ((insn >> 6) & 1); + if (dp) { + if (op == 15) { + /* rn is opcode */ + rn = ((insn >> 15) & 0x1e) | ((insn >> 7) & 1); + } else { + /* rn is register number */ + VFP_DREG_N(rn, insn); + } + + if (op == 15 && (rn == 15 || ((rn & 0x1c) == 0x18))) { + /* Integer or single precision destination. */ + rd = VFP_SREG_D(insn); + } else { + VFP_DREG_D(rd, insn); + } + if (op == 15 && (((rn & 0x1c) == 0x10) || ((rn & 0x14) == 0x14))) { + /* VCVT from int is always from S reg regardless of dp bit. + * VCVT with immediate frac_bits has same format as SREG_M + */ + rm = VFP_SREG_M(insn); + } else { + VFP_DREG_M(rm, insn); + } + } else { + rn = VFP_SREG_N(insn); + if (op == 15 && rn == 15) { + /* Double precision destination. */ + VFP_DREG_D(rd, insn); + } else { + rd = VFP_SREG_D(insn); + } + /* NB that we implicitly rely on the encoding for the frac_bits + * in VCVT of fixed to float being the same as that of an SREG_M + */ + rm = VFP_SREG_M(insn); + } + + veclen = s->vec_len; + if (op == 15 && rn > 3) + veclen = 0; + + /* Shut up compiler warnings. */ + delta_m = 0; + delta_d = 0; + bank_mask = 0; + + if (veclen > 0) { + if (dp) + bank_mask = 0xc; + else + bank_mask = 0x18; + + /* Figure out what type of vector operation this is. */ + if ((rd & bank_mask) == 0) { + /* scalar */ + veclen = 0; + } else { + if (dp) + delta_d = (s->vec_stride >> 1) + 1; + else + delta_d = s->vec_stride + 1; + + if ((rm & bank_mask) == 0) { + /* mixed scalar/vector */ + delta_m = 0; + } else { + /* vector */ + delta_m = delta_d; + } + } + } + + /* Load the initial operands. */ + if (op == 15) { + switch (rn) { + case 16: + case 17: + /* Integer source */ + gen_mov_F0_vreg(0, rm); + break; + case 8: + case 9: + /* Compare */ + gen_mov_F0_vreg(dp, rd); + gen_mov_F1_vreg(dp, rm); + break; + case 10: + case 11: + /* Compare with zero */ + gen_mov_F0_vreg(dp, rd); + gen_vfp_F1_ld0(dp); + break; + case 20: + case 21: + case 22: + case 23: + case 28: + case 29: + case 30: + case 31: + /* Source and destination the same. */ + gen_mov_F0_vreg(dp, rd); + break; + case 4: + case 5: + case 6: + case 7: + /* VCVTB, VCVTT: only present with the halfprec extension, + * UNPREDICTABLE if bit 8 is set (we choose to UNDEF) + */ + if (dp || !arm_feature(env, ARM_FEATURE_VFP_FP16)) { + return 1; + } + /* Otherwise fall through */ + default: + /* One source operand. */ + gen_mov_F0_vreg(dp, rm); + break; + } + } else { + /* Two source operands. */ + gen_mov_F0_vreg(dp, rn); + gen_mov_F1_vreg(dp, rm); + } + + for (;;) { + /* Perform the calculation. */ + switch (op) { + case 0: /* VMLA: fd + (fn * fm) */ + /* Note that order of inputs to the add matters for NaNs */ + gen_vfp_F1_mul(dp); + gen_mov_F0_vreg(dp, rd); + gen_vfp_add(dp); + break; + case 1: /* VMLS: fd + -(fn * fm) */ + gen_vfp_mul(dp); + gen_vfp_F1_neg(dp); + gen_mov_F0_vreg(dp, rd); + gen_vfp_add(dp); + break; + case 2: /* VNMLS: -fd + (fn * fm) */ + /* Note that it isn't valid to replace (-A + B) with (B - A) + * or similar plausible looking simplifications + * because this will give wrong results for NaNs. + */ + gen_vfp_F1_mul(dp); + gen_mov_F0_vreg(dp, rd); + gen_vfp_neg(dp); + gen_vfp_add(dp); + break; + case 3: /* VNMLA: -fd + -(fn * fm) */ + gen_vfp_mul(dp); + gen_vfp_F1_neg(dp); + gen_mov_F0_vreg(dp, rd); + gen_vfp_neg(dp); + gen_vfp_add(dp); + break; + case 4: /* mul: fn * fm */ + gen_vfp_mul(dp); + break; + case 5: /* nmul: -(fn * fm) */ + gen_vfp_mul(dp); + gen_vfp_neg(dp); + break; + case 6: /* add: fn + fm */ + gen_vfp_add(dp); + break; + case 7: /* sub: fn - fm */ + gen_vfp_sub(dp); + break; + case 8: /* div: fn / fm */ + gen_vfp_div(dp); + break; + case 10: /* VFNMA : fd = muladd(-fd, fn, fm) */ + case 11: /* VFNMS : fd = muladd(-fd, -fn, fm) */ + case 12: /* VFMA : fd = muladd( fd, fn, fm) */ + case 13: /* VFMS : fd = muladd( fd, -fn, fm) */ + /* These are fused multiply-add, and must be done as one + * floating point operation with no rounding between the + * multiplication and addition steps. + * NB that doing the negations here as separate steps is + * correct : an input NaN should come out with its sign bit + * flipped if it is a negated-input. + */ + if (!arm_feature(env, ARM_FEATURE_VFP4)) { + return 1; + } + if (dp) { + TCGv_ptr fpst; + TCGv_i64 frd; + if (op & 1) { + /* VFNMS, VFMS */ + gen_helper_vfp_negd(cpu_F0d, cpu_F0d); + } + frd = tcg_temp_new_i64(); + tcg_gen_ld_f64(frd, cpu_env, vfp_reg_offset(dp, rd)); + if (op & 2) { + /* VFNMA, VFNMS */ + gen_helper_vfp_negd(frd, frd); + } + fpst = get_fpstatus_ptr(0); + gen_helper_vfp_muladdd(cpu_F0d, cpu_F0d, cpu_F1d, frd, fpst); + tcg_temp_free_ptr(fpst); + tcg_temp_free_i64(frd); + } else { + TCGv_ptr fpst; + TCGv_i32 frd; + if (op & 1) { + /* VFNMS, VFMS */ + gen_helper_vfp_negs(cpu_F0s, cpu_F0s); + } + frd = tcg_temp_new_i32(); + tcg_gen_ld_f32(frd, cpu_env, vfp_reg_offset(dp, rd)); + if (op & 2) { + gen_helper_vfp_negs(frd, frd); + } + fpst = get_fpstatus_ptr(0); + gen_helper_vfp_muladds(cpu_F0s, cpu_F0s, cpu_F1s, frd, fpst); + tcg_temp_free_ptr(fpst); + tcg_temp_free_i32(frd); + } + break; + case 14: /* fconst */ + if (!arm_feature(env, ARM_FEATURE_VFP3)) + return 1; + + n = (insn << 12) & 0x80000000; + i = ((insn >> 12) & 0x70) | (insn & 0xf); + if (dp) { + if (i & 0x40) + i |= 0x3f80; + else + i |= 0x4000; + n |= i << 16; + tcg_gen_movi_i64(cpu_F0d, ((uint64_t) n) << 32); + } else { + if (i & 0x40) + i |= 0x780; + else + i |= 0x800; + n |= i << 19; + tcg_gen_movi_i32(cpu_F0s, n); + } + break; + case 15: /* extension space */ + switch (rn) { + case 0: /* cpy */ + /* no-op */ + break; + case 1: /* abs */ + gen_vfp_abs(dp); + break; + case 2: /* neg */ + gen_vfp_neg(dp); + break; + case 3: /* sqrt */ + gen_vfp_sqrt(dp); + break; + case 4: /* vcvtb.f32.f16 */ + tmp = gen_vfp_mrs(); + tcg_gen_ext16u_i32(tmp, tmp); + gen_helper_vfp_fcvt_f16_to_f32(cpu_F0s, tmp, cpu_env); + tcg_temp_free_i32(tmp); + break; + case 5: /* vcvtt.f32.f16 */ + tmp = gen_vfp_mrs(); + tcg_gen_shri_i32(tmp, tmp, 16); + gen_helper_vfp_fcvt_f16_to_f32(cpu_F0s, tmp, cpu_env); + tcg_temp_free_i32(tmp); + break; + case 6: /* vcvtb.f16.f32 */ + tmp = tcg_temp_new_i32(); + gen_helper_vfp_fcvt_f32_to_f16(tmp, cpu_F0s, cpu_env); + gen_mov_F0_vreg(0, rd); + tmp2 = gen_vfp_mrs(); + tcg_gen_andi_i32(tmp2, tmp2, 0xffff0000); + tcg_gen_or_i32(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + gen_vfp_msr(tmp); + break; + case 7: /* vcvtt.f16.f32 */ + tmp = tcg_temp_new_i32(); + gen_helper_vfp_fcvt_f32_to_f16(tmp, cpu_F0s, cpu_env); + tcg_gen_shli_i32(tmp, tmp, 16); + gen_mov_F0_vreg(0, rd); + tmp2 = gen_vfp_mrs(); + tcg_gen_ext16u_i32(tmp2, tmp2); + tcg_gen_or_i32(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + gen_vfp_msr(tmp); + break; + case 8: /* cmp */ + gen_vfp_cmp(dp); + break; + case 9: /* cmpe */ + gen_vfp_cmpe(dp); + break; + case 10: /* cmpz */ + gen_vfp_cmp(dp); + break; + case 11: /* cmpez */ + gen_vfp_F1_ld0(dp); + gen_vfp_cmpe(dp); + break; + case 15: /* single<->double conversion */ + if (dp) + gen_helper_vfp_fcvtsd(cpu_F0s, cpu_F0d, cpu_env); + else + gen_helper_vfp_fcvtds(cpu_F0d, cpu_F0s, cpu_env); + break; + case 16: /* fuito */ + gen_vfp_uito(dp, 0); + break; + case 17: /* fsito */ + gen_vfp_sito(dp, 0); + break; + case 20: /* fshto */ + if (!arm_feature(env, ARM_FEATURE_VFP3)) + return 1; + gen_vfp_shto(dp, 16 - rm, 0); + break; + case 21: /* fslto */ + if (!arm_feature(env, ARM_FEATURE_VFP3)) + return 1; + gen_vfp_slto(dp, 32 - rm, 0); + break; + case 22: /* fuhto */ + if (!arm_feature(env, ARM_FEATURE_VFP3)) + return 1; + gen_vfp_uhto(dp, 16 - rm, 0); + break; + case 23: /* fulto */ + if (!arm_feature(env, ARM_FEATURE_VFP3)) + return 1; + gen_vfp_ulto(dp, 32 - rm, 0); + break; + case 24: /* ftoui */ + gen_vfp_toui(dp, 0); + break; + case 25: /* ftouiz */ + gen_vfp_touiz(dp, 0); + break; + case 26: /* ftosi */ + gen_vfp_tosi(dp, 0); + break; + case 27: /* ftosiz */ + gen_vfp_tosiz(dp, 0); + break; + case 28: /* ftosh */ + if (!arm_feature(env, ARM_FEATURE_VFP3)) + return 1; + gen_vfp_tosh(dp, 16 - rm, 0); + break; + case 29: /* ftosl */ + if (!arm_feature(env, ARM_FEATURE_VFP3)) + return 1; + gen_vfp_tosl(dp, 32 - rm, 0); + break; + case 30: /* ftouh */ + if (!arm_feature(env, ARM_FEATURE_VFP3)) + return 1; + gen_vfp_touh(dp, 16 - rm, 0); + break; + case 31: /* ftoul */ + if (!arm_feature(env, ARM_FEATURE_VFP3)) + return 1; + gen_vfp_toul(dp, 32 - rm, 0); + break; + default: /* undefined */ + return 1; + } + break; + default: /* undefined */ + return 1; + } + + /* Write back the result. */ + if (op == 15 && (rn >= 8 && rn <= 11)) + ; /* Comparison, do nothing. */ + else if (op == 15 && dp && ((rn & 0x1c) == 0x18)) + /* VCVT double to int: always integer result. */ + gen_mov_vreg_F0(0, rd); + else if (op == 15 && rn == 15) + /* conversion */ + gen_mov_vreg_F0(!dp, rd); + else + gen_mov_vreg_F0(dp, rd); + + /* break out of the loop if we have finished */ + if (veclen == 0) + break; + + if (op == 15 && delta_m == 0) { + /* single source one-many */ + while (veclen--) { + rd = ((rd + delta_d) & (bank_mask - 1)) | (rd & bank_mask); + gen_mov_vreg_F0(dp, rd); + } + break; + } + /* Setup the next operands. */ + veclen--; + rd = ((rd + delta_d) & (bank_mask - 1)) | (rd & bank_mask); + + if (op == 15) { + /* One source operand. */ + rm = ((rm + delta_m) & (bank_mask - 1)) | (rm & bank_mask); + gen_mov_F0_vreg(dp, rm); + } else { + /* Two source operands. */ + rn = ((rn + delta_d) & (bank_mask - 1)) | (rn & bank_mask); + gen_mov_F0_vreg(dp, rn); + if (delta_m) { + rm = ((rm + delta_m) & (bank_mask - 1)) | (rm & bank_mask); + gen_mov_F1_vreg(dp, rm); + } + } + } + } + break; + case 0xc: + case 0xd: + if ((insn & 0x03e00000) == 0x00400000) { + /* two-register transfer */ + rn = (insn >> 16) & 0xf; + rd = (insn >> 12) & 0xf; + if (dp) { + VFP_DREG_M(rm, insn); + } else { + rm = VFP_SREG_M(insn); + } + + if (insn & ARM_CP_RW_BIT) { + /* vfp->arm */ + if (dp) { + gen_mov_F0_vreg(0, rm * 2); + tmp = gen_vfp_mrs(); + store_reg(s, rd, tmp); + gen_mov_F0_vreg(0, rm * 2 + 1); + tmp = gen_vfp_mrs(); + store_reg(s, rn, tmp); + } else { + gen_mov_F0_vreg(0, rm); + tmp = gen_vfp_mrs(); + store_reg(s, rd, tmp); + gen_mov_F0_vreg(0, rm + 1); + tmp = gen_vfp_mrs(); + store_reg(s, rn, tmp); + } + } else { + /* arm->vfp */ + if (dp) { + tmp = load_reg(s, rd); + gen_vfp_msr(tmp); + gen_mov_vreg_F0(0, rm * 2); + tmp = load_reg(s, rn); + gen_vfp_msr(tmp); + gen_mov_vreg_F0(0, rm * 2 + 1); + } else { + tmp = load_reg(s, rd); + gen_vfp_msr(tmp); + gen_mov_vreg_F0(0, rm); + tmp = load_reg(s, rn); + gen_vfp_msr(tmp); + gen_mov_vreg_F0(0, rm + 1); + } + } + } else { + /* Load/store */ + rn = (insn >> 16) & 0xf; + if (dp) + VFP_DREG_D(rd, insn); + else + rd = VFP_SREG_D(insn); + if ((insn & 0x01200000) == 0x01000000) { + /* Single load/store */ + offset = (insn & 0xff) << 2; + if ((insn & (1 << 23)) == 0) + offset = -offset; + if (s->thumb && rn == 15) { + /* This is actually UNPREDICTABLE */ + addr = tcg_temp_new_i32(); + tcg_gen_movi_i32(addr, s->pc & ~2); + } else { + addr = load_reg(s, rn); + } + tcg_gen_addi_i32(addr, addr, offset); + if (insn & (1 << 20)) { + gen_vfp_ld(s, dp, addr); + gen_mov_vreg_F0(dp, rd); + } else { + gen_mov_F0_vreg(dp, rd); + gen_vfp_st(s, dp, addr); + } + tcg_temp_free_i32(addr); + } else { + /* load/store multiple */ + int w = insn & (1 << 21); + if (dp) + n = (insn >> 1) & 0x7f; + else + n = insn & 0xff; + + if (w && !(((insn >> 23) ^ (insn >> 24)) & 1)) { + /* P == U , W == 1 => UNDEF */ + return 1; + } + if (n == 0 || (rd + n) > 32 || (dp && n > 16)) { + /* UNPREDICTABLE cases for bad immediates: we choose to + * UNDEF to avoid generating huge numbers of TCG ops + */ + return 1; + } + if (rn == 15 && w) { + /* writeback to PC is UNPREDICTABLE, we choose to UNDEF */ + return 1; + } + + if (s->thumb && rn == 15) { + /* This is actually UNPREDICTABLE */ + addr = tcg_temp_new_i32(); + tcg_gen_movi_i32(addr, s->pc & ~2); + } else { + addr = load_reg(s, rn); + } + if (insn & (1 << 24)) /* pre-decrement */ + tcg_gen_addi_i32(addr, addr, -((insn & 0xff) << 2)); + + if (dp) + offset = 8; + else + offset = 4; + for (i = 0; i < n; i++) { + if (insn & ARM_CP_RW_BIT) { + /* load */ + gen_vfp_ld(s, dp, addr); + gen_mov_vreg_F0(dp, rd + i); + } else { + /* store */ + gen_mov_F0_vreg(dp, rd + i); + gen_vfp_st(s, dp, addr); + } + tcg_gen_addi_i32(addr, addr, offset); + } + if (w) { + /* writeback */ + if (insn & (1 << 24)) + offset = -offset * n; + else if (dp && (insn & 1)) + offset = 4; + else + offset = 0; + + if (offset != 0) + tcg_gen_addi_i32(addr, addr, offset); + store_reg(s, rn, addr); + } else { + tcg_temp_free_i32(addr); + } + } + } + break; + default: + /* Should never happen. */ + return 1; + } + return 0; +} + +static inline void gen_goto_tb(DisasContext *s, int n, uint32_t dest) { + TranslationBlock *tb; + + tb = s->tb; +#ifdef CONFIG_SYMBEX + gen_eob_event(s, 1, dest); +#endif + if ((tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK)) { + tcg_gen_goto_tb(n); + gen_set_pc_im(dest); + tcg_gen_exit_tb(tb, n); + } else { + gen_set_pc_im(dest); + tcg_gen_exit_tb(NULL, 0); + } +} + +static inline void gen_jmp(DisasContext *s, uint32_t dest) { + if (unlikely(s->singlestep_enabled)) { + /* An indirect jump so that we still trigger the debug exception. */ + if (s->thumb) + dest |= 1; + gen_bx_im(s, dest); + } else { + gen_goto_tb(s, 0, dest); + s->is_jmp = DISAS_TB_JUMP; + } +} + +static inline void gen_mulxy(TCGv t0, TCGv t1, int x, int y) { + if (x) + tcg_gen_sari_i32(t0, t0, 16); + else + gen_sxth(t0); + if (y) + tcg_gen_sari_i32(t1, t1, 16); + else + gen_sxth(t1); + tcg_gen_mul_i32(t0, t0, t1); +} + +/* Return the mask of PSR bits set by a MSR instruction. */ +static uint32_t msr_mask(CPUARMState *env, DisasContext *s, int flags, int spsr) { + uint32_t mask; + + mask = 0; + if (flags & (1 << 0)) + mask |= 0xff; + if (flags & (1 << 1)) + mask |= 0xff00; + if (flags & (1 << 2)) + mask |= 0xff0000; + if (flags & (1 << 3)) + mask |= 0xff000000; + + /* Mask out undefined bits. */ + mask &= ~CPSR_RESERVED; + if (!arm_feature(env, ARM_FEATURE_V4T)) + mask &= ~CPSR_T; + if (!arm_feature(env, ARM_FEATURE_V5)) + mask &= ~CPSR_Q; /* V5TE in reality*/ + if (!arm_feature(env, ARM_FEATURE_V6)) + mask &= ~(CPSR_E | CPSR_GE); + if (!arm_feature(env, ARM_FEATURE_THUMB2)) + mask &= ~CPSR_IT; + /* Mask out execution state bits. */ + if (!spsr) + mask &= ~CPSR_EXEC; + /* Mask out privileged bits. */ + if (IS_USER(s)) + mask &= CPSR_USER; + return mask; +} + +/* Returns nonzero if access to the PSR is not permitted. Marks t0 as dead. */ +static int gen_set_psr(DisasContext *s, uint32_t mask, int spsr, TCGv t0) { + TCGv tmp; + if (spsr) { + /* ??? This is also undefined in system mode. */ + if (IS_USER(s)) + return 1; + + tmp = load_cpu_field(spsr); + tcg_gen_andi_i32(tmp, tmp, ~mask); + tcg_gen_andi_i32(t0, t0, mask); + tcg_gen_or_i32(tmp, tmp, t0); + store_cpu_field(tmp, spsr); + } else { + gen_set_cpsr(t0, mask); + } + tcg_temp_free_i32(t0); + gen_lookup_tb(s); + return 0; +} + +/* Returns nonzero if access to the PSR is not permitted. */ +static int gen_set_psr_im(DisasContext *s, uint32_t mask, int spsr, uint32_t val) { + TCGv tmp; + tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, val); + return gen_set_psr(s, mask, spsr, tmp); +} + +/* Generate an old-style exception return. Marks pc as dead. */ +static void gen_exception_return(DisasContext *s, TCGv pc) { + TCGv tmp; + store_reg(s, 15, pc); + tmp = load_cpu_field(spsr); + gen_set_cpsr(tmp, 0xffffffff); + tcg_temp_free_i32(tmp); + s->is_jmp = DISAS_UPDATE; +} + +/* Generate a v6 exception return. Marks both values as dead. */ +static void gen_rfe(DisasContext *s, TCGv pc, TCGv cpsr) { + gen_set_cpsr(cpsr, 0xffffffff); + tcg_temp_free_i32(cpsr); + store_reg(s, 15, pc); + s->is_jmp = DISAS_UPDATE; +} + +static inline void gen_set_condexec(DisasContext *s) { + if (s->condexec_mask) { + uint32_t val = (s->condexec_cond << 4) | (s->condexec_mask >> 1); + TCGv tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, val); + store_cpu_field(tmp, condexec_bits); + } +} + +static void gen_exception_insn(DisasContext *s, int offset, int excp) { + gen_set_condexec(s); + gen_set_pc_im(s->pc - offset); + gen_exception(excp); + s->is_jmp = DISAS_JUMP; +} + +static void gen_nop_hint(DisasContext *s, int val) { + switch (val) { + case 3: /* wfi */ + gen_set_pc_im(s->pc); + s->is_jmp = DISAS_WFI; + break; + case 2: /* wfe */ + case 4: /* sev */ + /* TODO: Implement SEV and WFE. May help SMP performance. */ + default: /* nop */ + break; + } +} + +#define CPU_V001 cpu_V0, cpu_V0, cpu_V1 + +static inline void gen_neon_add(int size, TCGv t0, TCGv t1) { + switch (size) { + case 0: + gen_helper_neon_add_u8(t0, t0, t1); + break; + case 1: + gen_helper_neon_add_u16(t0, t0, t1); + break; + case 2: + tcg_gen_add_i32(t0, t0, t1); + break; + default: + abort(); + } +} + +static inline void gen_neon_rsb(int size, TCGv t0, TCGv t1) { + switch (size) { + case 0: + gen_helper_neon_sub_u8(t0, t1, t0); + break; + case 1: + gen_helper_neon_sub_u16(t0, t1, t0); + break; + case 2: + tcg_gen_sub_i32(t0, t1, t0); + break; + default: + return; + } +} + +/* 32-bit pairwise ops end up the same as the elementwise versions. */ +#define gen_helper_neon_pmax_s32 gen_helper_neon_max_s32 +#define gen_helper_neon_pmax_u32 gen_helper_neon_max_u32 +#define gen_helper_neon_pmin_s32 gen_helper_neon_min_s32 +#define gen_helper_neon_pmin_u32 gen_helper_neon_min_u32 + +#define GEN_NEON_INTEGER_OP_ENV(name) \ + do { \ + switch ((size << 1) | u) { \ + case 0: \ + gen_helper_neon_##name##_s8(tmp, cpu_env, tmp, tmp2); \ + break; \ + case 1: \ + gen_helper_neon_##name##_u8(tmp, cpu_env, tmp, tmp2); \ + break; \ + case 2: \ + gen_helper_neon_##name##_s16(tmp, cpu_env, tmp, tmp2); \ + break; \ + case 3: \ + gen_helper_neon_##name##_u16(tmp, cpu_env, tmp, tmp2); \ + break; \ + case 4: \ + gen_helper_neon_##name##_s32(tmp, cpu_env, tmp, tmp2); \ + break; \ + case 5: \ + gen_helper_neon_##name##_u32(tmp, cpu_env, tmp, tmp2); \ + break; \ + default: \ + return 1; \ + } \ + } while (0) + +#define GEN_NEON_INTEGER_OP(name) \ + do { \ + switch ((size << 1) | u) { \ + case 0: \ + gen_helper_neon_##name##_s8(tmp, tmp, tmp2); \ + break; \ + case 1: \ + gen_helper_neon_##name##_u8(tmp, tmp, tmp2); \ + break; \ + case 2: \ + gen_helper_neon_##name##_s16(tmp, tmp, tmp2); \ + break; \ + case 3: \ + gen_helper_neon_##name##_u16(tmp, tmp, tmp2); \ + break; \ + case 4: \ + gen_helper_neon_##name##_s32(tmp, tmp, tmp2); \ + break; \ + case 5: \ + gen_helper_neon_##name##_u32(tmp, tmp, tmp2); \ + break; \ + default: \ + return 1; \ + } \ + } while (0) + +static TCGv neon_load_scratch(int scratch) { + TCGv tmp = tcg_temp_new_i32(); + tcg_gen_ld_i32(tmp, cpu_env, offsetof(CPUARMState, vfp.scratch[scratch])); + return tmp; +} + +static void neon_store_scratch(int scratch, TCGv var) { + tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, vfp.scratch[scratch])); + tcg_temp_free_i32(var); +} + +static inline TCGv neon_get_scalar(int size, int reg) { + TCGv tmp; + if (size == 1) { + tmp = neon_load_reg(reg & 7, reg >> 4); + if (reg & 8) { + gen_neon_dup_high16(tmp); + } else { + gen_neon_dup_low16(tmp); + } + } else { + tmp = neon_load_reg(reg & 15, reg >> 4); + } + return tmp; +} + +static int gen_neon_unzip(int rd, int rm, int size, int q) { + TCGv tmp, tmp2; + if (!q && size == 2) { + return 1; + } + tmp = tcg_const_i32(rd); + tmp2 = tcg_const_i32(rm); + if (q) { + switch (size) { + case 0: + gen_helper_neon_qunzip8(cpu_env, tmp, tmp2); + break; + case 1: + gen_helper_neon_qunzip16(cpu_env, tmp, tmp2); + break; + case 2: + gen_helper_neon_qunzip32(cpu_env, tmp, tmp2); + break; + default: + abort(); + } + } else { + switch (size) { + case 0: + gen_helper_neon_unzip8(cpu_env, tmp, tmp2); + break; + case 1: + gen_helper_neon_unzip16(cpu_env, tmp, tmp2); + break; + default: + abort(); + } + } + tcg_temp_free_i32(tmp); + tcg_temp_free_i32(tmp2); + return 0; +} + +static int gen_neon_zip(int rd, int rm, int size, int q) { + TCGv tmp, tmp2; + if (!q && size == 2) { + return 1; + } + tmp = tcg_const_i32(rd); + tmp2 = tcg_const_i32(rm); + if (q) { + switch (size) { + case 0: + gen_helper_neon_qzip8(cpu_env, tmp, tmp2); + break; + case 1: + gen_helper_neon_qzip16(cpu_env, tmp, tmp2); + break; + case 2: + gen_helper_neon_qzip32(cpu_env, tmp, tmp2); + break; + default: + abort(); + } + } else { + switch (size) { + case 0: + gen_helper_neon_zip8(cpu_env, tmp, tmp2); + break; + case 1: + gen_helper_neon_zip16(cpu_env, tmp, tmp2); + break; + default: + abort(); + } + } + tcg_temp_free_i32(tmp); + tcg_temp_free_i32(tmp2); + return 0; +} + +static void gen_neon_trn_u8(TCGv t0, TCGv t1) { + TCGv rd, tmp; + + rd = tcg_temp_new_i32(); + tmp = tcg_temp_new_i32(); + + tcg_gen_shli_i32(rd, t0, 8); + tcg_gen_andi_i32(rd, rd, 0xff00ff00); + tcg_gen_andi_i32(tmp, t1, 0x00ff00ff); + tcg_gen_or_i32(rd, rd, tmp); + + tcg_gen_shri_i32(t1, t1, 8); + tcg_gen_andi_i32(t1, t1, 0x00ff00ff); + tcg_gen_andi_i32(tmp, t0, 0xff00ff00); + tcg_gen_or_i32(t1, t1, tmp); + tcg_gen_mov_i32(t0, rd); + + tcg_temp_free_i32(tmp); + tcg_temp_free_i32(rd); +} + +static void gen_neon_trn_u16(TCGv t0, TCGv t1) { + TCGv rd, tmp; + + rd = tcg_temp_new_i32(); + tmp = tcg_temp_new_i32(); + + tcg_gen_shli_i32(rd, t0, 16); + tcg_gen_andi_i32(tmp, t1, 0xffff); + tcg_gen_or_i32(rd, rd, tmp); + tcg_gen_shri_i32(t1, t1, 16); + tcg_gen_andi_i32(tmp, t0, 0xffff0000); + tcg_gen_or_i32(t1, t1, tmp); + tcg_gen_mov_i32(t0, rd); + + tcg_temp_free_i32(tmp); + tcg_temp_free_i32(rd); +} + +static struct { + int nregs; + int interleave; + int spacing; +} neon_ls_element_type[11] = {{4, 4, 1}, {4, 4, 2}, {4, 1, 1}, {4, 2, 1}, {3, 3, 1}, {3, 3, 2}, + {3, 1, 1}, {1, 1, 1}, {2, 2, 1}, {2, 2, 2}, {2, 1, 1}}; + +/* Translate a NEON load/store element instruction. Return nonzero if the + instruction is invalid. */ +static int disas_neon_ls_insn(CPUARMState *env, DisasContext *s, uint32_t insn) { + int rd, rn, rm; + int op; + int nregs; + int interleave; + int spacing; + int stride; + int size; + int reg; + int pass; + int load; + int shift; + int n; + TCGv addr; + TCGv tmp; + TCGv tmp2; + TCGv_i64 tmp64; + + if (!s->vfp_enabled) + return 1; + VFP_DREG_D(rd, insn); + rn = (insn >> 16) & 0xf; + rm = insn & 0xf; + load = (insn & (1 << 21)) != 0; + if ((insn & (1 << 23)) == 0) { + /* Load store all elements. */ + op = (insn >> 8) & 0xf; + size = (insn >> 6) & 3; + if (op > 10) + return 1; + /* Catch UNDEF cases for bad values of align field */ + switch (op & 0xc) { + case 4: + if (((insn >> 5) & 1) == 1) { + return 1; + } + break; + case 8: + if (((insn >> 4) & 3) == 3) { + return 1; + } + break; + default: + break; + } + nregs = neon_ls_element_type[op].nregs; + interleave = neon_ls_element_type[op].interleave; + spacing = neon_ls_element_type[op].spacing; + if (size == 3 && (interleave | spacing) != 1) + return 1; + addr = tcg_temp_new_i32(); + load_reg_var(s, addr, rn); + stride = (1 << size) * interleave; + for (reg = 0; reg < nregs; reg++) { + if (interleave > 2 || (interleave == 2 && nregs == 2)) { + load_reg_var(s, addr, rn); + tcg_gen_addi_i32(addr, addr, (1 << size) * reg); + } else if (interleave == 2 && nregs == 4 && reg == 2) { + load_reg_var(s, addr, rn); + tcg_gen_addi_i32(addr, addr, 1 << size); + } + if (size == 3) { + if (load) { + tmp64 = gen_ld64(addr, IS_USER(s)); + neon_store_reg64(tmp64, rd); + tcg_temp_free_i64(tmp64); + } else { + tmp64 = tcg_temp_new_i64(); + neon_load_reg64(tmp64, rd); + gen_st64(tmp64, addr, IS_USER(s)); + } + tcg_gen_addi_i32(addr, addr, stride); + } else { + for (pass = 0; pass < 2; pass++) { + if (size == 2) { + if (load) { + tmp = gen_ld32(addr, IS_USER(s)); + neon_store_reg(rd, pass, tmp); + } else { + tmp = neon_load_reg(rd, pass); + gen_st32(tmp, addr, IS_USER(s)); + } + tcg_gen_addi_i32(addr, addr, stride); + } else if (size == 1) { + if (load) { + tmp = gen_ld16u(addr, IS_USER(s)); + tcg_gen_addi_i32(addr, addr, stride); + tmp2 = gen_ld16u(addr, IS_USER(s)); + tcg_gen_addi_i32(addr, addr, stride); + tcg_gen_shli_i32(tmp2, tmp2, 16); + tcg_gen_or_i32(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + neon_store_reg(rd, pass, tmp); + } else { + tmp = neon_load_reg(rd, pass); + tmp2 = tcg_temp_new_i32(); + tcg_gen_shri_i32(tmp2, tmp, 16); + gen_st16(tmp, addr, IS_USER(s)); + tcg_gen_addi_i32(addr, addr, stride); + gen_st16(tmp2, addr, IS_USER(s)); + tcg_gen_addi_i32(addr, addr, stride); + } + } else /* size == 0 */ { + if (load) { + for (n = 0; n < 4; n++) { + tmp = gen_ld8u(addr, IS_USER(s)); + tcg_gen_addi_i32(addr, addr, stride); + if (n == 0) { + tmp2 = tmp; + } else { + tcg_gen_shli_i32(tmp, tmp, n * 8); + tcg_gen_or_i32(tmp2, tmp2, tmp); + tcg_temp_free_i32(tmp); + } + } + neon_store_reg(rd, pass, tmp2); + } else { + tmp2 = neon_load_reg(rd, pass); + for (n = 0; n < 4; n++) { + tmp = tcg_temp_new_i32(); + if (n == 0) { + tcg_gen_mov_i32(tmp, tmp2); + } else { + tcg_gen_shri_i32(tmp, tmp2, n * 8); + } + gen_st8(tmp, addr, IS_USER(s)); + tcg_gen_addi_i32(addr, addr, stride); + } + tcg_temp_free_i32(tmp2); + } + } + } + } + rd += spacing; + } + tcg_temp_free_i32(addr); + stride = nregs * 8; + } else { + size = (insn >> 10) & 3; + if (size == 3) { + /* Load single element to all lanes. */ + int a = (insn >> 4) & 1; + if (!load) { + return 1; + } + size = (insn >> 6) & 3; + nregs = ((insn >> 8) & 3) + 1; + + if (size == 3) { + if (nregs != 4 || a == 0) { + return 1; + } + /* For VLD4 size==3 a == 1 means 32 bits at 16 byte alignment */ + size = 2; + } + if (nregs == 1 && a == 1 && size == 0) { + return 1; + } + if (nregs == 3 && a == 1) { + return 1; + } + addr = tcg_temp_new_i32(); + load_reg_var(s, addr, rn); + if (nregs == 1) { + /* VLD1 to all lanes: bit 5 indicates how many Dregs to write */ + tmp = gen_load_and_replicate(s, addr, size); + tcg_gen_st_i32(tmp, cpu_env, neon_reg_offset(rd, 0)); + tcg_gen_st_i32(tmp, cpu_env, neon_reg_offset(rd, 1)); + if (insn & (1 << 5)) { + tcg_gen_st_i32(tmp, cpu_env, neon_reg_offset(rd + 1, 0)); + tcg_gen_st_i32(tmp, cpu_env, neon_reg_offset(rd + 1, 1)); + } + tcg_temp_free_i32(tmp); + } else { + /* VLD2/3/4 to all lanes: bit 5 indicates register stride */ + stride = (insn & (1 << 5)) ? 2 : 1; + for (reg = 0; reg < nregs; reg++) { + tmp = gen_load_and_replicate(s, addr, size); + tcg_gen_st_i32(tmp, cpu_env, neon_reg_offset(rd, 0)); + tcg_gen_st_i32(tmp, cpu_env, neon_reg_offset(rd, 1)); + tcg_temp_free_i32(tmp); + tcg_gen_addi_i32(addr, addr, 1 << size); + rd += stride; + } + } + tcg_temp_free_i32(addr); + stride = (1 << size) * nregs; + } else { + /* Single element. */ + int idx = (insn >> 4) & 0xf; + pass = (insn >> 7) & 1; + switch (size) { + case 0: + shift = ((insn >> 5) & 3) * 8; + stride = 1; + break; + case 1: + shift = ((insn >> 6) & 1) * 16; + stride = (insn & (1 << 5)) ? 2 : 1; + break; + case 2: + shift = 0; + stride = (insn & (1 << 6)) ? 2 : 1; + break; + default: + abort(); + } + nregs = ((insn >> 8) & 3) + 1; + /* Catch the UNDEF cases. This is unavoidably a bit messy. */ + switch (nregs) { + case 1: + if (((idx & (1 << size)) != 0) || (size == 2 && ((idx & 3) == 1 || (idx & 3) == 2))) { + return 1; + } + break; + case 3: + if ((idx & 1) != 0) { + return 1; + } + /* fall through */ + case 2: + if (size == 2 && (idx & 2) != 0) { + return 1; + } + break; + case 4: + if ((size == 2) && ((idx & 3) == 3)) { + return 1; + } + break; + default: + abort(); + } + if ((rd + stride * (nregs - 1)) > 31) { + /* Attempts to write off the end of the register file + * are UNPREDICTABLE; we choose to UNDEF because otherwise + * the neon_load_reg() would write off the end of the array. + */ + return 1; + } + addr = tcg_temp_new_i32(); + load_reg_var(s, addr, rn); + for (reg = 0; reg < nregs; reg++) { + if (load) { + switch (size) { + case 0: + tmp = gen_ld8u(addr, IS_USER(s)); + break; + case 1: + tmp = gen_ld16u(addr, IS_USER(s)); + break; + case 2: + tmp = gen_ld32(addr, IS_USER(s)); + break; + default: /* Avoid compiler warnings. */ + abort(); + } + if (size != 2) { + tmp2 = neon_load_reg(rd, pass); + gen_bfi(tmp, tmp2, tmp, shift, size ? 0xffff : 0xff); + tcg_temp_free_i32(tmp2); + } + neon_store_reg(rd, pass, tmp); + } else { /* Store */ + tmp = neon_load_reg(rd, pass); + if (shift) + tcg_gen_shri_i32(tmp, tmp, shift); + switch (size) { + case 0: + gen_st8(tmp, addr, IS_USER(s)); + break; + case 1: + gen_st16(tmp, addr, IS_USER(s)); + break; + case 2: + gen_st32(tmp, addr, IS_USER(s)); + break; + } + } + rd += stride; + tcg_gen_addi_i32(addr, addr, 1 << size); + } + tcg_temp_free_i32(addr); + stride = nregs * (1 << size); + } + } + if (rm != 15) { + TCGv base; + + base = load_reg(s, rn); + if (rm == 13) { + tcg_gen_addi_i32(base, base, stride); + } else { + TCGv index; + index = load_reg(s, rm); + tcg_gen_add_i32(base, base, index); + tcg_temp_free_i32(index); + } + store_reg(s, rn, base); + } + return 0; +} + +/* Bitwise select. dest = c ? t : f. Clobbers T and F. */ +static void gen_neon_bsl(TCGv dest, TCGv t, TCGv f, TCGv c) { + tcg_gen_and_i32(t, t, c); + tcg_gen_andc_i32(f, f, c); + tcg_gen_or_i32(dest, t, f); +} + +static inline void gen_neon_narrow(int size, TCGv dest, TCGv_i64 src) { + switch (size) { + case 0: + gen_helper_neon_narrow_u8(dest, src); + break; + case 1: + gen_helper_neon_narrow_u16(dest, src); + break; + case 2: + tcg_gen_trunc_i64_tl(dest, src); + break; + default: + abort(); + } +} + +static inline void gen_neon_narrow_sats(int size, TCGv dest, TCGv_i64 src) { + switch (size) { + case 0: + gen_helper_neon_narrow_sat_s8(dest, cpu_env, src); + break; + case 1: + gen_helper_neon_narrow_sat_s16(dest, cpu_env, src); + break; + case 2: + gen_helper_neon_narrow_sat_s32(dest, cpu_env, src); + break; + default: + abort(); + } +} + +static inline void gen_neon_narrow_satu(int size, TCGv dest, TCGv_i64 src) { + switch (size) { + case 0: + gen_helper_neon_narrow_sat_u8(dest, cpu_env, src); + break; + case 1: + gen_helper_neon_narrow_sat_u16(dest, cpu_env, src); + break; + case 2: + gen_helper_neon_narrow_sat_u32(dest, cpu_env, src); + break; + default: + abort(); + } +} + +static inline void gen_neon_unarrow_sats(int size, TCGv dest, TCGv_i64 src) { + switch (size) { + case 0: + gen_helper_neon_unarrow_sat8(dest, cpu_env, src); + break; + case 1: + gen_helper_neon_unarrow_sat16(dest, cpu_env, src); + break; + case 2: + gen_helper_neon_unarrow_sat32(dest, cpu_env, src); + break; + default: + abort(); + } +} + +static inline void gen_neon_shift_narrow(int size, TCGv var, TCGv shift, int q, int u) { + if (q) { + if (u) { + switch (size) { + case 1: + gen_helper_neon_rshl_u16(var, var, shift); + break; + case 2: + gen_helper_neon_rshl_u32(var, var, shift); + break; + default: + abort(); + } + } else { + switch (size) { + case 1: + gen_helper_neon_rshl_s16(var, var, shift); + break; + case 2: + gen_helper_neon_rshl_s32(var, var, shift); + break; + default: + abort(); + } + } + } else { + if (u) { + switch (size) { + case 1: + gen_helper_neon_shl_u16(var, var, shift); + break; + case 2: + gen_helper_neon_shl_u32(var, var, shift); + break; + default: + abort(); + } + } else { + switch (size) { + case 1: + gen_helper_neon_shl_s16(var, var, shift); + break; + case 2: + gen_helper_neon_shl_s32(var, var, shift); + break; + default: + abort(); + } + } + } +} + +static inline void gen_neon_widen(TCGv_i64 dest, TCGv src, int size, int u) { + if (u) { + switch (size) { + case 0: + gen_helper_neon_widen_u8(dest, src); + break; + case 1: + gen_helper_neon_widen_u16(dest, src); + break; + case 2: + tcg_gen_extu_i32_i64(dest, src); + break; + default: + abort(); + } + } else { + switch (size) { + case 0: + gen_helper_neon_widen_s8(dest, src); + break; + case 1: + gen_helper_neon_widen_s16(dest, src); + break; + case 2: + tcg_gen_ext_i32_i64(dest, src); + break; + default: + abort(); + } + } + tcg_temp_free_i32(src); +} + +static inline void gen_neon_addl(int size) { + switch (size) { + case 0: + gen_helper_neon_addl_u16(CPU_V001); + break; + case 1: + gen_helper_neon_addl_u32(CPU_V001); + break; + case 2: + tcg_gen_add_i64(CPU_V001); + break; + default: + abort(); + } +} + +static inline void gen_neon_subl(int size) { + switch (size) { + case 0: + gen_helper_neon_subl_u16(CPU_V001); + break; + case 1: + gen_helper_neon_subl_u32(CPU_V001); + break; + case 2: + tcg_gen_sub_i64(CPU_V001); + break; + default: + abort(); + } +} + +static inline void gen_neon_negl(TCGv_i64 var, int size) { + switch (size) { + case 0: + gen_helper_neon_negl_u16(var, var); + break; + case 1: + gen_helper_neon_negl_u32(var, var); + break; + case 2: + gen_helper_neon_negl_u64(var, var); + break; + default: + abort(); + } +} + +static inline void gen_neon_addl_saturate(TCGv_i64 op0, TCGv_i64 op1, int size) { + switch (size) { + case 1: + gen_helper_neon_addl_saturate_s32(op0, cpu_env, op0, op1); + break; + case 2: + gen_helper_neon_addl_saturate_s64(op0, cpu_env, op0, op1); + break; + default: + abort(); + } +} + +static inline void gen_neon_mull(TCGv_i64 dest, TCGv a, TCGv b, int size, int u) { + TCGv_i64 tmp; + + switch ((size << 1) | u) { + case 0: + gen_helper_neon_mull_s8(dest, a, b); + break; + case 1: + gen_helper_neon_mull_u8(dest, a, b); + break; + case 2: + gen_helper_neon_mull_s16(dest, a, b); + break; + case 3: + gen_helper_neon_mull_u16(dest, a, b); + break; + case 4: + tmp = gen_muls_i64_i32(a, b); + tcg_gen_mov_i64(dest, tmp); + tcg_temp_free_i64(tmp); + break; + case 5: + tmp = gen_mulu_i64_i32(a, b); + tcg_gen_mov_i64(dest, tmp); + tcg_temp_free_i64(tmp); + break; + default: + abort(); + } + + /* gen_helper_neon_mull_[su]{8|16} do not free their parameters. + Don't forget to clean them now. */ + if (size < 2) { + tcg_temp_free_i32(a); + tcg_temp_free_i32(b); + } +} + +static void gen_neon_narrow_op(int op, int u, int size, TCGv dest, TCGv_i64 src) { + if (op) { + if (u) { + gen_neon_unarrow_sats(size, dest, src); + } else { + gen_neon_narrow(size, dest, src); + } + } else { + if (u) { + gen_neon_narrow_satu(size, dest, src); + } else { + gen_neon_narrow_sats(size, dest, src); + } + } +} + +/* Symbolic constants for op fields for Neon 3-register same-length. + * The values correspond to bits [11:8,4]; see the ARM ARM DDI0406B + * table A7-9. + */ +#define NEON_3R_VHADD 0 +#define NEON_3R_VQADD 1 +#define NEON_3R_VRHADD 2 +#define NEON_3R_LOGIC 3 /* VAND,VBIC,VORR,VMOV,VORN,VEOR,VBIF,VBIT,VBSL */ +#define NEON_3R_VHSUB 4 +#define NEON_3R_VQSUB 5 +#define NEON_3R_VCGT 6 +#define NEON_3R_VCGE 7 +#define NEON_3R_VSHL 8 +#define NEON_3R_VQSHL 9 +#define NEON_3R_VRSHL 10 +#define NEON_3R_VQRSHL 11 +#define NEON_3R_VMAX 12 +#define NEON_3R_VMIN 13 +#define NEON_3R_VABD 14 +#define NEON_3R_VABA 15 +#define NEON_3R_VADD_VSUB 16 +#define NEON_3R_VTST_VCEQ 17 +#define NEON_3R_VML 18 /* VMLA, VMLAL, VMLS, VMLSL */ +#define NEON_3R_VMUL 19 +#define NEON_3R_VPMAX 20 +#define NEON_3R_VPMIN 21 +#define NEON_3R_VQDMULH_VQRDMULH 22 +#define NEON_3R_VPADD 23 +#define NEON_3R_VFM 25 /* VFMA, VFMS : float fused multiply-add */ +#define NEON_3R_FLOAT_ARITH 26 /* float VADD, VSUB, VPADD, VABD */ +#define NEON_3R_FLOAT_MULTIPLY 27 /* float VMLA, VMLS, VMUL */ +#define NEON_3R_FLOAT_CMP 28 /* float VCEQ, VCGE, VCGT */ +#define NEON_3R_FLOAT_ACMP 29 /* float VACGE, VACGT, VACLE, VACLT */ +#define NEON_3R_FLOAT_MINMAX 30 /* float VMIN, VMAX */ +#define NEON_3R_VRECPS_VRSQRTS 31 /* float VRECPS, VRSQRTS */ + +static const uint8_t neon_3r_sizes[] = { + [NEON_3R_VHADD] = 0x7, + [NEON_3R_VQADD] = 0xf, + [NEON_3R_VRHADD] = 0x7, + [NEON_3R_LOGIC] = 0xf, /* size field encodes op type */ + [NEON_3R_VHSUB] = 0x7, + [NEON_3R_VQSUB] = 0xf, + [NEON_3R_VCGT] = 0x7, + [NEON_3R_VCGE] = 0x7, + [NEON_3R_VSHL] = 0xf, + [NEON_3R_VQSHL] = 0xf, + [NEON_3R_VRSHL] = 0xf, + [NEON_3R_VQRSHL] = 0xf, + [NEON_3R_VMAX] = 0x7, + [NEON_3R_VMIN] = 0x7, + [NEON_3R_VABD] = 0x7, + [NEON_3R_VABA] = 0x7, + [NEON_3R_VADD_VSUB] = 0xf, + [NEON_3R_VTST_VCEQ] = 0x7, + [NEON_3R_VML] = 0x7, + [NEON_3R_VMUL] = 0x7, + [NEON_3R_VPMAX] = 0x7, + [NEON_3R_VPMIN] = 0x7, + [NEON_3R_VQDMULH_VQRDMULH] = 0x6, + [NEON_3R_VPADD] = 0x7, + [NEON_3R_VFM] = 0x5, /* size bit 1 encodes op */ + [NEON_3R_FLOAT_ARITH] = 0x5, /* size bit 1 encodes op */ + [NEON_3R_FLOAT_MULTIPLY] = 0x5, /* size bit 1 encodes op */ + [NEON_3R_FLOAT_CMP] = 0x5, /* size bit 1 encodes op */ + [NEON_3R_FLOAT_ACMP] = 0x5, /* size bit 1 encodes op */ + [NEON_3R_FLOAT_MINMAX] = 0x5, /* size bit 1 encodes op */ + [NEON_3R_VRECPS_VRSQRTS] = 0x5, /* size bit 1 encodes op */ +}; + +/* Symbolic constants for op fields for Neon 2-register miscellaneous. + * The values correspond to bits [17:16,10:7]; see the ARM ARM DDI0406B + * table A7-13. + */ +#define NEON_2RM_VREV64 0 +#define NEON_2RM_VREV32 1 +#define NEON_2RM_VREV16 2 +#define NEON_2RM_VPADDL 4 +#define NEON_2RM_VPADDL_U 5 +#define NEON_2RM_VCLS 8 +#define NEON_2RM_VCLZ 9 +#define NEON_2RM_VCNT 10 +#define NEON_2RM_VMVN 11 +#define NEON_2RM_VPADAL 12 +#define NEON_2RM_VPADAL_U 13 +#define NEON_2RM_VQABS 14 +#define NEON_2RM_VQNEG 15 +#define NEON_2RM_VCGT0 16 +#define NEON_2RM_VCGE0 17 +#define NEON_2RM_VCEQ0 18 +#define NEON_2RM_VCLE0 19 +#define NEON_2RM_VCLT0 20 +#define NEON_2RM_VABS 22 +#define NEON_2RM_VNEG 23 +#define NEON_2RM_VCGT0_F 24 +#define NEON_2RM_VCGE0_F 25 +#define NEON_2RM_VCEQ0_F 26 +#define NEON_2RM_VCLE0_F 27 +#define NEON_2RM_VCLT0_F 28 +#define NEON_2RM_VABS_F 30 +#define NEON_2RM_VNEG_F 31 +#define NEON_2RM_VSWP 32 +#define NEON_2RM_VTRN 33 +#define NEON_2RM_VUZP 34 +#define NEON_2RM_VZIP 35 +#define NEON_2RM_VMOVN 36 /* Includes VQMOVN, VQMOVUN */ +#define NEON_2RM_VQMOVN 37 /* Includes VQMOVUN */ +#define NEON_2RM_VSHLL 38 +#define NEON_2RM_VCVT_F16_F32 44 +#define NEON_2RM_VCVT_F32_F16 46 +#define NEON_2RM_VRECPE 56 +#define NEON_2RM_VRSQRTE 57 +#define NEON_2RM_VRECPE_F 58 +#define NEON_2RM_VRSQRTE_F 59 +#define NEON_2RM_VCVT_FS 60 +#define NEON_2RM_VCVT_FU 61 +#define NEON_2RM_VCVT_SF 62 +#define NEON_2RM_VCVT_UF 63 + +static int neon_2rm_is_float_op(int op) { + /* Return true if this neon 2reg-misc op is float-to-float */ + return (op == NEON_2RM_VABS_F || op == NEON_2RM_VNEG_F || op >= NEON_2RM_VRECPE_F); +} + +/* Each entry in this array has bit n set if the insn allows + * size value n (otherwise it will UNDEF). Since unallocated + * op values will have no bits set they always UNDEF. + */ +static const uint8_t neon_2rm_sizes[] = { + [NEON_2RM_VREV64] = 0x7, [NEON_2RM_VREV32] = 0x3, [NEON_2RM_VREV16] = 0x1, + [NEON_2RM_VPADDL] = 0x7, [NEON_2RM_VPADDL_U] = 0x7, [NEON_2RM_VCLS] = 0x7, + [NEON_2RM_VCLZ] = 0x7, [NEON_2RM_VCNT] = 0x1, [NEON_2RM_VMVN] = 0x1, + [NEON_2RM_VPADAL] = 0x7, [NEON_2RM_VPADAL_U] = 0x7, [NEON_2RM_VQABS] = 0x7, + [NEON_2RM_VQNEG] = 0x7, [NEON_2RM_VCGT0] = 0x7, [NEON_2RM_VCGE0] = 0x7, + [NEON_2RM_VCEQ0] = 0x7, [NEON_2RM_VCLE0] = 0x7, [NEON_2RM_VCLT0] = 0x7, + [NEON_2RM_VABS] = 0x7, [NEON_2RM_VNEG] = 0x7, [NEON_2RM_VCGT0_F] = 0x4, + [NEON_2RM_VCGE0_F] = 0x4, [NEON_2RM_VCEQ0_F] = 0x4, [NEON_2RM_VCLE0_F] = 0x4, + [NEON_2RM_VCLT0_F] = 0x4, [NEON_2RM_VABS_F] = 0x4, [NEON_2RM_VNEG_F] = 0x4, + [NEON_2RM_VSWP] = 0x1, [NEON_2RM_VTRN] = 0x7, [NEON_2RM_VUZP] = 0x7, + [NEON_2RM_VZIP] = 0x7, [NEON_2RM_VMOVN] = 0x7, [NEON_2RM_VQMOVN] = 0x7, + [NEON_2RM_VSHLL] = 0x7, [NEON_2RM_VCVT_F16_F32] = 0x2, [NEON_2RM_VCVT_F32_F16] = 0x2, + [NEON_2RM_VRECPE] = 0x4, [NEON_2RM_VRSQRTE] = 0x4, [NEON_2RM_VRECPE_F] = 0x4, + [NEON_2RM_VRSQRTE_F] = 0x4, [NEON_2RM_VCVT_FS] = 0x4, [NEON_2RM_VCVT_FU] = 0x4, + [NEON_2RM_VCVT_SF] = 0x4, [NEON_2RM_VCVT_UF] = 0x4, +}; + +/* Translate a NEON data processing instruction. Return nonzero if the + instruction is invalid. + We process data in a mixture of 32-bit and 64-bit chunks. + Mostly we use 32-bit chunks so we can use normal scalar instructions. */ + +static int disas_neon_data_insn(CPUARMState *env, DisasContext *s, uint32_t insn) { + int op; + int q; + int rd, rn, rm; + int size; + int shift; + int pass; + int count; + int pairwise; + int u; + uint32_t imm, mask; + TCGv tmp, tmp2, tmp3, tmp4, tmp5; + TCGv_i64 tmp64; + + if (!s->vfp_enabled) + return 1; + q = (insn & (1 << 6)) != 0; + u = (insn >> 24) & 1; + VFP_DREG_D(rd, insn); + VFP_DREG_N(rn, insn); + VFP_DREG_M(rm, insn); + size = (insn >> 20) & 3; + if ((insn & (1 << 23)) == 0) { + /* Three register same length. */ + op = ((insn >> 7) & 0x1e) | ((insn >> 4) & 1); + /* Catch invalid op and bad size combinations: UNDEF */ + if ((neon_3r_sizes[op] & (1 << size)) == 0) { + return 1; + } + /* All insns of this form UNDEF for either this condition or the + * superset of cases "Q==1"; we catch the latter later. + */ + if (q && ((rd | rn | rm) & 1)) { + return 1; + } + if (size == 3 && op != NEON_3R_LOGIC) { + /* 64-bit element instructions. */ + for (pass = 0; pass < (q ? 2 : 1); pass++) { + neon_load_reg64(cpu_V0, rn + pass); + neon_load_reg64(cpu_V1, rm + pass); + switch (op) { + case NEON_3R_VQADD: + if (u) { + gen_helper_neon_qadd_u64(cpu_V0, cpu_env, cpu_V0, cpu_V1); + } else { + gen_helper_neon_qadd_s64(cpu_V0, cpu_env, cpu_V0, cpu_V1); + } + break; + case NEON_3R_VQSUB: + if (u) { + gen_helper_neon_qsub_u64(cpu_V0, cpu_env, cpu_V0, cpu_V1); + } else { + gen_helper_neon_qsub_s64(cpu_V0, cpu_env, cpu_V0, cpu_V1); + } + break; + case NEON_3R_VSHL: + if (u) { + gen_helper_neon_shl_u64(cpu_V0, cpu_V1, cpu_V0); + } else { + gen_helper_neon_shl_s64(cpu_V0, cpu_V1, cpu_V0); + } + break; + case NEON_3R_VQSHL: + if (u) { + gen_helper_neon_qshl_u64(cpu_V0, cpu_env, cpu_V1, cpu_V0); + } else { + gen_helper_neon_qshl_s64(cpu_V0, cpu_env, cpu_V1, cpu_V0); + } + break; + case NEON_3R_VRSHL: + if (u) { + gen_helper_neon_rshl_u64(cpu_V0, cpu_V1, cpu_V0); + } else { + gen_helper_neon_rshl_s64(cpu_V0, cpu_V1, cpu_V0); + } + break; + case NEON_3R_VQRSHL: + if (u) { + gen_helper_neon_qrshl_u64(cpu_V0, cpu_env, cpu_V1, cpu_V0); + } else { + gen_helper_neon_qrshl_s64(cpu_V0, cpu_env, cpu_V1, cpu_V0); + } + break; + case NEON_3R_VADD_VSUB: + if (u) { + tcg_gen_sub_i64(CPU_V001); + } else { + tcg_gen_add_i64(CPU_V001); + } + break; + default: + abort(); + } + neon_store_reg64(cpu_V0, rd + pass); + } + return 0; + } + pairwise = 0; + switch (op) { + case NEON_3R_VSHL: + case NEON_3R_VQSHL: + case NEON_3R_VRSHL: + case NEON_3R_VQRSHL: { + int rtmp; + /* Shift instruction operands are reversed. */ + rtmp = rn; + rn = rm; + rm = rtmp; + } break; + case NEON_3R_VPADD: + if (u) { + return 1; + } + /* Fall through */ + case NEON_3R_VPMAX: + case NEON_3R_VPMIN: + pairwise = 1; + break; + case NEON_3R_FLOAT_ARITH: + pairwise = (u && size < 2); /* if VPADD (float) */ + break; + case NEON_3R_FLOAT_MINMAX: + pairwise = u; /* if VPMIN/VPMAX (float) */ + break; + case NEON_3R_FLOAT_CMP: + if (!u && size) { + /* no encoding for U=0 C=1x */ + return 1; + } + break; + case NEON_3R_FLOAT_ACMP: + if (!u) { + return 1; + } + break; + case NEON_3R_VRECPS_VRSQRTS: + if (u) { + return 1; + } + break; + case NEON_3R_VMUL: + if (u && (size != 0)) { + /* UNDEF on invalid size for polynomial subcase */ + return 1; + } + break; + case NEON_3R_VFM: + if (!arm_feature(env, ARM_FEATURE_VFP4) || u) { + return 1; + } + break; + default: + break; + } + + if (pairwise && q) { + /* All the pairwise insns UNDEF if Q is set */ + return 1; + } + + for (pass = 0; pass < (q ? 4 : 2); pass++) { + + if (pairwise) { + /* Pairwise. */ + if (pass < 1) { + tmp = neon_load_reg(rn, 0); + tmp2 = neon_load_reg(rn, 1); + } else { + tmp = neon_load_reg(rm, 0); + tmp2 = neon_load_reg(rm, 1); + } + } else { + /* Elementwise. */ + tmp = neon_load_reg(rn, pass); + tmp2 = neon_load_reg(rm, pass); + } + switch (op) { + case NEON_3R_VHADD: + GEN_NEON_INTEGER_OP(hadd); + break; + case NEON_3R_VQADD: + GEN_NEON_INTEGER_OP_ENV(qadd); + break; + case NEON_3R_VRHADD: + GEN_NEON_INTEGER_OP(rhadd); + break; + case NEON_3R_LOGIC: /* Logic ops. */ + switch ((u << 2) | size) { + case 0: /* VAND */ + tcg_gen_and_i32(tmp, tmp, tmp2); + break; + case 1: /* BIC */ + tcg_gen_andc_i32(tmp, tmp, tmp2); + break; + case 2: /* VORR */ + tcg_gen_or_i32(tmp, tmp, tmp2); + break; + case 3: /* VORN */ + tcg_gen_orc_i32(tmp, tmp, tmp2); + break; + case 4: /* VEOR */ + tcg_gen_xor_i32(tmp, tmp, tmp2); + break; + case 5: /* VBSL */ + tmp3 = neon_load_reg(rd, pass); + gen_neon_bsl(tmp, tmp, tmp2, tmp3); + tcg_temp_free_i32(tmp3); + break; + case 6: /* VBIT */ + tmp3 = neon_load_reg(rd, pass); + gen_neon_bsl(tmp, tmp, tmp3, tmp2); + tcg_temp_free_i32(tmp3); + break; + case 7: /* VBIF */ + tmp3 = neon_load_reg(rd, pass); + gen_neon_bsl(tmp, tmp3, tmp, tmp2); + tcg_temp_free_i32(tmp3); + break; + } + break; + case NEON_3R_VHSUB: + GEN_NEON_INTEGER_OP(hsub); + break; + case NEON_3R_VQSUB: + GEN_NEON_INTEGER_OP_ENV(qsub); + break; + case NEON_3R_VCGT: + GEN_NEON_INTEGER_OP(cgt); + break; + case NEON_3R_VCGE: + GEN_NEON_INTEGER_OP(cge); + break; + case NEON_3R_VSHL: + GEN_NEON_INTEGER_OP(shl); + break; + case NEON_3R_VQSHL: + GEN_NEON_INTEGER_OP_ENV(qshl); + break; + case NEON_3R_VRSHL: + GEN_NEON_INTEGER_OP(rshl); + break; + case NEON_3R_VQRSHL: + // GEN_NEON_INTEGER_OP_ENV(qrshl); + break; + case NEON_3R_VMAX: + GEN_NEON_INTEGER_OP(max); + break; + case NEON_3R_VMIN: + GEN_NEON_INTEGER_OP(min); + break; + case NEON_3R_VABD: + GEN_NEON_INTEGER_OP(abd); + break; + case NEON_3R_VABA: + GEN_NEON_INTEGER_OP(abd); + tcg_temp_free_i32(tmp2); + tmp2 = neon_load_reg(rd, pass); + gen_neon_add(size, tmp, tmp2); + break; + case NEON_3R_VADD_VSUB: + if (!u) { /* VADD */ + gen_neon_add(size, tmp, tmp2); + } else { /* VSUB */ + switch (size) { + case 0: + gen_helper_neon_sub_u8(tmp, tmp, tmp2); + break; + case 1: + gen_helper_neon_sub_u16(tmp, tmp, tmp2); + break; + case 2: + tcg_gen_sub_i32(tmp, tmp, tmp2); + break; + default: + abort(); + } + } + break; + case NEON_3R_VTST_VCEQ: + if (!u) { /* VTST */ + switch (size) { + case 0: + gen_helper_neon_tst_u8(tmp, tmp, tmp2); + break; + case 1: + gen_helper_neon_tst_u16(tmp, tmp, tmp2); + break; + case 2: + gen_helper_neon_tst_u32(tmp, tmp, tmp2); + break; + default: + abort(); + } + } else { /* VCEQ */ + switch (size) { + case 0: + gen_helper_neon_ceq_u8(tmp, tmp, tmp2); + break; + case 1: + gen_helper_neon_ceq_u16(tmp, tmp, tmp2); + break; + case 2: + gen_helper_neon_ceq_u32(tmp, tmp, tmp2); + break; + default: + abort(); + } + } + break; + case NEON_3R_VML: /* VMLA, VMLAL, VMLS,VMLSL */ + switch (size) { + case 0: + gen_helper_neon_mul_u8(tmp, tmp, tmp2); + break; + case 1: + gen_helper_neon_mul_u16(tmp, tmp, tmp2); + break; + case 2: + tcg_gen_mul_i32(tmp, tmp, tmp2); + break; + default: + abort(); + } + tcg_temp_free_i32(tmp2); + tmp2 = neon_load_reg(rd, pass); + if (u) { /* VMLS */ + gen_neon_rsb(size, tmp, tmp2); + } else { /* VMLA */ + gen_neon_add(size, tmp, tmp2); + } + break; + case NEON_3R_VMUL: + if (u) { /* polynomial */ + gen_helper_neon_mul_p8(tmp, tmp, tmp2); + } else { /* Integer */ + switch (size) { + case 0: + gen_helper_neon_mul_u8(tmp, tmp, tmp2); + break; + case 1: + gen_helper_neon_mul_u16(tmp, tmp, tmp2); + break; + case 2: + tcg_gen_mul_i32(tmp, tmp, tmp2); + break; + default: + abort(); + } + } + break; + case NEON_3R_VPMAX: + GEN_NEON_INTEGER_OP(pmax); + break; + case NEON_3R_VPMIN: + GEN_NEON_INTEGER_OP(pmin); + break; + case NEON_3R_VQDMULH_VQRDMULH: /* Multiply high. */ + if (!u) { /* VQDMULH */ + switch (size) { + case 1: + gen_helper_neon_qdmulh_s16(tmp, cpu_env, tmp, tmp2); + break; + case 2: + gen_helper_neon_qdmulh_s32(tmp, cpu_env, tmp, tmp2); + break; + default: + abort(); + } + } else { /* VQRDMULH */ + switch (size) { + case 1: + gen_helper_neon_qrdmulh_s16(tmp, cpu_env, tmp, tmp2); + break; + case 2: + gen_helper_neon_qrdmulh_s32(tmp, cpu_env, tmp, tmp2); + break; + default: + abort(); + } + } + break; + case NEON_3R_VPADD: + switch (size) { + case 0: + gen_helper_neon_padd_u8(tmp, tmp, tmp2); + break; + case 1: + gen_helper_neon_padd_u16(tmp, tmp, tmp2); + break; + case 2: + tcg_gen_add_i32(tmp, tmp, tmp2); + break; + default: + abort(); + } + break; + case NEON_3R_FLOAT_ARITH: /* Floating point arithmetic. */ + { + TCGv_ptr fpstatus = get_fpstatus_ptr(1); + switch ((u << 2) | size) { + case 0: /* VADD */ + case 4: /* VPADD */ + gen_helper_vfp_adds(tmp, tmp, tmp2, fpstatus); + break; + case 2: /* VSUB */ + gen_helper_vfp_subs(tmp, tmp, tmp2, fpstatus); + break; + case 6: /* VABD */ + gen_helper_neon_abd_f32(tmp, tmp, tmp2, fpstatus); + break; + default: + abort(); + } + tcg_temp_free_ptr(fpstatus); + break; + } + case NEON_3R_FLOAT_MULTIPLY: { + TCGv_ptr fpstatus = get_fpstatus_ptr(1); + gen_helper_vfp_muls(tmp, tmp, tmp2, fpstatus); + if (!u) { + tcg_temp_free_i32(tmp2); + tmp2 = neon_load_reg(rd, pass); + if (size == 0) { + gen_helper_vfp_adds(tmp, tmp, tmp2, fpstatus); + } else { + gen_helper_vfp_subs(tmp, tmp2, tmp, fpstatus); + } + } + tcg_temp_free_ptr(fpstatus); + break; + } + case NEON_3R_FLOAT_CMP: { + TCGv_ptr fpstatus = get_fpstatus_ptr(1); + if (!u) { + gen_helper_neon_ceq_f32(tmp, tmp, tmp2, fpstatus); + } else { + if (size == 0) { + gen_helper_neon_cge_f32(tmp, tmp, tmp2, fpstatus); + } else { + gen_helper_neon_cgt_f32(tmp, tmp, tmp2, fpstatus); + } + } + tcg_temp_free_ptr(fpstatus); + break; + } + case NEON_3R_FLOAT_ACMP: { + TCGv_ptr fpstatus = get_fpstatus_ptr(1); + if (size == 0) { + gen_helper_neon_acge_f32(tmp, tmp, tmp2, fpstatus); + } else { + gen_helper_neon_acgt_f32(tmp, tmp, tmp2, fpstatus); + } + tcg_temp_free_ptr(fpstatus); + break; + } + case NEON_3R_FLOAT_MINMAX: { + TCGv_ptr fpstatus = get_fpstatus_ptr(1); + if (size == 0) { + gen_helper_neon_max_f32(tmp, tmp, tmp2, fpstatus); + } else { + gen_helper_neon_min_f32(tmp, tmp, tmp2, fpstatus); + } + tcg_temp_free_ptr(fpstatus); + break; + } + case NEON_3R_VRECPS_VRSQRTS: + if (size == 0) + gen_helper_recps_f32(tmp, tmp, tmp2, cpu_env); + else + gen_helper_rsqrts_f32(tmp, tmp, tmp2, cpu_env); + break; + case NEON_3R_VFM: { + /* VFMA, VFMS: fused multiply-add */ + TCGv_ptr fpstatus = get_fpstatus_ptr(1); + TCGv_i32 tmp3 = neon_load_reg(rd, pass); + if (size) { + /* VFMS */ + gen_helper_vfp_negs(tmp, tmp); + } + gen_helper_vfp_muladds(tmp, tmp, tmp2, tmp3, fpstatus); + tcg_temp_free_i32(tmp3); + tcg_temp_free_ptr(fpstatus); + break; + } + default: + abort(); + } + tcg_temp_free_i32(tmp2); + + /* Save the result. For elementwise operations we can put it + straight into the destination register. For pairwise operations + we have to be careful to avoid clobbering the source operands. */ + if (pairwise && rd == rm) { + neon_store_scratch(pass, tmp); + } else { + neon_store_reg(rd, pass, tmp); + } + + } /* for pass */ + if (pairwise && rd == rm) { + for (pass = 0; pass < (q ? 4 : 2); pass++) { + tmp = neon_load_scratch(pass); + neon_store_reg(rd, pass, tmp); + } + } + /* End of 3 register same size operations. */ + } else if (insn & (1 << 4)) { + if ((insn & 0x00380080) != 0) { + /* Two registers and shift. */ + op = (insn >> 8) & 0xf; + if (insn & (1 << 7)) { + /* 64-bit shift. */ + if (op > 7) { + return 1; + } + size = 3; + } else { + size = 2; + while ((insn & (1 << (size + 19))) == 0) + size--; + } + shift = (insn >> 16) & ((1 << (3 + size)) - 1); + /* To avoid excessive dumplication of ops we implement shift + by immediate using the variable shift operations. */ + if (op < 8) { + /* Shift by immediate: + VSHR, VSRA, VRSHR, VRSRA, VSRI, VSHL, VQSHL, VQSHLU. */ + if (q && ((rd | rm) & 1)) { + return 1; + } + if (!u && (op == 4 || op == 6)) { + return 1; + } + /* Right shifts are encoded as N - shift, where N is the + element size in bits. */ + if (op <= 4) + shift = shift - (1 << (size + 3)); + if (size == 3) { + count = q + 1; + } else { + count = q ? 4 : 2; + } + switch (size) { + case 0: + imm = (uint8_t) shift; + imm |= imm << 8; + imm |= imm << 16; + break; + case 1: + imm = (uint16_t) shift; + imm |= imm << 16; + break; + case 2: + case 3: + imm = shift; + break; + default: + abort(); + } + + for (pass = 0; pass < count; pass++) { + if (size == 3) { + neon_load_reg64(cpu_V0, rm + pass); + tcg_gen_movi_i64(cpu_V1, imm); + switch (op) { + case 0: /* VSHR */ + case 1: /* VSRA */ + if (u) + gen_helper_neon_shl_u64(cpu_V0, cpu_V0, cpu_V1); + else + gen_helper_neon_shl_s64(cpu_V0, cpu_V0, cpu_V1); + break; + case 2: /* VRSHR */ + case 3: /* VRSRA */ + if (u) + gen_helper_neon_rshl_u64(cpu_V0, cpu_V0, cpu_V1); + else + gen_helper_neon_rshl_s64(cpu_V0, cpu_V0, cpu_V1); + break; + case 4: /* VSRI */ + case 5: /* VSHL, VSLI */ + gen_helper_neon_shl_u64(cpu_V0, cpu_V0, cpu_V1); + break; + case 6: /* VQSHLU */ + gen_helper_neon_qshlu_s64(cpu_V0, cpu_env, cpu_V0, cpu_V1); + break; + case 7: /* VQSHL */ + if (u) { + gen_helper_neon_qshl_u64(cpu_V0, cpu_env, cpu_V0, cpu_V1); + } else { + gen_helper_neon_qshl_s64(cpu_V0, cpu_env, cpu_V0, cpu_V1); + } + break; + } + if (op == 1 || op == 3) { + /* Accumulate. */ + neon_load_reg64(cpu_V1, rd + pass); + tcg_gen_add_i64(cpu_V0, cpu_V0, cpu_V1); + } else if (op == 4 || (op == 5 && u)) { + /* Insert */ + neon_load_reg64(cpu_V1, rd + pass); + uint64_t mask; + if (shift < -63 || shift > 63) { + mask = 0; + } else { + if (op == 4) { + mask = 0xffffffffffffffffull >> -shift; + } else { + mask = 0xffffffffffffffffull << shift; + } + } + tcg_gen_andi_i64(cpu_V1, cpu_V1, ~mask); + tcg_gen_or_i64(cpu_V0, cpu_V0, cpu_V1); + } + neon_store_reg64(cpu_V0, rd + pass); + } else { /* size < 3 */ + /* Operands in T0 and T1. */ + tmp = neon_load_reg(rm, pass); + tmp2 = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp2, imm); + switch (op) { + case 0: /* VSHR */ + case 1: /* VSRA */ + GEN_NEON_INTEGER_OP(shl); + break; + case 2: /* VRSHR */ + case 3: /* VRSRA */ + GEN_NEON_INTEGER_OP(rshl); + break; + case 4: /* VSRI */ + case 5: /* VSHL, VSLI */ + switch (size) { + case 0: + gen_helper_neon_shl_u8(tmp, tmp, tmp2); + break; + case 1: + gen_helper_neon_shl_u16(tmp, tmp, tmp2); + break; + case 2: + gen_helper_neon_shl_u32(tmp, tmp, tmp2); + break; + default: + abort(); + } + break; + case 6: /* VQSHLU */ + switch (size) { + case 0: + gen_helper_neon_qshlu_s8(tmp, cpu_env, tmp, tmp2); + break; + case 1: + gen_helper_neon_qshlu_s16(tmp, cpu_env, tmp, tmp2); + break; + case 2: + gen_helper_neon_qshlu_s32(tmp, cpu_env, tmp, tmp2); + break; + default: + abort(); + } + break; + case 7: /* VQSHL */ + GEN_NEON_INTEGER_OP_ENV(qshl); + break; + } + tcg_temp_free_i32(tmp2); + + if (op == 1 || op == 3) { + /* Accumulate. */ + tmp2 = neon_load_reg(rd, pass); + gen_neon_add(size, tmp, tmp2); + tcg_temp_free_i32(tmp2); + } else if (op == 4 || (op == 5 && u)) { + /* Insert */ + switch (size) { + case 0: + if (op == 4) + mask = 0xff >> -shift; + else + mask = (uint8_t)(0xff << shift); + mask |= mask << 8; + mask |= mask << 16; + break; + case 1: + if (op == 4) + mask = 0xffff >> -shift; + else + mask = (uint16_t)(0xffff << shift); + mask |= mask << 16; + break; + case 2: + if (shift < -31 || shift > 31) { + mask = 0; + } else { + if (op == 4) + mask = 0xffffffffu >> -shift; + else + mask = 0xffffffffu << shift; + } + break; + default: + abort(); + } + tmp2 = neon_load_reg(rd, pass); + tcg_gen_andi_i32(tmp, tmp, mask); + tcg_gen_andi_i32(tmp2, tmp2, ~mask); + tcg_gen_or_i32(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + } + neon_store_reg(rd, pass, tmp); + } + } /* for pass */ + } else if (op < 10) { + /* Shift by immediate and narrow: + VSHRN, VRSHRN, VQSHRN, VQRSHRN. */ + int input_unsigned = (op == 8) ? !u : u; + if (rm & 1) { + return 1; + } + shift = shift - (1 << (size + 3)); + size++; + if (size == 3) { + tmp64 = tcg_const_i64(shift); + neon_load_reg64(cpu_V0, rm); + neon_load_reg64(cpu_V1, rm + 1); + for (pass = 0; pass < 2; pass++) { + TCGv_i64 in; + if (pass == 0) { + in = cpu_V0; + } else { + in = cpu_V1; + } + if (q) { + if (input_unsigned) { + gen_helper_neon_rshl_u64(cpu_V0, in, tmp64); + } else { + gen_helper_neon_rshl_s64(cpu_V0, in, tmp64); + } + } else { + if (input_unsigned) { + gen_helper_neon_shl_u64(cpu_V0, in, tmp64); + } else { + gen_helper_neon_shl_s64(cpu_V0, in, tmp64); + } + } + tmp = tcg_temp_new_i32(); + gen_neon_narrow_op(op == 8, u, size - 1, tmp, cpu_V0); + neon_store_reg(rd, pass, tmp); + } /* for pass */ + tcg_temp_free_i64(tmp64); + } else { + if (size == 1) { + imm = (uint16_t) shift; + imm |= imm << 16; + } else { + /* size == 2 */ + imm = (uint32_t) shift; + } + tmp2 = tcg_const_i32(imm); + tmp4 = neon_load_reg(rm + 1, 0); + tmp5 = neon_load_reg(rm + 1, 1); + for (pass = 0; pass < 2; pass++) { + if (pass == 0) { + tmp = neon_load_reg(rm, 0); + } else { + tmp = tmp4; + } + gen_neon_shift_narrow(size, tmp, tmp2, q, input_unsigned); + if (pass == 0) { + tmp3 = neon_load_reg(rm, 1); + } else { + tmp3 = tmp5; + } + gen_neon_shift_narrow(size, tmp3, tmp2, q, input_unsigned); + tcg_gen_concat_i32_i64(cpu_V0, tmp, tmp3); + tcg_temp_free_i32(tmp); + tcg_temp_free_i32(tmp3); + tmp = tcg_temp_new_i32(); + gen_neon_narrow_op(op == 8, u, size - 1, tmp, cpu_V0); + neon_store_reg(rd, pass, tmp); + } /* for pass */ + tcg_temp_free_i32(tmp2); + } + } else if (op == 10) { + /* VSHLL, VMOVL */ + if (q || (rd & 1)) { + return 1; + } + tmp = neon_load_reg(rm, 0); + tmp2 = neon_load_reg(rm, 1); + for (pass = 0; pass < 2; pass++) { + if (pass == 1) + tmp = tmp2; + + gen_neon_widen(cpu_V0, tmp, size, u); + + if (shift != 0) { + /* The shift is less than the width of the source + type, so we can just shift the whole register. */ + tcg_gen_shli_i64(cpu_V0, cpu_V0, shift); + /* Widen the result of shift: we need to clear + * the potential overflow bits resulting from + * left bits of the narrow input appearing as + * right bits of left the neighbour narrow + * input. */ + if (size < 2 || !u) { + uint64_t imm64; + if (size == 0) { + imm = (0xffu >> (8 - shift)); + imm |= imm << 16; + } else if (size == 1) { + imm = 0xffff >> (16 - shift); + } else { + /* size == 2 */ + imm = 0xffffffff >> (32 - shift); + } + if (size < 2) { + imm64 = imm | (((uint64_t) imm) << 32); + } else { + imm64 = imm; + } + tcg_gen_andi_i64(cpu_V0, cpu_V0, ~imm64); + } + } + neon_store_reg64(cpu_V0, rd + pass); + } + } else if (op >= 14) { + /* VCVT fixed-point. */ + if (!(insn & (1 << 21)) || (q && ((rd | rm) & 1))) { + return 1; + } + /* We have already masked out the must-be-1 top bit of imm6, + * hence this 32-shift where the ARM ARM has 64-imm6. + */ + shift = 32 - shift; + for (pass = 0; pass < (q ? 4 : 2); pass++) { + tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, pass)); + if (!(op & 1)) { + if (u) + gen_vfp_ulto(0, shift, 1); + else + gen_vfp_slto(0, shift, 1); + } else { + if (u) + gen_vfp_toul(0, shift, 1); + else + gen_vfp_tosl(0, shift, 1); + } + tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, pass)); + } + } else { + return 1; + } + } else { /* (insn & 0x00380080) == 0 */ + int invert; + if (q && (rd & 1)) { + return 1; + } + + op = (insn >> 8) & 0xf; + /* One register and immediate. */ + imm = (u << 7) | ((insn >> 12) & 0x70) | (insn & 0xf); + invert = (insn & (1 << 5)) != 0; + /* Note that op = 2,3,4,5,6,7,10,11,12,13 imm=0 is UNPREDICTABLE. + * We choose to not special-case this and will behave as if a + * valid constant encoding of 0 had been given. + */ + switch (op) { + case 0: + case 1: + /* no-op */ + break; + case 2: + case 3: + imm <<= 8; + break; + case 4: + case 5: + imm <<= 16; + break; + case 6: + case 7: + imm <<= 24; + break; + case 8: + case 9: + imm |= imm << 16; + break; + case 10: + case 11: + imm = (imm << 8) | (imm << 24); + break; + case 12: + imm = (imm << 8) | 0xff; + break; + case 13: + imm = (imm << 16) | 0xffff; + break; + case 14: + imm |= (imm << 8) | (imm << 16) | (imm << 24); + if (invert) + imm = ~imm; + break; + case 15: + if (invert) { + return 1; + } + imm = ((imm & 0x80) << 24) | ((imm & 0x3f) << 19) | ((imm & 0x40) ? (0x1f << 25) : (1 << 30)); + break; + } + if (invert) + imm = ~imm; + + for (pass = 0; pass < (q ? 4 : 2); pass++) { + if (op & 1 && op < 12) { + tmp = neon_load_reg(rd, pass); + if (invert) { + /* The immediate value has already been inverted, so + BIC becomes AND. */ + tcg_gen_andi_i32(tmp, tmp, imm); + } else { + tcg_gen_ori_i32(tmp, tmp, imm); + } + } else { + /* VMOV, VMVN. */ + tmp = tcg_temp_new_i32(); + if (op == 14 && invert) { + int n; + uint32_t val; + val = 0; + for (n = 0; n < 4; n++) { + if (imm & (1 << (n + (pass & 1) * 4))) + val |= 0xff << (n * 8); + } + tcg_gen_movi_i32(tmp, val); + } else { + tcg_gen_movi_i32(tmp, imm); + } + } + neon_store_reg(rd, pass, tmp); + } + } + } else { /* (insn & 0x00800010 == 0x00800000) */ + if (size != 3) { + op = (insn >> 8) & 0xf; + if ((insn & (1 << 6)) == 0) { + /* Three registers of different lengths. */ + int src1_wide; + int src2_wide; + int prewiden; + /* undefreq: bit 0 : UNDEF if size != 0 + * bit 1 : UNDEF if size == 0 + * bit 2 : UNDEF if U == 1 + * Note that [1:0] set implies 'always UNDEF' + */ + int undefreq; + /* prewiden, src1_wide, src2_wide, undefreq */ + static const int neon_3reg_wide[16][4] = { + {1, 0, 0, 0}, /* VADDL */ + {1, 1, 0, 0}, /* VADDW */ + {1, 0, 0, 0}, /* VSUBL */ + {1, 1, 0, 0}, /* VSUBW */ + {0, 1, 1, 0}, /* VADDHN */ + {0, 0, 0, 0}, /* VABAL */ + {0, 1, 1, 0}, /* VSUBHN */ + {0, 0, 0, 0}, /* VABDL */ + {0, 0, 0, 0}, /* VMLAL */ + {0, 0, 0, 6}, /* VQDMLAL */ + {0, 0, 0, 0}, /* VMLSL */ + {0, 0, 0, 6}, /* VQDMLSL */ + {0, 0, 0, 0}, /* Integer VMULL */ + {0, 0, 0, 2}, /* VQDMULL */ + {0, 0, 0, 5}, /* Polynomial VMULL */ + {0, 0, 0, 3}, /* Reserved: always UNDEF */ + }; + + prewiden = neon_3reg_wide[op][0]; + src1_wide = neon_3reg_wide[op][1]; + src2_wide = neon_3reg_wide[op][2]; + undefreq = neon_3reg_wide[op][3]; + + if (((undefreq & 1) && (size != 0)) || ((undefreq & 2) && (size == 0)) || ((undefreq & 4) && u)) { + return 1; + } + if ((src1_wide && (rn & 1)) || (src2_wide && (rm & 1)) || (!src2_wide && (rd & 1))) { + return 1; + } + + /* Avoid overlapping operands. Wide source operands are + always aligned so will never overlap with wide + destinations in problematic ways. */ + if (rd == rm && !src2_wide) { + tmp = neon_load_reg(rm, 1); + neon_store_scratch(2, tmp); + } else if (rd == rn && !src1_wide) { + tmp = neon_load_reg(rn, 1); + neon_store_scratch(2, tmp); + } + for (pass = 0; pass < 2; pass++) { + if (src1_wide) { + neon_load_reg64(cpu_V0, rn + pass); + } else { + if (pass == 1 && rd == rn) { + tmp = neon_load_scratch(2); + } else { + tmp = neon_load_reg(rn, pass); + } + if (prewiden) { + gen_neon_widen(cpu_V0, tmp, size, u); + } + } + if (src2_wide) { + neon_load_reg64(cpu_V1, rm + pass); + } else { + if (pass == 1 && rd == rm) { + tmp2 = neon_load_scratch(2); + } else { + tmp2 = neon_load_reg(rm, pass); + } + if (prewiden) { + gen_neon_widen(cpu_V1, tmp2, size, u); + } + } + switch (op) { + case 0: + case 1: + case 4: /* VADDL, VADDW, VADDHN, VRADDHN */ + gen_neon_addl(size); + break; + case 2: + case 3: + case 6: /* VSUBL, VSUBW, VSUBHN, VRSUBHN */ + gen_neon_subl(size); + break; + case 5: + case 7: /* VABAL, VABDL */ + switch ((size << 1) | u) { + case 0: + gen_helper_neon_abdl_s16(cpu_V0, tmp, tmp2); + break; + case 1: + gen_helper_neon_abdl_u16(cpu_V0, tmp, tmp2); + break; + case 2: + gen_helper_neon_abdl_s32(cpu_V0, tmp, tmp2); + break; + case 3: + gen_helper_neon_abdl_u32(cpu_V0, tmp, tmp2); + break; + case 4: + gen_helper_neon_abdl_s64(cpu_V0, tmp, tmp2); + break; + case 5: + gen_helper_neon_abdl_u64(cpu_V0, tmp, tmp2); + break; + default: + abort(); + } + tcg_temp_free_i32(tmp2); + tcg_temp_free_i32(tmp); + break; + case 8: + case 9: + case 10: + case 11: + case 12: + case 13: + /* VMLAL, VQDMLAL, VMLSL, VQDMLSL, VMULL, VQDMULL */ + gen_neon_mull(cpu_V0, tmp, tmp2, size, u); + break; + case 14: /* Polynomial VMULL */ + gen_helper_neon_mull_p8(cpu_V0, tmp, tmp2); + tcg_temp_free_i32(tmp2); + tcg_temp_free_i32(tmp); + break; + default: /* 15 is RESERVED: caught earlier */ + abort(); + } + if (op == 13) { + /* VQDMULL */ + gen_neon_addl_saturate(cpu_V0, cpu_V0, size); + neon_store_reg64(cpu_V0, rd + pass); + } else if (op == 5 || (op >= 8 && op <= 11)) { + /* Accumulate. */ + neon_load_reg64(cpu_V1, rd + pass); + switch (op) { + case 10: /* VMLSL */ + gen_neon_negl(cpu_V0, size); + /* Fall through */ + case 5: + case 8: /* VABAL, VMLAL */ + gen_neon_addl(size); + break; + case 9: + case 11: /* VQDMLAL, VQDMLSL */ + gen_neon_addl_saturate(cpu_V0, cpu_V0, size); + if (op == 11) { + gen_neon_negl(cpu_V0, size); + } + gen_neon_addl_saturate(cpu_V0, cpu_V1, size); + break; + default: + abort(); + } + neon_store_reg64(cpu_V0, rd + pass); + } else if (op == 4 || op == 6) { + /* Narrowing operation. */ + tmp = tcg_temp_new_i32(); + if (!u) { + switch (size) { + case 0: + gen_helper_neon_narrow_high_u8(tmp, cpu_V0); + break; + case 1: + gen_helper_neon_narrow_high_u16(tmp, cpu_V0); + break; + case 2: + tcg_gen_shri_i64(cpu_V0, cpu_V0, 32); + tcg_gen_trunc_i64_tl(tmp, cpu_V0); + break; + default: + abort(); + } + } else { + switch (size) { + case 0: + gen_helper_neon_narrow_round_high_u8(tmp, cpu_V0); + break; + case 1: + gen_helper_neon_narrow_round_high_u16(tmp, cpu_V0); + break; + case 2: + tcg_gen_addi_i64(cpu_V0, cpu_V0, 1u << 31); + tcg_gen_shri_i64(cpu_V0, cpu_V0, 32); + tcg_gen_trunc_i64_tl(tmp, cpu_V0); + break; + default: + abort(); + } + } + if (pass == 0) { + tmp3 = tmp; + } else { + neon_store_reg(rd, 0, tmp3); + neon_store_reg(rd, 1, tmp); + } + } else { + /* Write back the result. */ + neon_store_reg64(cpu_V0, rd + pass); + } + } + } else { + /* Two registers and a scalar. NB that for ops of this form + * the ARM ARM labels bit 24 as Q, but it is in our variable + * 'u', not 'q'. + */ + if (size == 0) { + return 1; + } + switch (op) { + case 1: /* Float VMLA scalar */ + case 5: /* Floating point VMLS scalar */ + case 9: /* Floating point VMUL scalar */ + if (size == 1) { + return 1; + } + /* fall through */ + case 0: /* Integer VMLA scalar */ + case 4: /* Integer VMLS scalar */ + case 8: /* Integer VMUL scalar */ + case 12: /* VQDMULH scalar */ + case 13: /* VQRDMULH scalar */ + if (u && ((rd | rn) & 1)) { + return 1; + } + tmp = neon_get_scalar(size, rm); + neon_store_scratch(0, tmp); + for (pass = 0; pass < (u ? 4 : 2); pass++) { + tmp = neon_load_scratch(0); + tmp2 = neon_load_reg(rn, pass); + if (op == 12) { + if (size == 1) { + gen_helper_neon_qdmulh_s16(tmp, cpu_env, tmp, tmp2); + } else { + gen_helper_neon_qdmulh_s32(tmp, cpu_env, tmp, tmp2); + } + } else if (op == 13) { + if (size == 1) { + gen_helper_neon_qrdmulh_s16(tmp, cpu_env, tmp, tmp2); + } else { + gen_helper_neon_qrdmulh_s32(tmp, cpu_env, tmp, tmp2); + } + } else if (op & 1) { + TCGv_ptr fpstatus = get_fpstatus_ptr(1); + gen_helper_vfp_muls(tmp, tmp, tmp2, fpstatus); + tcg_temp_free_ptr(fpstatus); + } else { + switch (size) { + case 0: + gen_helper_neon_mul_u8(tmp, tmp, tmp2); + break; + case 1: + gen_helper_neon_mul_u16(tmp, tmp, tmp2); + break; + case 2: + tcg_gen_mul_i32(tmp, tmp, tmp2); + break; + default: + abort(); + } + } + tcg_temp_free_i32(tmp2); + if (op < 8) { + /* Accumulate. */ + tmp2 = neon_load_reg(rd, pass); + switch (op) { + case 0: + gen_neon_add(size, tmp, tmp2); + break; + case 1: { + TCGv_ptr fpstatus = get_fpstatus_ptr(1); + gen_helper_vfp_adds(tmp, tmp, tmp2, fpstatus); + tcg_temp_free_ptr(fpstatus); + break; + } + case 4: + gen_neon_rsb(size, tmp, tmp2); + break; + case 5: { + TCGv_ptr fpstatus = get_fpstatus_ptr(1); + gen_helper_vfp_subs(tmp, tmp2, tmp, fpstatus); + tcg_temp_free_ptr(fpstatus); + break; + } + default: + abort(); + } + tcg_temp_free_i32(tmp2); + } + neon_store_reg(rd, pass, tmp); + } + break; + case 3: /* VQDMLAL scalar */ + case 7: /* VQDMLSL scalar */ + case 11: /* VQDMULL scalar */ + if (u == 1) { + return 1; + } + /* fall through */ + case 2: /* VMLAL sclar */ + case 6: /* VMLSL scalar */ + case 10: /* VMULL scalar */ + if (rd & 1) { + return 1; + } + tmp2 = neon_get_scalar(size, rm); + /* We need a copy of tmp2 because gen_neon_mull + * deletes it during pass 0. */ + tmp4 = tcg_temp_new_i32(); + tcg_gen_mov_i32(tmp4, tmp2); + tmp3 = neon_load_reg(rn, 1); + + for (pass = 0; pass < 2; pass++) { + if (pass == 0) { + tmp = neon_load_reg(rn, 0); + } else { + tmp = tmp3; + tmp2 = tmp4; + } + gen_neon_mull(cpu_V0, tmp, tmp2, size, u); + if (op != 11) { + neon_load_reg64(cpu_V1, rd + pass); + } + switch (op) { + case 6: + gen_neon_negl(cpu_V0, size); + /* Fall through */ + case 2: + gen_neon_addl(size); + break; + case 3: + case 7: + gen_neon_addl_saturate(cpu_V0, cpu_V0, size); + if (op == 7) { + gen_neon_negl(cpu_V0, size); + } + gen_neon_addl_saturate(cpu_V0, cpu_V1, size); + break; + case 10: + /* no-op */ + break; + case 11: + gen_neon_addl_saturate(cpu_V0, cpu_V0, size); + break; + default: + abort(); + } + neon_store_reg64(cpu_V0, rd + pass); + } + + break; + default: /* 14 and 15 are RESERVED */ + return 1; + } + } + } else { /* size == 3 */ + if (!u) { + /* Extract. */ + imm = (insn >> 8) & 0xf; + + if (imm > 7 && !q) + return 1; + + if (q && ((rd | rn | rm) & 1)) { + return 1; + } + + if (imm == 0) { + neon_load_reg64(cpu_V0, rn); + if (q) { + neon_load_reg64(cpu_V1, rn + 1); + } + } else if (imm == 8) { + neon_load_reg64(cpu_V0, rn + 1); + if (q) { + neon_load_reg64(cpu_V1, rm); + } + } else if (q) { + tmp64 = tcg_temp_new_i64(); + if (imm < 8) { + neon_load_reg64(cpu_V0, rn); + neon_load_reg64(tmp64, rn + 1); + } else { + neon_load_reg64(cpu_V0, rn + 1); + neon_load_reg64(tmp64, rm); + } + tcg_gen_shri_i64(cpu_V0, cpu_V0, (imm & 7) * 8); + tcg_gen_shli_i64(cpu_V1, tmp64, 64 - ((imm & 7) * 8)); + tcg_gen_or_i64(cpu_V0, cpu_V0, cpu_V1); + if (imm < 8) { + neon_load_reg64(cpu_V1, rm); + } else { + neon_load_reg64(cpu_V1, rm + 1); + imm -= 8; + } + tcg_gen_shli_i64(cpu_V1, cpu_V1, 64 - (imm * 8)); + tcg_gen_shri_i64(tmp64, tmp64, imm * 8); + tcg_gen_or_i64(cpu_V1, cpu_V1, tmp64); + tcg_temp_free_i64(tmp64); + } else { + /* BUGFIX */ + neon_load_reg64(cpu_V0, rn); + tcg_gen_shri_i64(cpu_V0, cpu_V0, imm * 8); + neon_load_reg64(cpu_V1, rm); + tcg_gen_shli_i64(cpu_V1, cpu_V1, 64 - (imm * 8)); + tcg_gen_or_i64(cpu_V0, cpu_V0, cpu_V1); + } + neon_store_reg64(cpu_V0, rd); + if (q) { + neon_store_reg64(cpu_V1, rd + 1); + } + } else if ((insn & (1 << 11)) == 0) { + /* Two register misc. */ + op = ((insn >> 12) & 0x30) | ((insn >> 7) & 0xf); + size = (insn >> 18) & 3; + /* UNDEF for unknown op values and bad op-size combinations */ + if ((neon_2rm_sizes[op] & (1 << size)) == 0) { + return 1; + } + if ((op != NEON_2RM_VMOVN && op != NEON_2RM_VQMOVN) && q && ((rm | rd) & 1)) { + return 1; + } + switch (op) { + case NEON_2RM_VREV64: + for (pass = 0; pass < (q ? 2 : 1); pass++) { + tmp = neon_load_reg(rm, pass * 2); + tmp2 = neon_load_reg(rm, pass * 2 + 1); + switch (size) { + case 0: + tcg_gen_bswap32_i32(tmp, tmp); + break; + case 1: + gen_swap_half(tmp); + break; + case 2: /* no-op */ + break; + default: + abort(); + } + neon_store_reg(rd, pass * 2 + 1, tmp); + if (size == 2) { + neon_store_reg(rd, pass * 2, tmp2); + } else { + switch (size) { + case 0: + tcg_gen_bswap32_i32(tmp2, tmp2); + break; + case 1: + gen_swap_half(tmp2); + break; + default: + abort(); + } + neon_store_reg(rd, pass * 2, tmp2); + } + } + break; + case NEON_2RM_VPADDL: + case NEON_2RM_VPADDL_U: + case NEON_2RM_VPADAL: + case NEON_2RM_VPADAL_U: + for (pass = 0; pass < q + 1; pass++) { + tmp = neon_load_reg(rm, pass * 2); + gen_neon_widen(cpu_V0, tmp, size, op & 1); + tmp = neon_load_reg(rm, pass * 2 + 1); + gen_neon_widen(cpu_V1, tmp, size, op & 1); + switch (size) { + case 0: + gen_helper_neon_paddl_u16(CPU_V001); + break; + case 1: + gen_helper_neon_paddl_u32(CPU_V001); + break; + case 2: + tcg_gen_add_i64(CPU_V001); + break; + default: + abort(); + } + if (op >= NEON_2RM_VPADAL) { + /* Accumulate. */ + neon_load_reg64(cpu_V1, rd + pass); + gen_neon_addl(size); + } + neon_store_reg64(cpu_V0, rd + pass); + } + break; + case NEON_2RM_VTRN: + if (size == 2) { + int n; + for (n = 0; n < (q ? 4 : 2); n += 2) { + tmp = neon_load_reg(rm, n); + tmp2 = neon_load_reg(rd, n + 1); + neon_store_reg(rm, n, tmp2); + neon_store_reg(rd, n + 1, tmp); + } + } else { + goto elementwise; + } + break; + case NEON_2RM_VUZP: + if (gen_neon_unzip(rd, rm, size, q)) { + return 1; + } + break; + case NEON_2RM_VZIP: + if (gen_neon_zip(rd, rm, size, q)) { + return 1; + } + break; + case NEON_2RM_VMOVN: + case NEON_2RM_VQMOVN: + /* also VQMOVUN; op field and mnemonics don't line up */ + if (rm & 1) { + return 1; + } + for (pass = 0; pass < 2; pass++) { + neon_load_reg64(cpu_V0, rm + pass); + tmp = tcg_temp_new_i32(); + gen_neon_narrow_op(op == NEON_2RM_VMOVN, q, size, tmp, cpu_V0); + if (pass == 0) { + tmp2 = tmp; + } else { + neon_store_reg(rd, 0, tmp2); + neon_store_reg(rd, 1, tmp); + } + } + break; + case NEON_2RM_VSHLL: + if (q || (rd & 1)) { + return 1; + } + tmp = neon_load_reg(rm, 0); + tmp2 = neon_load_reg(rm, 1); + for (pass = 0; pass < 2; pass++) { + if (pass == 1) + tmp = tmp2; + gen_neon_widen(cpu_V0, tmp, size, 1); + tcg_gen_shli_i64(cpu_V0, cpu_V0, 8 << size); + neon_store_reg64(cpu_V0, rd + pass); + } + break; + case NEON_2RM_VCVT_F16_F32: + if (!arm_feature(env, ARM_FEATURE_VFP_FP16) || q || (rm & 1)) { + return 1; + } + tmp = tcg_temp_new_i32(); + tmp2 = tcg_temp_new_i32(); + tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, 0)); + gen_helper_neon_fcvt_f32_to_f16(tmp, cpu_F0s, cpu_env); + tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, 1)); + gen_helper_neon_fcvt_f32_to_f16(tmp2, cpu_F0s, cpu_env); + tcg_gen_shli_i32(tmp2, tmp2, 16); + tcg_gen_or_i32(tmp2, tmp2, tmp); + tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, 2)); + gen_helper_neon_fcvt_f32_to_f16(tmp, cpu_F0s, cpu_env); + tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, 3)); + neon_store_reg(rd, 0, tmp2); + tmp2 = tcg_temp_new_i32(); + gen_helper_neon_fcvt_f32_to_f16(tmp2, cpu_F0s, cpu_env); + tcg_gen_shli_i32(tmp2, tmp2, 16); + tcg_gen_or_i32(tmp2, tmp2, tmp); + neon_store_reg(rd, 1, tmp2); + tcg_temp_free_i32(tmp); + break; + case NEON_2RM_VCVT_F32_F16: + if (!arm_feature(env, ARM_FEATURE_VFP_FP16) || q || (rd & 1)) { + return 1; + } + tmp3 = tcg_temp_new_i32(); + tmp = neon_load_reg(rm, 0); + tmp2 = neon_load_reg(rm, 1); + tcg_gen_ext16u_i32(tmp3, tmp); + gen_helper_neon_fcvt_f16_to_f32(cpu_F0s, tmp3, cpu_env); + tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, 0)); + tcg_gen_shri_i32(tmp3, tmp, 16); + gen_helper_neon_fcvt_f16_to_f32(cpu_F0s, tmp3, cpu_env); + tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, 1)); + tcg_temp_free_i32(tmp); + tcg_gen_ext16u_i32(tmp3, tmp2); + gen_helper_neon_fcvt_f16_to_f32(cpu_F0s, tmp3, cpu_env); + tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, 2)); + tcg_gen_shri_i32(tmp3, tmp2, 16); + gen_helper_neon_fcvt_f16_to_f32(cpu_F0s, tmp3, cpu_env); + tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, 3)); + tcg_temp_free_i32(tmp2); + tcg_temp_free_i32(tmp3); + break; + default: + elementwise: + for (pass = 0; pass < (q ? 4 : 2); pass++) { + if (neon_2rm_is_float_op(op)) { + tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, pass)); + } else { + tmp = neon_load_reg(rm, pass); + } + switch (op) { + case NEON_2RM_VREV32: + switch (size) { + case 0: + tcg_gen_bswap32_i32(tmp, tmp); + break; + case 1: + gen_swap_half(tmp); + break; + default: + abort(); + } + break; + case NEON_2RM_VREV16: + gen_rev16(tmp); + break; + case NEON_2RM_VCLS: + switch (size) { + case 0: + gen_helper_neon_cls_s8(tmp, tmp); + break; + case 1: + gen_helper_neon_cls_s16(tmp, tmp); + break; + case 2: + gen_helper_neon_cls_s32(tmp, tmp); + break; + default: + abort(); + } + break; + case NEON_2RM_VCLZ: + switch (size) { + case 0: + gen_helper_neon_clz_u8(tmp, tmp); + break; + case 1: + gen_helper_neon_clz_u16(tmp, tmp); + break; + case 2: + gen_helper_clz(tmp, tmp); + break; + default: + abort(); + } + break; + case NEON_2RM_VCNT: + gen_helper_neon_cnt_u8(tmp, tmp); + break; + case NEON_2RM_VMVN: + tcg_gen_not_i32(tmp, tmp); + break; + case NEON_2RM_VQABS: + switch (size) { + case 0: + gen_helper_neon_qabs_s8(tmp, cpu_env, tmp); + break; + case 1: + gen_helper_neon_qabs_s16(tmp, cpu_env, tmp); + break; + case 2: + gen_helper_neon_qabs_s32(tmp, cpu_env, tmp); + break; + default: + abort(); + } + break; + case NEON_2RM_VQNEG: + switch (size) { + case 0: + gen_helper_neon_qneg_s8(tmp, cpu_env, tmp); + break; + case 1: + gen_helper_neon_qneg_s16(tmp, cpu_env, tmp); + break; + case 2: + gen_helper_neon_qneg_s32(tmp, cpu_env, tmp); + break; + default: + abort(); + } + break; + case NEON_2RM_VCGT0: + case NEON_2RM_VCLE0: + tmp2 = tcg_const_i32(0); + switch (size) { + case 0: + gen_helper_neon_cgt_s8(tmp, tmp, tmp2); + break; + case 1: + gen_helper_neon_cgt_s16(tmp, tmp, tmp2); + break; + case 2: + gen_helper_neon_cgt_s32(tmp, tmp, tmp2); + break; + default: + abort(); + } + tcg_temp_free(tmp2); + if (op == NEON_2RM_VCLE0) { + tcg_gen_not_i32(tmp, tmp); + } + break; + case NEON_2RM_VCGE0: + case NEON_2RM_VCLT0: + tmp2 = tcg_const_i32(0); + switch (size) { + case 0: + gen_helper_neon_cge_s8(tmp, tmp, tmp2); + break; + case 1: + gen_helper_neon_cge_s16(tmp, tmp, tmp2); + break; + case 2: + gen_helper_neon_cge_s32(tmp, tmp, tmp2); + break; + default: + abort(); + } + tcg_temp_free(tmp2); + if (op == NEON_2RM_VCLT0) { + tcg_gen_not_i32(tmp, tmp); + } + break; + case NEON_2RM_VCEQ0: + tmp2 = tcg_const_i32(0); + switch (size) { + case 0: + gen_helper_neon_ceq_u8(tmp, tmp, tmp2); + break; + case 1: + gen_helper_neon_ceq_u16(tmp, tmp, tmp2); + break; + case 2: + gen_helper_neon_ceq_u32(tmp, tmp, tmp2); + break; + default: + abort(); + } + tcg_temp_free(tmp2); + break; + case NEON_2RM_VABS: + switch (size) { + case 0: + gen_helper_neon_abs_s8(tmp, tmp); + break; + case 1: + gen_helper_neon_abs_s16(tmp, tmp); + break; + case 2: + tcg_gen_abs_i32(tmp, tmp); + break; + default: + abort(); + } + break; + case NEON_2RM_VNEG: + tmp2 = tcg_const_i32(0); + gen_neon_rsb(size, tmp, tmp2); + tcg_temp_free(tmp2); + break; + case NEON_2RM_VCGT0_F: { + TCGv_ptr fpstatus = get_fpstatus_ptr(1); + tmp2 = tcg_const_i32(0); + gen_helper_neon_cgt_f32(tmp, tmp, tmp2, fpstatus); + tcg_temp_free(tmp2); + tcg_temp_free_ptr(fpstatus); + break; + } + case NEON_2RM_VCGE0_F: { + TCGv_ptr fpstatus = get_fpstatus_ptr(1); + tmp2 = tcg_const_i32(0); + gen_helper_neon_cge_f32(tmp, tmp, tmp2, fpstatus); + tcg_temp_free(tmp2); + tcg_temp_free_ptr(fpstatus); + break; + } + case NEON_2RM_VCEQ0_F: { + TCGv_ptr fpstatus = get_fpstatus_ptr(1); + tmp2 = tcg_const_i32(0); + gen_helper_neon_ceq_f32(tmp, tmp, tmp2, fpstatus); + tcg_temp_free(tmp2); + tcg_temp_free_ptr(fpstatus); + break; + } + case NEON_2RM_VCLE0_F: { + TCGv_ptr fpstatus = get_fpstatus_ptr(1); + tmp2 = tcg_const_i32(0); + gen_helper_neon_cge_f32(tmp, tmp2, tmp, fpstatus); + tcg_temp_free(tmp2); + tcg_temp_free_ptr(fpstatus); + break; + } + case NEON_2RM_VCLT0_F: { + TCGv_ptr fpstatus = get_fpstatus_ptr(1); + tmp2 = tcg_const_i32(0); + gen_helper_neon_cgt_f32(tmp, tmp2, tmp, fpstatus); + tcg_temp_free(tmp2); + tcg_temp_free_ptr(fpstatus); + break; + } + case NEON_2RM_VABS_F: + gen_vfp_abs(0); + break; + case NEON_2RM_VNEG_F: + gen_vfp_neg(0); + break; + case NEON_2RM_VSWP: + tmp2 = neon_load_reg(rd, pass); + neon_store_reg(rm, pass, tmp2); + break; + case NEON_2RM_VTRN: + tmp2 = neon_load_reg(rd, pass); + switch (size) { + case 0: + gen_neon_trn_u8(tmp, tmp2); + break; + case 1: + gen_neon_trn_u16(tmp, tmp2); + break; + default: + abort(); + } + neon_store_reg(rm, pass, tmp2); + break; + case NEON_2RM_VRECPE: + gen_helper_recpe_u32(tmp, tmp, cpu_env); + break; + case NEON_2RM_VRSQRTE: + gen_helper_rsqrte_u32(tmp, tmp, cpu_env); + break; + case NEON_2RM_VRECPE_F: + gen_helper_recpe_f32(cpu_F0s, cpu_F0s, cpu_env); + break; + case NEON_2RM_VRSQRTE_F: + gen_helper_rsqrte_f32(cpu_F0s, cpu_F0s, cpu_env); + break; + case NEON_2RM_VCVT_FS: /* VCVT.F32.S32 */ + gen_vfp_sito(0, 1); + break; + case NEON_2RM_VCVT_FU: /* VCVT.F32.U32 */ + gen_vfp_uito(0, 1); + break; + case NEON_2RM_VCVT_SF: /* VCVT.S32.F32 */ + gen_vfp_tosiz(0, 1); + break; + case NEON_2RM_VCVT_UF: /* VCVT.U32.F32 */ + gen_vfp_touiz(0, 1); + break; + default: + /* Reserved op values were caught by the + * neon_2rm_sizes[] check earlier. + */ + abort(); + } + if (neon_2rm_is_float_op(op)) { + tcg_gen_st_f32(cpu_F0s, cpu_env, neon_reg_offset(rd, pass)); + } else { + neon_store_reg(rd, pass, tmp); + } + } + break; + } + } else if ((insn & (1 << 10)) == 0) { + /* VTBL, VTBX. */ + int n = ((insn >> 8) & 3) + 1; + if ((rn + n) > 32) { + /* This is UNPREDICTABLE; we choose to UNDEF to avoid the + * helper function running off the end of the register file. + */ + return 1; + } + n <<= 3; + if (insn & (1 << 6)) { + tmp = neon_load_reg(rd, 0); + } else { + tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, 0); + } + tmp2 = neon_load_reg(rm, 0); + tmp4 = tcg_const_i32(rn); + tmp5 = tcg_const_i32(n); + gen_helper_neon_tbl(tmp2, tmp2, tmp, tmp4, tmp5); + tcg_temp_free_i32(tmp); + if (insn & (1 << 6)) { + tmp = neon_load_reg(rd, 1); + } else { + tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, 0); + } + tmp3 = neon_load_reg(rm, 1); + gen_helper_neon_tbl(tmp3, tmp3, tmp, tmp4, tmp5); + tcg_temp_free_i32(tmp5); + tcg_temp_free_i32(tmp4); + neon_store_reg(rd, 0, tmp2); + neon_store_reg(rd, 1, tmp3); + tcg_temp_free_i32(tmp); + } else if ((insn & 0x380) == 0) { + /* VDUP */ + if ((insn & (7 << 16)) == 0 || (q && (rd & 1))) { + return 1; + } + if (insn & (1 << 19)) { + tmp = neon_load_reg(rm, 1); + } else { + tmp = neon_load_reg(rm, 0); + } + if (insn & (1 << 16)) { + gen_neon_dup_u8(tmp, ((insn >> 17) & 3) * 8); + } else if (insn & (1 << 17)) { + if ((insn >> 18) & 1) + gen_neon_dup_high16(tmp); + else + gen_neon_dup_low16(tmp); + } + for (pass = 0; pass < (q ? 4 : 2); pass++) { + tmp2 = tcg_temp_new_i32(); + tcg_gen_mov_i32(tmp2, tmp); + neon_store_reg(rd, pass, tmp2); + } + tcg_temp_free_i32(tmp); + } else { + return 1; + } + } + } + return 0; +} + +static int disas_cp14_read(CPUARMState *env, DisasContext *s, uint32_t insn) { + int crn = (insn >> 16) & 0xf; + int crm = insn & 0xf; + int op1 = (insn >> 21) & 7; + int op2 = (insn >> 5) & 7; + int rt = (insn >> 12) & 0xf; + TCGv tmp; + + /* Minimal set of debug registers, since we don't support debug */ + if (op1 == 0 && crn == 0 && op2 == 0) { + switch (crm) { + case 0: + /* DBGDIDR: just RAZ. In particular this means the + * "debug architecture version" bits will read as + * a reserved value, which should cause Linux to + * not try to use the debug hardware. + */ + tmp = tcg_const_i32(0); + store_reg(s, rt, tmp); + return 0; + case 1: + case 2: + /* DBGDRAR and DBGDSAR: v7 only. Always RAZ since we + * don't implement memory mapped debug components + */ + if (ENABLE_ARCH_7) { + tmp = tcg_const_i32(0); + store_reg(s, rt, tmp); + return 0; + } + break; + default: + break; + } + } + + if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { + if (op1 == 6 && crn == 0 && crm == 0 && op2 == 0) { + /* TEECR */ + if (IS_USER(s)) + return 1; + tmp = load_cpu_field(teecr); + store_reg(s, rt, tmp); + return 0; + } + if (op1 == 6 && crn == 1 && crm == 0 && op2 == 0) { + /* TEEHBR */ + if (IS_USER(s) && (env->teecr & 1)) + return 1; + tmp = load_cpu_field(teehbr); + store_reg(s, rt, tmp); + return 0; + } + } + return 1; +} + +static int disas_cp14_write(CPUARMState *env, DisasContext *s, uint32_t insn) { + int crn = (insn >> 16) & 0xf; + int crm = insn & 0xf; + int op1 = (insn >> 21) & 7; + int op2 = (insn >> 5) & 7; + int rt = (insn >> 12) & 0xf; + TCGv tmp; + + if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { + if (op1 == 6 && crn == 0 && crm == 0 && op2 == 0) { + /* TEECR */ + if (IS_USER(s)) + return 1; + tmp = load_reg(s, rt); + gen_helper_set_teecr(cpu_env, tmp); + tcg_temp_free_i32(tmp); + return 0; + } + if (op1 == 6 && crn == 1 && crm == 0 && op2 == 0) { + /* TEEHBR */ + if (IS_USER(s) && (env->teecr & 1)) + return 1; + tmp = load_reg(s, rt); + store_cpu_field(tmp, teehbr); + return 0; + } + } + return 1; +} + +static int disas_coproc_insn(CPUARMState *env, DisasContext *s, uint32_t insn) { + int cpnum; + + cpnum = (insn >> 8) & 0xf; + if (arm_feature(env, ARM_FEATURE_XSCALE) && ((env->cp15.c15_cpar ^ 0x3fff) & (1 << cpnum))) + return 1; + + switch (cpnum) { + case 0: + case 1: + if (arm_feature(env, ARM_FEATURE_IWMMXT)) { + return disas_iwmmxt_insn(env, s, insn); + } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { + return disas_dsp_insn(env, s, insn); + } + return 1; + case 10: + case 11: + return disas_vfp_insn(env, s, insn); + case 14: + /* Coprocessors 7-15 are architecturally reserved by ARM. + Unfortunately Intel decided to ignore this. */ + if (arm_feature(env, ARM_FEATURE_XSCALE)) + goto board; + if (insn & (1 << 20)) + return disas_cp14_read(env, s, insn); + else + return disas_cp14_write(env, s, insn); + case 15: + return disas_cp15_insn(env, s, insn); + default: + board: + /* Unknown coprocessor. See if the board has hooked it. */ + return disas_cp_insn(env, s, insn); + } +} + +/* Store a 64-bit value to a register pair. Clobbers val. */ +static void gen_storeq_reg(DisasContext *s, int rlow, int rhigh, TCGv_i64 val) { + TCGv tmp; + tmp = tcg_temp_new_i32(); + tcg_gen_trunc_i64_tl(tmp, val); + store_reg(s, rlow, tmp); + tmp = tcg_temp_new_i32(); + tcg_gen_shri_i64(val, val, 32); + tcg_gen_trunc_i64_tl(tmp, val); + store_reg(s, rhigh, tmp); +} + +/* load a 32-bit value from a register and perform a 64-bit accumulate. */ +static void gen_addq_lo(DisasContext *s, TCGv_i64 val, int rlow) { + TCGv_i64 tmp; + TCGv tmp2; + + /* Load value and extend to 64 bits. */ + tmp = tcg_temp_new_i64(); + tmp2 = load_reg(s, rlow); + tcg_gen_extu_i32_i64(tmp, tmp2); + tcg_temp_free_i32(tmp2); + tcg_gen_add_i64(val, val, tmp); + tcg_temp_free_i64(tmp); +} + +/* load and add a 64-bit value from a register pair. */ +static void gen_addq(DisasContext *s, TCGv_i64 val, int rlow, int rhigh) { + TCGv_i64 tmp; + TCGv tmpl; + TCGv tmph; + + /* Load 64-bit value rd:rn. */ + tmpl = load_reg(s, rlow); + tmph = load_reg(s, rhigh); + tmp = tcg_temp_new_i64(); + tcg_gen_concat_i32_i64(tmp, tmpl, tmph); + tcg_temp_free_i32(tmpl); + tcg_temp_free_i32(tmph); + tcg_gen_add_i64(val, val, tmp); + tcg_temp_free_i64(tmp); +} + +/* Set N and Z flags from a 64-bit value. */ +static void gen_logicq_cc(TCGv_i64 val) { + TCGv tmp = tcg_temp_new_i32(); + gen_helper_logicq_cc(tmp, val); + gen_logic_CC(tmp); + tcg_temp_free_i32(tmp); +} + +/* Load/Store exclusive instructions are implemented by remembering + the value/address loaded, and seeing if these are the same + when the store is performed. This should be is sufficient to implement + the architecturally mandated semantics, and avoids having to monitor + regular stores. + + In system emulation mode only one CPU will be running at once, so + this sequence is effectively atomic. In user emulation mode we + throw an exception and handle the atomic operation elsewhere. */ +static void gen_load_exclusive(DisasContext *s, int rt, int rt2, TCGv addr, int size) { + TCGv tmp; + + switch (size) { + case 0: + tmp = gen_ld8u(addr, IS_USER(s)); + break; + case 1: + tmp = gen_ld16u(addr, IS_USER(s)); + break; + case 2: + case 3: + tmp = gen_ld32(addr, IS_USER(s)); + break; + default: + abort(); + } + tcg_gen_mov_i32(cpu_exclusive_val, tmp); + store_reg(s, rt, tmp); + if (size == 3) { + TCGv tmp2 = tcg_temp_new_i32(); + tcg_gen_addi_i32(tmp2, addr, 4); + tmp = gen_ld32(tmp2, IS_USER(s)); + tcg_temp_free_i32(tmp2); + tcg_gen_mov_i32(cpu_exclusive_high, tmp); + store_reg(s, rt2, tmp); + } + tcg_gen_mov_i32(cpu_exclusive_addr, addr); +} + +static void gen_clrex(DisasContext *s) { + tcg_gen_movi_i32(cpu_exclusive_addr, -1); +} + +#ifdef CONFIG_USER_ONLY +static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, TCGv addr, int size) { + tcg_gen_mov_i32(cpu_exclusive_test, addr); + tcg_gen_movi_i32(cpu_exclusive_info, size | (rd << 4) | (rt << 8) | (rt2 << 12)); + gen_exception_insn(s, 4, EXCP_STREX); +} +#else +static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, TCGv addr, int size) { + TCGv tmp; + TCGLabel *done_label; + TCGLabel *fail_label; + + /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]) { + [addr] = {Rt}; + {Rd} = 0; + } else { + {Rd} = 1; + } */ + fail_label = gen_new_label(); + done_label = gen_new_label(); + tcg_gen_brcond_i32(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label); + switch (size) { + case 0: + tmp = gen_ld8u(addr, IS_USER(s)); + break; + case 1: + tmp = gen_ld16u(addr, IS_USER(s)); + break; + case 2: + case 3: + tmp = gen_ld32(addr, IS_USER(s)); + break; + default: + abort(); + } + tcg_gen_brcond_i32(TCG_COND_NE, tmp, cpu_exclusive_val, fail_label); + tcg_temp_free_i32(tmp); + if (size == 3) { + TCGv tmp2 = tcg_temp_new_i32(); + tcg_gen_addi_i32(tmp2, addr, 4); + tmp = gen_ld32(tmp2, IS_USER(s)); + tcg_temp_free_i32(tmp2); + tcg_gen_brcond_i32(TCG_COND_NE, tmp, cpu_exclusive_high, fail_label); + tcg_temp_free_i32(tmp); + } + tmp = load_reg(s, rt); + switch (size) { + case 0: + gen_st8(tmp, addr, IS_USER(s)); + break; + case 1: + gen_st16(tmp, addr, IS_USER(s)); + break; + case 2: + case 3: + gen_st32(tmp, addr, IS_USER(s)); + break; + default: + abort(); + } + if (size == 3) { + tcg_gen_addi_i32(addr, addr, 4); + tmp = load_reg(s, rt2); + gen_st32(tmp, addr, IS_USER(s)); + } + tcg_gen_movi_i32(cpu_R[rd], 0); + tcg_gen_br(done_label); + gen_set_label(fail_label); + tcg_gen_movi_i32(cpu_R[rd], 1); + gen_set_label(done_label); + tcg_gen_movi_i32(cpu_exclusive_addr, -1); +} +#endif + +static void disas_arm_insn(CPUARMState *env, DisasContext *s) { + unsigned int cond, insn, val, op1, i, shift, rm, rs, rn, rd, sh; + TCGv tmp; + TCGv tmp2; + TCGv tmp3; + TCGv addr; + TCGv_i64 tmp64; + + insn = arm_ldl_code(s->env, s->pc, s->bswap_code); + s->pc += 4; + + /* M variants do not implement ARM mode. */ + if (IS_M(env)) + goto illegal_op; + cond = insn >> 28; + if (cond == 0xf) { + /* In ARMv3 and v4 the NV condition is UNPREDICTABLE; we + * choose to UNDEF. In ARMv5 and above the space is used + * for miscellaneous unconditional instructions. + */ + ARCH(5); + + /* Unconditional instructions. */ + if (((insn >> 25) & 7) == 1) { + /* NEON Data processing. */ + if (!arm_feature(env, ARM_FEATURE_NEON)) + goto illegal_op; + + if (disas_neon_data_insn(env, s, insn)) + goto illegal_op; + return; + } + if ((insn & 0x0f100000) == 0x04000000) { + /* NEON load/store. */ + if (!arm_feature(env, ARM_FEATURE_NEON)) + goto illegal_op; + + if (disas_neon_ls_insn(env, s, insn)) + goto illegal_op; + return; + } + if (((insn & 0x0f30f000) == 0x0510f000) || ((insn & 0x0f30f010) == 0x0710f000)) { + if ((insn & (1 << 22)) == 0) { + /* PLDW; v7MP */ + if (!arm_feature(env, ARM_FEATURE_V7MP)) { + goto illegal_op; + } + } + /* Otherwise PLD; v5TE+ */ + ARCH(5TE); + return; + } + if (((insn & 0x0f70f000) == 0x0450f000) || ((insn & 0x0f70f010) == 0x0650f000)) { + ARCH(7); + return; /* PLI; V7 */ + } + if (((insn & 0x0f700000) == 0x04100000) || ((insn & 0x0f700010) == 0x06100000)) { + if (!arm_feature(env, ARM_FEATURE_V7MP)) { + goto illegal_op; + } + return; /* v7MP: Unallocated memory hint: must NOP */ + } + + if ((insn & 0x0ffffdff) == 0x01010000) { + ARCH(6); + /* setend */ + if (((insn >> 9) & 1) != s->bswap_code) { + /* Dynamic endianness switching not implemented. */ + goto illegal_op; + } + return; + } else if ((insn & 0x0fffff00) == 0x057ff000) { + switch ((insn >> 4) & 0xf) { + case 1: /* clrex */ + ARCH(6K); + gen_clrex(s); + return; + case 4: /* dsb */ + case 5: /* dmb */ + case 6: /* isb */ + ARCH(7); + /* We don't emulate caches so these are a no-op. */ + return; + default: + goto illegal_op; + } + } else if ((insn & 0x0e5fffe0) == 0x084d0500) { + /* srs */ + int32_t offset; + if (IS_USER(s)) + goto illegal_op; + ARCH(6); + op1 = (insn & 0x1f); + addr = tcg_temp_new_i32(); + tmp = tcg_const_i32(op1); + gen_helper_get_r13_banked(addr, cpu_env, tmp); + tcg_temp_free_i32(tmp); + i = (insn >> 23) & 3; + switch (i) { + case 0: + offset = -4; + break; /* DA */ + case 1: + offset = 0; + break; /* IA */ + case 2: + offset = -8; + break; /* DB */ + case 3: + offset = 4; + break; /* IB */ + default: + abort(); + } + if (offset) + tcg_gen_addi_i32(addr, addr, offset); + tmp = load_reg(s, 14); + gen_st32(tmp, addr, 0); + tmp = load_cpu_field(spsr); + tcg_gen_addi_i32(addr, addr, 4); + gen_st32(tmp, addr, 0); + if (insn & (1 << 21)) { + /* Base writeback. */ + switch (i) { + case 0: + offset = -8; + break; + case 1: + offset = 4; + break; + case 2: + offset = -4; + break; + case 3: + offset = 0; + break; + default: + abort(); + } + if (offset) + tcg_gen_addi_i32(addr, addr, offset); + tmp = tcg_const_i32(op1); + gen_helper_set_r13_banked(cpu_env, tmp, addr); + tcg_temp_free_i32(tmp); + tcg_temp_free_i32(addr); + } else { + tcg_temp_free_i32(addr); + } + return; + } else if ((insn & 0x0e50ffe0) == 0x08100a00) { + /* rfe */ + int32_t offset; + if (IS_USER(s)) + goto illegal_op; + ARCH(6); + rn = (insn >> 16) & 0xf; + addr = load_reg(s, rn); + i = (insn >> 23) & 3; + switch (i) { + case 0: + offset = -4; + break; /* DA */ + case 1: + offset = 0; + break; /* IA */ + case 2: + offset = -8; + break; /* DB */ + case 3: + offset = 4; + break; /* IB */ + default: + abort(); + } + if (offset) + tcg_gen_addi_i32(addr, addr, offset); + /* Load PC into tmp and CPSR into tmp2. */ + tmp = gen_ld32(addr, 0); + tcg_gen_addi_i32(addr, addr, 4); + tmp2 = gen_ld32(addr, 0); + if (insn & (1 << 21)) { + /* Base writeback. */ + switch (i) { + case 0: + offset = -8; + break; + case 1: + offset = 4; + break; + case 2: + offset = -4; + break; + case 3: + offset = 0; + break; + default: + abort(); + } + if (offset) + tcg_gen_addi_i32(addr, addr, offset); + store_reg(s, rn, addr); + } else { + tcg_temp_free_i32(addr); + } + gen_rfe(s, tmp, tmp2); + return; + } else if ((insn & 0x0e000000) == 0x0a000000) { + /* branch link and change to thumb (blx ) */ + int32_t offset; + + val = (uint32_t) s->pc; + tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, val); + store_reg(s, 14, tmp); + /* Sign-extend the 24-bit offset */ + offset = (((int32_t) insn) << 8) >> 8; + /* offset * 4 + bit24 * 2 + (thumb bit) */ + val += (offset << 2) | ((insn >> 23) & 2) | 1; + /* pipeline offset */ + val += 4; + /* protected by ARCH(5); above, near the start of uncond block */ + gen_bx_im(s, val); + return; + } else if ((insn & 0x0e000f00) == 0x0c000100) { + if (arm_feature(env, ARM_FEATURE_IWMMXT)) { + /* iWMMXt register transfer. */ + if (env->cp15.c15_cpar & (1 << 1)) + if (!disas_iwmmxt_insn(env, s, insn)) + return; + } + } else if ((insn & 0x0fe00000) == 0x0c400000) { + /* Coprocessor double register transfer. */ + ARCH(5TE); + } else if ((insn & 0x0f000010) == 0x0e000010) { + /* Additional coprocessor register transfer. */ + } else if ((insn & 0x0ff10020) == 0x01000000) { + uint32_t mask; + uint32_t val; + /* cps (privileged) */ + if (IS_USER(s)) + return; + mask = val = 0; + if (insn & (1 << 19)) { + if (insn & (1 << 8)) + mask |= CPSR_A; + if (insn & (1 << 7)) + mask |= CPSR_I; + if (insn & (1 << 6)) + mask |= CPSR_F; + if (insn & (1 << 18)) + val |= mask; + } + if (insn & (1 << 17)) { + mask |= CPSR_M; + val |= (insn & 0x1f); + } + if (mask) { + gen_set_psr_im(s, mask, 0, val); + } + return; + } + goto illegal_op; + } + if (cond != 0xe) { + /* if not always execute, we generate a conditional jump to + next instruction */ + s->condlabel = gen_new_label(); + gen_test_cc(cond ^ 1, s->condlabel); + s->condjmp = 1; + SET_TB_TYPE(TB_COND_JMP); + } + if ((insn & 0x0f900000) == 0x03000000) { + if ((insn & (1 << 21)) == 0) { + ARCH(6T2); + rd = (insn >> 12) & 0xf; + val = ((insn >> 4) & 0xf000) | (insn & 0xfff); + if ((insn & (1 << 22)) == 0) { + /* MOVW */ + tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, val); + } else { + /* MOVT */ + tmp = load_reg(s, rd); + tcg_gen_ext16u_i32(tmp, tmp); + tcg_gen_ori_i32(tmp, tmp, val << 16); + } + store_reg(s, rd, tmp); + } else { + if (((insn >> 12) & 0xf) != 0xf) + goto illegal_op; + if (((insn >> 16) & 0xf) == 0) { + gen_nop_hint(s, insn & 0xff); + } else { + /* CPSR = immediate */ + val = insn & 0xff; + shift = ((insn >> 8) & 0xf) * 2; + if (shift) + val = (val >> shift) | (val << (32 - shift)); + i = ((insn & (1 << 22)) != 0); + if (gen_set_psr_im(s, msr_mask(env, s, (insn >> 16) & 0xf, i), i, val)) + goto illegal_op; + } + } + } else if ((insn & 0x0f900000) == 0x01000000 && (insn & 0x00000090) != 0x00000090) { + /* miscellaneous instructions */ + op1 = (insn >> 21) & 3; + sh = (insn >> 4) & 0xf; + rm = insn & 0xf; + switch (sh) { + case 0x0: /* move program status register */ + if (op1 & 1) { + /* PSR = reg */ + tmp = load_reg(s, rm); + i = ((op1 & 2) != 0); + if (gen_set_psr(s, msr_mask(env, s, (insn >> 16) & 0xf, i), i, tmp)) + goto illegal_op; + } else { + /* reg = PSR */ + rd = (insn >> 12) & 0xf; + if (op1 & 2) { + if (IS_USER(s)) + goto illegal_op; + tmp = load_cpu_field(spsr); + } else { + tmp = tcg_temp_new_i32(); + gen_helper_cpsr_read(tmp, cpu_env); + } + store_reg(s, rd, tmp); + } + break; + case 0x1: + if (op1 == 1) { + /* branch/exchange thumb (bx). */ + ARCH(4T); + tmp = load_reg(s, rm); + gen_bx(s, tmp); + } else if (op1 == 3) { + /* clz */ + ARCH(5); + rd = (insn >> 12) & 0xf; + tmp = load_reg(s, rm); + gen_helper_clz(tmp, tmp); + store_reg(s, rd, tmp); + } else { + goto illegal_op; + } + break; + case 0x2: + if (op1 == 1) { + ARCH(5J); /* bxj */ + /* Trivial implementation equivalent to bx. */ + tmp = load_reg(s, rm); + gen_bx(s, tmp); + } else { + goto illegal_op; + } + break; + case 0x3: + if (op1 != 1) + goto illegal_op; + + ARCH(5); + /* branch link/exchange thumb (blx) */ + tmp = load_reg(s, rm); + tmp2 = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp2, s->pc); + store_reg(s, 14, tmp2); + gen_bx(s, tmp); + break; + case 0x5: /* saturating add/subtract */ + ARCH(5TE); + rd = (insn >> 12) & 0xf; + rn = (insn >> 16) & 0xf; + tmp = load_reg(s, rm); + tmp2 = load_reg(s, rn); + if (op1 & 2) + gen_helper_double_saturate(tmp2, tmp2); + if (op1 & 1) + gen_helper_sub_saturate(tmp, tmp, tmp2); + else + gen_helper_add_saturate(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + store_reg(s, rd, tmp); + break; + case 7: + /* SMC instruction (op1 == 3) + and undefined instructions (op1 == 0 || op1 == 2) + will trap */ + if (op1 != 1) { + goto illegal_op; + } + /* bkpt */ + ARCH(5); + gen_exception_insn(s, 4, EXCP_BKPT); + break; + case 0x8: /* signed multiply */ + case 0xa: + case 0xc: + case 0xe: + ARCH(5TE); + rs = (insn >> 8) & 0xf; + rn = (insn >> 12) & 0xf; + rd = (insn >> 16) & 0xf; + if (op1 == 1) { + /* (32 * 16) >> 16 */ + tmp = load_reg(s, rm); + tmp2 = load_reg(s, rs); + if (sh & 4) + tcg_gen_sari_i32(tmp2, tmp2, 16); + else + gen_sxth(tmp2); + tmp64 = gen_muls_i64_i32(tmp, tmp2); + tcg_gen_shri_i64(tmp64, tmp64, 16); + tmp = tcg_temp_new_i32(); + tcg_gen_trunc_i64_tl(tmp, tmp64); + tcg_temp_free_i64(tmp64); + if ((sh & 2) == 0) { + tmp2 = load_reg(s, rn); + gen_helper_add_setq(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + } + store_reg(s, rd, tmp); + } else { + /* 16 * 16 */ + tmp = load_reg(s, rm); + tmp2 = load_reg(s, rs); + gen_mulxy(tmp, tmp2, sh & 2, sh & 4); + tcg_temp_free_i32(tmp2); + if (op1 == 2) { + tmp64 = tcg_temp_new_i64(); + tcg_gen_ext_i32_i64(tmp64, tmp); + tcg_temp_free_i32(tmp); + gen_addq(s, tmp64, rn, rd); + gen_storeq_reg(s, rn, rd, tmp64); + tcg_temp_free_i64(tmp64); + } else { + if (op1 == 0) { + tmp2 = load_reg(s, rn); + gen_helper_add_setq(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + } + store_reg(s, rd, tmp); + } + } + break; + default: + goto illegal_op; + } + } else if (((insn & 0x0e000000) == 0 && (insn & 0x00000090) != 0x90) || ((insn & 0x0e000000) == (1 << 25))) { + int set_cc, logic_cc, shiftop; + + op1 = (insn >> 21) & 0xf; + set_cc = (insn >> 20) & 1; + logic_cc = table_logic_cc[op1] & set_cc; + + /* data processing instruction */ + if (insn & (1 << 25)) { + /* immediate operand */ + val = insn & 0xff; + shift = ((insn >> 8) & 0xf) * 2; + if (shift) { + val = (val >> shift) | (val << (32 - shift)); + } + tmp2 = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp2, val); + if (logic_cc && shift) { + gen_set_CF_bit31(tmp2); + } + } else { + /* register */ + rm = (insn) &0xf; + tmp2 = load_reg(s, rm); + shiftop = (insn >> 5) & 3; + if (!(insn & (1 << 4))) { + shift = (insn >> 7) & 0x1f; + gen_arm_shift_im(tmp2, shiftop, shift, logic_cc); + } else { + rs = (insn >> 8) & 0xf; + tmp = load_reg(s, rs); + gen_arm_shift_reg(tmp2, shiftop, tmp, logic_cc); + } + } + if (op1 != 0x0f && op1 != 0x0d) { + rn = (insn >> 16) & 0xf; + tmp = load_reg(s, rn); + } else { + } + rd = (insn >> 12) & 0xf; + switch (op1) { + case 0x00: + tcg_gen_and_i32(tmp, tmp, tmp2); + if (logic_cc) { + gen_logic_CC(tmp); + } + store_reg_bx(env, s, rd, tmp); + break; + case 0x01: + tcg_gen_xor_i32(tmp, tmp, tmp2); + if (logic_cc) { + gen_logic_CC(tmp); + } + store_reg_bx(env, s, rd, tmp); + break; + case 0x02: + if (set_cc && rd == 15) { + /* SUBS r15, ... is used for exception return. */ + if (IS_USER(s)) { + goto illegal_op; + } + gen_helper_sub_cc(tmp, cpu_env, tmp, tmp2); + gen_exception_return(s, tmp); + } else { + if (set_cc) { + gen_helper_sub_cc(tmp, cpu_env, tmp, tmp2); + } else { + tcg_gen_sub_i32(tmp, tmp, tmp2); + } + store_reg_bx(env, s, rd, tmp); + } + break; + case 0x03: + if (set_cc) { + gen_helper_sub_cc(tmp, cpu_env, tmp2, tmp); + } else { + tcg_gen_sub_i32(tmp, tmp2, tmp); + } + store_reg_bx(env, s, rd, tmp); + break; + case 0x04: + if (set_cc) { + gen_helper_add_cc(tmp, cpu_env, tmp, tmp2); + } else { + tcg_gen_add_i32(tmp, tmp, tmp2); + } + store_reg_bx(env, s, rd, tmp); + break; + case 0x05: + if (set_cc) { + gen_helper_adc_cc(tmp, cpu_env, tmp, tmp2); + } else { + gen_add_carry(tmp, tmp, tmp2); + } + store_reg_bx(env, s, rd, tmp); + break; + case 0x06: + if (set_cc) { + gen_helper_sbc_cc(tmp, cpu_env, tmp, tmp2); + } else { + gen_sub_carry(tmp, tmp, tmp2); + } + store_reg_bx(env, s, rd, tmp); + break; + case 0x07: + if (set_cc) { + gen_helper_sbc_cc(tmp, cpu_env, tmp2, tmp); + } else { + gen_sub_carry(tmp, tmp2, tmp); + } + store_reg_bx(env, s, rd, tmp); + break; + case 0x08: + if (set_cc) { + tcg_gen_and_i32(tmp, tmp, tmp2); + gen_logic_CC(tmp); + } + tcg_temp_free_i32(tmp); + break; + case 0x09: + if (set_cc) { + tcg_gen_xor_i32(tmp, tmp, tmp2); + gen_logic_CC(tmp); + } + tcg_temp_free_i32(tmp); + break; + case 0x0a: + if (set_cc) { + gen_helper_sub_cc(tmp, cpu_env, tmp, tmp2); + } + tcg_temp_free_i32(tmp); + break; + case 0x0b: + if (set_cc) { + gen_helper_add_cc(tmp, cpu_env, tmp, tmp2); + } + tcg_temp_free_i32(tmp); + break; + case 0x0c: + tcg_gen_or_i32(tmp, tmp, tmp2); + if (logic_cc) { + gen_logic_CC(tmp); + } + store_reg_bx(env, s, rd, tmp); + break; + case 0x0d: + if (logic_cc && rd == 15) { + /* MOVS r15, ... is used for exception return. */ + if (IS_USER(s)) { + goto illegal_op; + } + gen_exception_return(s, tmp2); + } else { + if (logic_cc) { + gen_logic_CC(tmp2); + } + store_reg_bx(env, s, rd, tmp2); + } + break; + case 0x0e: + tcg_gen_andc_i32(tmp, tmp, tmp2); + if (logic_cc) { + gen_logic_CC(tmp); + } + store_reg_bx(env, s, rd, tmp); + break; + default: + case 0x0f: + tcg_gen_not_i32(tmp2, tmp2); + if (logic_cc) { + gen_logic_CC(tmp2); + } + store_reg_bx(env, s, rd, tmp2); + break; + } + if (op1 != 0x0f && op1 != 0x0d) { + tcg_temp_free_i32(tmp2); + } + } else { + /* other instructions */ + op1 = (insn >> 24) & 0xf; + switch (op1) { + case 0x0: + case 0x1: + /* multiplies, extra load/stores */ + sh = (insn >> 5) & 3; + if (sh == 0) { + if (op1 == 0x0) { + rd = (insn >> 16) & 0xf; + rn = (insn >> 12) & 0xf; + rs = (insn >> 8) & 0xf; + rm = (insn) &0xf; + op1 = (insn >> 20) & 0xf; + switch (op1) { + case 0: + case 1: + case 2: + case 3: + case 6: + /* 32 bit mul */ + tmp = load_reg(s, rs); + tmp2 = load_reg(s, rm); + tcg_gen_mul_i32(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + if (insn & (1 << 22)) { + /* Subtract (mls) */ + ARCH(6T2); + tmp2 = load_reg(s, rn); + tcg_gen_sub_i32(tmp, tmp2, tmp); + tcg_temp_free_i32(tmp2); + } else if (insn & (1 << 21)) { + /* Add */ + tmp2 = load_reg(s, rn); + tcg_gen_add_i32(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + } + if (insn & (1 << 20)) + gen_logic_CC(tmp); + store_reg(s, rd, tmp); + break; + case 4: + /* 64 bit mul double accumulate (UMAAL) */ + ARCH(6); + tmp = load_reg(s, rs); + tmp2 = load_reg(s, rm); + tmp64 = gen_mulu_i64_i32(tmp, tmp2); + gen_addq_lo(s, tmp64, rn); + gen_addq_lo(s, tmp64, rd); + gen_storeq_reg(s, rn, rd, tmp64); + tcg_temp_free_i64(tmp64); + break; + case 8: + case 9: + case 10: + case 11: + case 12: + case 13: + case 14: + case 15: + /* 64 bit mul: UMULL, UMLAL, SMULL, SMLAL. */ + tmp = load_reg(s, rs); + tmp2 = load_reg(s, rm); + if (insn & (1 << 22)) { + tmp64 = gen_muls_i64_i32(tmp, tmp2); + } else { + tmp64 = gen_mulu_i64_i32(tmp, tmp2); + } + if (insn & (1 << 21)) { /* mult accumulate */ + gen_addq(s, tmp64, rn, rd); + } + if (insn & (1 << 20)) { + gen_logicq_cc(tmp64); + } + gen_storeq_reg(s, rn, rd, tmp64); + tcg_temp_free_i64(tmp64); + break; + default: + goto illegal_op; + } + } else { + rn = (insn >> 16) & 0xf; + rd = (insn >> 12) & 0xf; + if (insn & (1 << 23)) { + /* load/store exclusive */ + op1 = (insn >> 21) & 0x3; + if (op1) + ARCH(6K); + else + ARCH(6); + addr = tcg_temp_local_new_i32(); + load_reg_var(s, addr, rn); + if (insn & (1 << 20)) { + switch (op1) { + case 0: /* ldrex */ + gen_load_exclusive(s, rd, 15, addr, 2); + break; + case 1: /* ldrexd */ + gen_load_exclusive(s, rd, rd + 1, addr, 3); + break; + case 2: /* ldrexb */ + gen_load_exclusive(s, rd, 15, addr, 0); + break; + case 3: /* ldrexh */ + gen_load_exclusive(s, rd, 15, addr, 1); + break; + default: + abort(); + } + } else { + rm = insn & 0xf; + switch (op1) { + case 0: /* strex */ + gen_store_exclusive(s, rd, rm, 15, addr, 2); + break; + case 1: /* strexd */ + gen_store_exclusive(s, rd, rm, rm + 1, addr, 3); + break; + case 2: /* strexb */ + gen_store_exclusive(s, rd, rm, 15, addr, 0); + break; + case 3: /* strexh */ + gen_store_exclusive(s, rd, rm, 15, addr, 1); + break; + default: + abort(); + } + } + tcg_temp_free(addr); + } else { + /* SWP instruction */ + rm = (insn) &0xf; + + /* ??? This is not really atomic. However we know + we never have multiple CPUs running in parallel, + so it is good enough. */ + addr = load_reg(s, rn); + tmp = load_reg(s, rm); + if (insn & (1 << 22)) { + tmp2 = gen_ld8u(addr, IS_USER(s)); + gen_st8(tmp, addr, IS_USER(s)); + } else { + tmp2 = gen_ld32(addr, IS_USER(s)); + gen_st32(tmp, addr, IS_USER(s)); + } + tcg_temp_free_i32(addr); + store_reg(s, rd, tmp2); + } + } + } else { + int address_offset; + int load; + /* Misc load/store */ + rn = (insn >> 16) & 0xf; + rd = (insn >> 12) & 0xf; + addr = load_reg(s, rn); + if (insn & (1 << 24)) + gen_add_datah_offset(s, insn, 0, addr); + address_offset = 0; + if (insn & (1 << 20)) { + /* load */ + switch (sh) { + case 1: + tmp = gen_ld16u(addr, IS_USER(s)); + break; + case 2: + tmp = gen_ld8s(addr, IS_USER(s)); + break; + default: + case 3: + tmp = gen_ld16s(addr, IS_USER(s)); + break; + } + load = 1; + } else if (sh & 2) { + ARCH(5TE); + /* doubleword */ + if (sh & 1) { + /* store */ + tmp = load_reg(s, rd); + gen_st32(tmp, addr, IS_USER(s)); + tcg_gen_addi_i32(addr, addr, 4); + tmp = load_reg(s, rd + 1); + gen_st32(tmp, addr, IS_USER(s)); + load = 0; + } else { + /* load */ + tmp = gen_ld32(addr, IS_USER(s)); + store_reg(s, rd, tmp); + tcg_gen_addi_i32(addr, addr, 4); + tmp = gen_ld32(addr, IS_USER(s)); + rd++; + load = 1; + } + address_offset = -4; + } else { + /* store */ + tmp = load_reg(s, rd); + gen_st16(tmp, addr, IS_USER(s)); + load = 0; + } + /* Perform base writeback before the loaded value to + ensure correct behavior with overlapping index registers. + ldrd with base writeback is is undefined if the + destination and index registers overlap. */ + if (!(insn & (1 << 24))) { + gen_add_datah_offset(s, insn, address_offset, addr); + store_reg(s, rn, addr); + } else if (insn & (1 << 21)) { + if (address_offset) + tcg_gen_addi_i32(addr, addr, address_offset); + store_reg(s, rn, addr); + } else { + tcg_temp_free_i32(addr); + } + if (load) { + /* Complete the load. */ + store_reg(s, rd, tmp); + } + } + break; + case 0x4: + case 0x5: + goto do_ldst; + case 0x6: + case 0x7: + if (insn & (1 << 4)) { + ARCH(6); + /* Armv6 Media instructions. */ + rm = insn & 0xf; + rn = (insn >> 16) & 0xf; + rd = (insn >> 12) & 0xf; + rs = (insn >> 8) & 0xf; + switch ((insn >> 23) & 3) { + case 0: /* Parallel add/subtract. */ + op1 = (insn >> 20) & 7; + tmp = load_reg(s, rn); + tmp2 = load_reg(s, rm); + sh = (insn >> 5) & 7; + if ((op1 & 3) == 0 || sh == 5 || sh == 6) + goto illegal_op; + gen_arm_parallel_addsub(op1, sh, tmp, tmp2); + tcg_temp_free_i32(tmp2); + store_reg(s, rd, tmp); + break; + case 1: + if ((insn & 0x00700020) == 0) { + /* Halfword pack. */ + tmp = load_reg(s, rn); + tmp2 = load_reg(s, rm); + shift = (insn >> 7) & 0x1f; + if (insn & (1 << 6)) { + /* pkhtb */ + if (shift == 0) + shift = 31; + tcg_gen_sari_i32(tmp2, tmp2, shift); + tcg_gen_andi_i32(tmp, tmp, 0xffff0000); + tcg_gen_ext16u_i32(tmp2, tmp2); + } else { + /* pkhbt */ + if (shift) + tcg_gen_shli_i32(tmp2, tmp2, shift); + tcg_gen_ext16u_i32(tmp, tmp); + tcg_gen_andi_i32(tmp2, tmp2, 0xffff0000); + } + tcg_gen_or_i32(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + store_reg(s, rd, tmp); + } else if ((insn & 0x00200020) == 0x00200000) { + /* [us]sat */ + tmp = load_reg(s, rm); + shift = (insn >> 7) & 0x1f; + if (insn & (1 << 6)) { + if (shift == 0) + shift = 31; + tcg_gen_sari_i32(tmp, tmp, shift); + } else { + tcg_gen_shli_i32(tmp, tmp, shift); + } + sh = (insn >> 16) & 0x1f; + tmp2 = tcg_const_i32(sh); + if (insn & (1 << 22)) + gen_helper_usat(tmp, tmp, tmp2); + else + gen_helper_ssat(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + store_reg(s, rd, tmp); + } else if ((insn & 0x00300fe0) == 0x00200f20) { + /* [us]sat16 */ + tmp = load_reg(s, rm); + sh = (insn >> 16) & 0x1f; + tmp2 = tcg_const_i32(sh); + if (insn & (1 << 22)) + gen_helper_usat16(tmp, tmp, tmp2); + else + gen_helper_ssat16(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + store_reg(s, rd, tmp); + } else if ((insn & 0x00700fe0) == 0x00000fa0) { + /* Select bytes. */ + tmp = load_reg(s, rn); + tmp2 = load_reg(s, rm); + tmp3 = tcg_temp_new_i32(); + tcg_gen_ld_i32(tmp3, cpu_env, offsetof(CPUARMState, GE)); + gen_helper_sel_flags(tmp, tmp3, tmp, tmp2); + tcg_temp_free_i32(tmp3); + tcg_temp_free_i32(tmp2); + store_reg(s, rd, tmp); + } else if ((insn & 0x000003e0) == 0x00000060) { + tmp = load_reg(s, rm); + shift = (insn >> 10) & 3; + /* ??? In many cases it's not necessary to do a + rotate, a shift is sufficient. */ + if (shift != 0) + tcg_gen_rotri_i32(tmp, tmp, shift * 8); + op1 = (insn >> 20) & 7; + switch (op1) { + case 0: + gen_sxtb16(tmp); + break; + case 2: + gen_sxtb(tmp); + break; + case 3: + gen_sxth(tmp); + break; + case 4: + gen_uxtb16(tmp); + break; + case 6: + gen_uxtb(tmp); + break; + case 7: + gen_uxth(tmp); + break; + default: + goto illegal_op; + } + if (rn != 15) { + tmp2 = load_reg(s, rn); + if ((op1 & 3) == 0) { + gen_add16(tmp, tmp2); + } else { + tcg_gen_add_i32(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + } + } + store_reg(s, rd, tmp); + } else if ((insn & 0x003f0f60) == 0x003f0f20) { + /* rev */ + tmp = load_reg(s, rm); + if (insn & (1 << 22)) { + if (insn & (1 << 7)) { + gen_revsh(tmp); + } else { + ARCH(6T2); + gen_helper_rbit(tmp, tmp); + } + } else { + if (insn & (1 << 7)) + gen_rev16(tmp); + else + tcg_gen_bswap32_i32(tmp, tmp); + } + store_reg(s, rd, tmp); + } else { + goto illegal_op; + } + break; + case 2: /* Multiplies (Type 3). */ + switch ((insn >> 20) & 0x7) { + case 5: + if (((insn >> 6) ^ (insn >> 7)) & 1) { + /* op2 not 00x or 11x : UNDEF */ + goto illegal_op; + } + /* Signed multiply most significant [accumulate]. + (SMMUL, SMMLA, SMMLS) */ + tmp = load_reg(s, rm); + tmp2 = load_reg(s, rs); + tmp64 = gen_muls_i64_i32(tmp, tmp2); + + if (rd != 15) { + tmp = load_reg(s, rd); + if (insn & (1 << 6)) { + tmp64 = gen_subq_msw(tmp64, tmp); + } else { + tmp64 = gen_addq_msw(tmp64, tmp); + } + } + if (insn & (1 << 5)) { + tcg_gen_addi_i64(tmp64, tmp64, 0x80000000u); + } + tcg_gen_shri_i64(tmp64, tmp64, 32); + tmp = tcg_temp_new_i32(); + tcg_gen_trunc_i64_tl(tmp, tmp64); + tcg_temp_free_i64(tmp64); + store_reg(s, rn, tmp); + break; + case 0: + case 4: + /* SMLAD, SMUAD, SMLSD, SMUSD, SMLALD, SMLSLD */ + if (insn & (1 << 7)) { + goto illegal_op; + } + tmp = load_reg(s, rm); + tmp2 = load_reg(s, rs); + if (insn & (1 << 5)) + gen_swap_half(tmp2); + gen_smul_dual(tmp, tmp2); + if (insn & (1 << 6)) { + /* This subtraction cannot overflow. */ + tcg_gen_sub_i32(tmp, tmp, tmp2); + } else { + /* This addition cannot overflow 32 bits; + * however it may overflow considered as a signed + * operation, in which case we must set the Q flag. + */ + gen_helper_add_setq(tmp, tmp, tmp2); + } + tcg_temp_free_i32(tmp2); + if (insn & (1 << 22)) { + /* smlald, smlsld */ + tmp64 = tcg_temp_new_i64(); + tcg_gen_ext_i32_i64(tmp64, tmp); + tcg_temp_free_i32(tmp); + gen_addq(s, tmp64, rd, rn); + gen_storeq_reg(s, rd, rn, tmp64); + tcg_temp_free_i64(tmp64); + } else { + /* smuad, smusd, smlad, smlsd */ + if (rd != 15) { + tmp2 = load_reg(s, rd); + gen_helper_add_setq(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + } + store_reg(s, rn, tmp); + } + break; + case 1: + case 3: + /* SDIV, UDIV */ + if (!arm_feature(env, ARM_FEATURE_ARM_DIV)) { + goto illegal_op; + } + if (((insn >> 5) & 7) || (rd != 15)) { + goto illegal_op; + } + tmp = load_reg(s, rm); + tmp2 = load_reg(s, rs); + if (insn & (1 << 21)) { + gen_helper_udiv(tmp, tmp, tmp2); + } else { + gen_helper_sdiv(tmp, tmp, tmp2); + } + tcg_temp_free_i32(tmp2); + store_reg(s, rn, tmp); + break; + default: + goto illegal_op; + } + break; + case 3: + op1 = ((insn >> 17) & 0x38) | ((insn >> 5) & 7); + switch (op1) { + case 0: /* Unsigned sum of absolute differences. */ + ARCH(6); + tmp = load_reg(s, rm); + tmp2 = load_reg(s, rs); + gen_helper_usad8(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + if (rd != 15) { + tmp2 = load_reg(s, rd); + tcg_gen_add_i32(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + } + store_reg(s, rn, tmp); + break; + case 0x20: + case 0x24: + case 0x28: + case 0x2c: + /* Bitfield insert/clear. */ + ARCH(6T2); + shift = (insn >> 7) & 0x1f; + i = (insn >> 16) & 0x1f; + i = i + 1 - shift; + if (rm == 15) { + tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, 0); + } else { + tmp = load_reg(s, rm); + } + if (i != 32) { + tmp2 = load_reg(s, rd); + gen_bfi(tmp, tmp2, tmp, shift, (1u << i) - 1); + tcg_temp_free_i32(tmp2); + } + store_reg(s, rd, tmp); + break; + case 0x12: + case 0x16: + case 0x1a: + case 0x1e: /* sbfx */ + case 0x32: + case 0x36: + case 0x3a: + case 0x3e: /* ubfx */ + ARCH(6T2); + tmp = load_reg(s, rm); + shift = (insn >> 7) & 0x1f; + i = ((insn >> 16) & 0x1f) + 1; + if (shift + i > 32) + goto illegal_op; + if (i < 32) { + if (op1 & 0x20) { + gen_ubfx(tmp, shift, (1u << i) - 1); + } else { + gen_sbfx(tmp, shift, i); + } + } + store_reg(s, rd, tmp); + break; + default: + goto illegal_op; + } + break; + } + break; + } + do_ldst: + /* Check for undefined extension instructions + * per the ARM Bible IE: + * xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx + */ + sh = (0xf << 20) | (0xf << 4); + if (op1 == 0x7 && ((insn & sh) == sh)) { + goto illegal_op; + } + /* load/store byte/word */ + rn = (insn >> 16) & 0xf; + rd = (insn >> 12) & 0xf; + tmp2 = load_reg(s, rn); + i = (IS_USER(s) || (insn & 0x01200000) == 0x00200000); + if (insn & (1 << 24)) + gen_add_data_offset(s, insn, tmp2); + if (insn & (1 << 20)) { + /* load */ + if (insn & (1 << 22)) { + tmp = gen_ld8u(tmp2, i); + } else { + tmp = gen_ld32(tmp2, i); + } + } else { + /* store */ + tmp = load_reg(s, rd); + if (insn & (1 << 22)) + gen_st8(tmp, tmp2, i); + else + gen_st32(tmp, tmp2, i); + } + if (!(insn & (1 << 24))) { + gen_add_data_offset(s, insn, tmp2); + store_reg(s, rn, tmp2); + } else if (insn & (1 << 21)) { + store_reg(s, rn, tmp2); + } else { + tcg_temp_free_i32(tmp2); + } + if (insn & (1 << 20)) { + /* Complete the load. */ + store_reg_from_load(env, s, rd, tmp); + } + break; + case 0x08: + case 0x09: { + int j, n, user, loaded_base; + TCGv loaded_var; + /* load/store multiple words */ + /* XXX: store correct base if write back */ + user = 0; + if (insn & (1 << 22)) { + if (IS_USER(s)) + goto illegal_op; /* only usable in supervisor mode */ + + if ((insn & (1 << 15)) == 0) + user = 1; + } + rn = (insn >> 16) & 0xf; + addr = load_reg(s, rn); + + /* compute total size */ + loaded_base = 0; + n = 0; + for (i = 0; i < 16; i++) { + if (insn & (1 << i)) + n++; + } + /* XXX: test invalid n == 0 case ? */ + if (insn & (1 << 23)) { + if (insn & (1 << 24)) { + /* pre increment */ + tcg_gen_addi_i32(addr, addr, 4); + } else { + /* post increment */ + } + } else { + if (insn & (1 << 24)) { + /* pre decrement */ + tcg_gen_addi_i32(addr, addr, -(n * 4)); + } else { + /* post decrement */ + if (n != 1) + tcg_gen_addi_i32(addr, addr, -((n - 1) * 4)); + } + } + j = 0; + for (i = 0; i < 16; i++) { + if (insn & (1 << i)) { + if (insn & (1 << 20)) { + /* load */ + tmp = gen_ld32(addr, IS_USER(s)); + if (user) { + tmp2 = tcg_const_i32(i); + gen_helper_set_user_reg(cpu_env, tmp2, tmp); + tcg_temp_free_i32(tmp2); + tcg_temp_free_i32(tmp); + } else if (i == rn) { + loaded_var = tmp; + loaded_base = 1; + } else { + store_reg_from_load(env, s, i, tmp); + } + } else { + /* store */ + if (i == 15) { + /* special case: r15 = PC + 8 */ + val = (long) s->pc + 4; + tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, val); + } else if (user) { + tmp = tcg_temp_new_i32(); + tmp2 = tcg_const_i32(i); + gen_helper_get_user_reg(tmp, cpu_env, tmp2); + tcg_temp_free_i32(tmp2); + } else { + tmp = load_reg(s, i); + } + gen_st32(tmp, addr, IS_USER(s)); + } + j++; + /* no need to add after the last transfer */ + if (j != n) + tcg_gen_addi_i32(addr, addr, 4); + } + } + if (insn & (1 << 21)) { + /* write back */ + if (insn & (1 << 23)) { + if (insn & (1 << 24)) { + /* pre increment */ + } else { + /* post increment */ + tcg_gen_addi_i32(addr, addr, 4); + } + } else { + if (insn & (1 << 24)) { + /* pre decrement */ + if (n != 1) + tcg_gen_addi_i32(addr, addr, -((n - 1) * 4)); + } else { + /* post decrement */ + tcg_gen_addi_i32(addr, addr, -(n * 4)); + } + } + store_reg(s, rn, addr); + } else { + tcg_temp_free_i32(addr); + } + if (loaded_base) { + store_reg(s, rn, loaded_var); + } + if ((insn & (1 << 22)) && !user) { + /* Restore CPSR from SPSR. */ + tmp = load_cpu_field(spsr); + gen_set_cpsr(tmp, 0xffffffff); + tcg_temp_free_i32(tmp); + s->is_jmp = DISAS_UPDATE; + } + } break; + case 0xa: + case 0xb: { + int32_t offset; + + /* branch (and link) */ + val = (int32_t) s->pc; + if (insn & (1 << 24)) { + tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, val); + store_reg(s, 14, tmp); + } + offset = (((int32_t) insn << 8) >> 8); + val += (offset << 2) + 4; + SET_TB_TYPE(TB_JMP); + gen_jmp(s, val); + } break; + case 0xc: + case 0xd: + case 0xe: + /* Coprocessor. */ + if (disas_coproc_insn(env, s, insn)) + goto illegal_op; + break; + case 0xf: + /* swi */ + gen_set_pc_im(s->pc); + s->is_jmp = DISAS_SWI; + break; + default: + illegal_op: + gen_exception_insn(s, 4, EXCP_UDEF); + break; + } + } +} + +/* Return true if this is a Thumb-2 logical op. */ +static int thumb2_logic_op(int op) { + return (op < 8); +} + +/* Generate code for a Thumb-2 data processing operation. If CONDS is nonzero + then set condition code flags based on the result of the operation. + If SHIFTER_OUT is nonzero then set the carry flag for logical operations + to the high bit of T1. + Returns zero if the opcode is valid. */ + +static int gen_thumb2_data_op(DisasContext *s, int op, int conds, uint32_t shifter_out, TCGv t0, TCGv t1) { + int logic_cc; + + logic_cc = 0; + switch (op) { + case 0: /* and */ + tcg_gen_and_i32(t0, t0, t1); + logic_cc = conds; + break; + case 1: /* bic */ + tcg_gen_andc_i32(t0, t0, t1); + logic_cc = conds; + break; + case 2: /* orr */ + tcg_gen_or_i32(t0, t0, t1); + logic_cc = conds; + break; + case 3: /* orn */ + tcg_gen_orc_i32(t0, t0, t1); + logic_cc = conds; + break; + case 4: /* eor */ + tcg_gen_xor_i32(t0, t0, t1); + logic_cc = conds; + break; + case 8: /* add */ + if (conds) + gen_helper_add_cc(t0, cpu_env, t0, t1); + else + tcg_gen_add_i32(t0, t0, t1); + break; + case 10: /* adc */ + if (conds) + gen_helper_adc_cc(t0, cpu_env, t0, t1); + else + gen_adc(t0, t1); + break; + case 11: /* sbc */ + if (conds) + gen_helper_sbc_cc(t0, cpu_env, t0, t1); + else + gen_sub_carry(t0, t0, t1); + break; + case 13: /* sub */ + if (conds) + gen_helper_sub_cc(t0, cpu_env, t0, t1); + else + tcg_gen_sub_i32(t0, t0, t1); + break; + case 14: /* rsb */ + if (conds) + gen_helper_sub_cc(t0, cpu_env, t1, t0); + else + tcg_gen_sub_i32(t0, t1, t0); + break; + default: /* 5, 6, 7, 9, 12, 15. */ + return 1; + } + if (logic_cc) { + gen_logic_CC(t0); + if (shifter_out) + gen_set_CF_bit31(t1); + } + return 0; +} + +/* Translate a 32-bit thumb instruction. Returns nonzero if the instruction + is not legal. */ +static int disas_thumb2_insn(CPUARMState *env, DisasContext *s, uint16_t insn_hw1) { + uint32_t insn, imm, shift, offset; + uint32_t rd, rn, rm, rs; + TCGv tmp; + TCGv tmp2; + TCGv tmp3; + TCGv addr; + TCGv_i64 tmp64; + int op; + int shiftop; + int conds; + int logic_cc; + + if (!(arm_feature(env, ARM_FEATURE_THUMB2) || arm_feature(env, ARM_FEATURE_M))) { + /* Thumb-1 cores may need to treat bl and blx as a pair of + 16-bit instructions to get correct prefetch abort behavior. */ + insn = insn_hw1; + if ((insn & (1 << 12)) == 0) { + ARCH(5); + /* Second half of blx. */ + offset = ((insn & 0x7ff) << 1); + tmp = load_reg(s, 14); + tcg_gen_addi_i32(tmp, tmp, offset); + tcg_gen_andi_i32(tmp, tmp, 0xfffffffc); + + tmp2 = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp2, s->pc | 1); + store_reg(s, 14, tmp2); + gen_bx(s, tmp); + return 0; + } + if (insn & (1 << 11)) { + /* Second half of bl. */ + offset = ((insn & 0x7ff) << 1) | 1; + tmp = load_reg(s, 14); + tcg_gen_addi_i32(tmp, tmp, offset); + + tmp2 = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp2, s->pc | 1); + store_reg(s, 14, tmp2); + gen_bx(s, tmp); + return 0; + } + if ((s->pc & ~TARGET_PAGE_MASK) == 0) { + /* Instruction spans a page boundary. Implement it as two + 16-bit instructions in case the second half causes an + prefetch abort. */ + offset = ((int32_t) insn << 21) >> 9; + tcg_gen_movi_i32(cpu_R[14], s->pc + 2 + offset); + return 0; + } + /* Fall through to 32-bit decode. */ + } + + insn = arm_lduw_code(s->env, s->pc, s->bswap_code); + s->pc += 2; + insn |= (uint32_t) insn_hw1 << 16; + + if ((insn & 0xf800e800) != 0xf000e800) { + ARCH(6T2); + } + + rn = (insn >> 16) & 0xf; + rs = (insn >> 12) & 0xf; + rd = (insn >> 8) & 0xf; + rm = insn & 0xf; + switch ((insn >> 25) & 0xf) { + case 0: + case 1: + case 2: + case 3: + /* 16-bit instructions. Should never happen. */ + abort(); + case 4: + if (insn & (1 << 22)) { + /* Other load/store, table branch. */ + if (insn & 0x01200000) { + /* Load/store doubleword. */ + if (rn == 15) { + addr = tcg_temp_new_i32(); + tcg_gen_movi_i32(addr, s->pc & ~3); + } else { + addr = load_reg(s, rn); + } + offset = (insn & 0xff) * 4; + if ((insn & (1 << 23)) == 0) + offset = -offset; + if (insn & (1 << 24)) { + tcg_gen_addi_i32(addr, addr, offset); + offset = 0; + } + if (insn & (1 << 20)) { + /* ldrd */ + tmp = gen_ld32(addr, IS_USER(s)); + store_reg(s, rs, tmp); + tcg_gen_addi_i32(addr, addr, 4); + tmp = gen_ld32(addr, IS_USER(s)); + store_reg(s, rd, tmp); + } else { + /* strd */ + tmp = load_reg(s, rs); + gen_st32(tmp, addr, IS_USER(s)); + tcg_gen_addi_i32(addr, addr, 4); + tmp = load_reg(s, rd); + gen_st32(tmp, addr, IS_USER(s)); + } + if (insn & (1 << 21)) { + /* Base writeback. */ + if (rn == 15) + goto illegal_op; + tcg_gen_addi_i32(addr, addr, offset - 4); + store_reg(s, rn, addr); + } else { + tcg_temp_free_i32(addr); + } + } else if ((insn & (1 << 23)) == 0) { + /* Load/store exclusive word. */ + addr = tcg_temp_local_new(); + load_reg_var(s, addr, rn); + tcg_gen_addi_i32(addr, addr, (insn & 0xff) << 2); + if (insn & (1 << 20)) { + gen_load_exclusive(s, rs, 15, addr, 2); + } else { + gen_store_exclusive(s, rd, rs, 15, addr, 2); + } + tcg_temp_free(addr); + } else if ((insn & (1 << 6)) == 0) { + /* Table Branch. */ + if (rn == 15) { + addr = tcg_temp_new_i32(); + tcg_gen_movi_i32(addr, s->pc); + } else { + addr = load_reg(s, rn); + } + tmp = load_reg(s, rm); + tcg_gen_add_i32(addr, addr, tmp); + if (insn & (1 << 4)) { + /* tbh */ + tcg_gen_add_i32(addr, addr, tmp); + tcg_temp_free_i32(tmp); + tmp = gen_ld16u(addr, IS_USER(s)); + } else { /* tbb */ + tcg_temp_free_i32(tmp); + tmp = gen_ld8u(addr, IS_USER(s)); + } + tcg_temp_free_i32(addr); + tcg_gen_shli_i32(tmp, tmp, 1); + tcg_gen_addi_i32(tmp, tmp, s->pc); + store_reg(s, 15, tmp); + } else { + /* Load/store exclusive byte/halfword/doubleword. */ + ARCH(7); + op = (insn >> 4) & 0x3; + if (op == 2) { + goto illegal_op; + } + addr = tcg_temp_local_new(); + load_reg_var(s, addr, rn); + if (insn & (1 << 20)) { + gen_load_exclusive(s, rs, rd, addr, op); + } else { + gen_store_exclusive(s, rm, rs, rd, addr, op); + } + tcg_temp_free(addr); + } + } else { + /* Load/store multiple, RFE, SRS. */ + if (((insn >> 23) & 1) == ((insn >> 24) & 1)) { + /* Not available in user mode. */ + if (IS_USER(s)) + goto illegal_op; + if (insn & (1 << 20)) { + /* rfe */ + addr = load_reg(s, rn); + if ((insn & (1 << 24)) == 0) + tcg_gen_addi_i32(addr, addr, -8); + /* Load PC into tmp and CPSR into tmp2. */ + tmp = gen_ld32(addr, 0); + tcg_gen_addi_i32(addr, addr, 4); + tmp2 = gen_ld32(addr, 0); + if (insn & (1 << 21)) { + /* Base writeback. */ + if (insn & (1 << 24)) { + tcg_gen_addi_i32(addr, addr, 4); + } else { + tcg_gen_addi_i32(addr, addr, -4); + } + store_reg(s, rn, addr); + } else { + tcg_temp_free_i32(addr); + } + gen_rfe(s, tmp, tmp2); + } else { + /* srs */ + op = (insn & 0x1f); + addr = tcg_temp_new_i32(); + tmp = tcg_const_i32(op); + gen_helper_get_r13_banked(addr, cpu_env, tmp); + tcg_temp_free_i32(tmp); + if ((insn & (1 << 24)) == 0) { + tcg_gen_addi_i32(addr, addr, -8); + } + tmp = load_reg(s, 14); + gen_st32(tmp, addr, 0); + tcg_gen_addi_i32(addr, addr, 4); + tmp = tcg_temp_new_i32(); + gen_helper_cpsr_read(tmp, cpu_env); + gen_st32(tmp, addr, 0); + if (insn & (1 << 21)) { + if ((insn & (1 << 24)) == 0) { + tcg_gen_addi_i32(addr, addr, -4); + } else { + tcg_gen_addi_i32(addr, addr, 4); + } + tmp = tcg_const_i32(op); + gen_helper_set_r13_banked(cpu_env, tmp, addr); + tcg_temp_free_i32(tmp); + } else { + tcg_temp_free_i32(addr); + } + } + } else { + int i, loaded_base = 0; + TCGv loaded_var; + /* Load/store multiple. */ + addr = load_reg(s, rn); + offset = 0; + for (i = 0; i < 16; i++) { + if (insn & (1 << i)) + offset += 4; + } + if (insn & (1 << 24)) { + tcg_gen_addi_i32(addr, addr, -offset); + } + + for (i = 0; i < 16; i++) { + if ((insn & (1 << i)) == 0) + continue; + if (insn & (1 << 20)) { + /* Load. */ + tmp = gen_ld32(addr, IS_USER(s)); + if (i == 15) { + SET_TB_TYPE(TB_RET); + gen_bx(s, tmp); + if (IS_M(env)) { + s->is_jmp = DISAS_BX_EXCRET; + } + } else if (i == rn) { + loaded_var = tmp; + loaded_base = 1; + } else { + store_reg(s, i, tmp); + } + } else { + /* Store. */ + tmp = load_reg(s, i); + gen_st32(tmp, addr, IS_USER(s)); + } + tcg_gen_addi_i32(addr, addr, 4); + } + if (loaded_base) { + store_reg(s, rn, loaded_var); + } + if (insn & (1 << 21)) { + /* Base register writeback. */ + if (insn & (1 << 24)) { + tcg_gen_addi_i32(addr, addr, -offset); + } + /* Fault if writeback register is in register list. */ + if (insn & (1 << rn)) + goto illegal_op; + store_reg(s, rn, addr); + } else { + tcg_temp_free_i32(addr); + } + } + } + break; + case 5: + + op = (insn >> 21) & 0xf; + if (op == 6) { + /* Halfword pack. */ + tmp = load_reg(s, rn); + tmp2 = load_reg(s, rm); + shift = ((insn >> 10) & 0x1c) | ((insn >> 6) & 0x3); + if (insn & (1 << 5)) { + /* pkhtb */ + if (shift == 0) + shift = 31; + tcg_gen_sari_i32(tmp2, tmp2, shift); + tcg_gen_andi_i32(tmp, tmp, 0xffff0000); + tcg_gen_ext16u_i32(tmp2, tmp2); + } else { + /* pkhbt */ + if (shift) + tcg_gen_shli_i32(tmp2, tmp2, shift); + tcg_gen_ext16u_i32(tmp, tmp); + tcg_gen_andi_i32(tmp2, tmp2, 0xffff0000); + } + tcg_gen_or_i32(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + store_reg(s, rd, tmp); + } else { + /* Data processing register constant shift. */ + if (rn == 15) { + tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, 0); + } else { + tmp = load_reg(s, rn); + } + tmp2 = load_reg(s, rm); + + shiftop = (insn >> 4) & 3; + shift = ((insn >> 6) & 3) | ((insn >> 10) & 0x1c); + conds = (insn & (1 << 20)) != 0; + logic_cc = (conds && thumb2_logic_op(op)); + gen_arm_shift_im(tmp2, shiftop, shift, logic_cc); + if (gen_thumb2_data_op(s, op, conds, 0, tmp, tmp2)) + goto illegal_op; + tcg_temp_free_i32(tmp2); + if (rd != 15) { + store_reg(s, rd, tmp); + } else { + tcg_temp_free_i32(tmp); + } + } + break; + case 13: /* Misc data processing. */ + op = ((insn >> 22) & 6) | ((insn >> 7) & 1); + if (op < 4 && (insn & 0xf000) != 0xf000) + goto illegal_op; + switch (op) { + case 0: /* Register controlled shift. */ + tmp = load_reg(s, rn); + tmp2 = load_reg(s, rm); + if ((insn & 0x70) != 0) + goto illegal_op; + op = (insn >> 21) & 3; + logic_cc = (insn & (1 << 20)) != 0; + gen_arm_shift_reg(tmp, op, tmp2, logic_cc); + if (logic_cc) + gen_logic_CC(tmp); + store_reg_bx(env, s, rd, tmp); + break; + case 1: /* Sign/zero extend. */ + tmp = load_reg(s, rm); + shift = (insn >> 4) & 3; + /* ??? In many cases it's not necessary to do a + rotate, a shift is sufficient. */ + if (shift != 0) + tcg_gen_rotri_i32(tmp, tmp, shift * 8); + op = (insn >> 20) & 7; + switch (op) { + case 0: + gen_sxth(tmp); + break; + case 1: + gen_uxth(tmp); + break; + case 2: + gen_sxtb16(tmp); + break; + case 3: + gen_uxtb16(tmp); + break; + case 4: + gen_sxtb(tmp); + break; + case 5: + gen_uxtb(tmp); + break; + default: + goto illegal_op; + } + if (rn != 15) { + tmp2 = load_reg(s, rn); + if ((op >> 1) == 1) { + gen_add16(tmp, tmp2); + } else { + tcg_gen_add_i32(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + } + } + store_reg(s, rd, tmp); + break; + case 2: /* SIMD add/subtract. */ + op = (insn >> 20) & 7; + shift = (insn >> 4) & 7; + if ((op & 3) == 3 || (shift & 3) == 3) + goto illegal_op; + tmp = load_reg(s, rn); + tmp2 = load_reg(s, rm); + gen_thumb2_parallel_addsub(op, shift, tmp, tmp2); + tcg_temp_free_i32(tmp2); + store_reg(s, rd, tmp); + break; + case 3: /* Other data processing. */ + op = ((insn >> 17) & 0x38) | ((insn >> 4) & 7); + if (op < 4) { + /* Saturating add/subtract. */ + tmp = load_reg(s, rn); + tmp2 = load_reg(s, rm); + if (op & 1) + gen_helper_double_saturate(tmp, tmp); + if (op & 2) + gen_helper_sub_saturate(tmp, tmp2, tmp); + else + gen_helper_add_saturate(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + } else { + tmp = load_reg(s, rn); + switch (op) { + case 0x0a: /* rbit */ + gen_helper_rbit(tmp, tmp); + break; + case 0x08: /* rev */ + tcg_gen_bswap32_i32(tmp, tmp); + break; + case 0x09: /* rev16 */ + gen_rev16(tmp); + break; + case 0x0b: /* revsh */ + gen_revsh(tmp); + break; + case 0x10: /* sel */ + tmp2 = load_reg(s, rm); + tmp3 = tcg_temp_new_i32(); + tcg_gen_ld_i32(tmp3, cpu_env, offsetof(CPUARMState, GE)); + gen_helper_sel_flags(tmp, tmp3, tmp, tmp2); + tcg_temp_free_i32(tmp3); + tcg_temp_free_i32(tmp2); + break; + case 0x18: /* clz */ + gen_helper_clz(tmp, tmp); + break; + default: + goto illegal_op; + } + } + store_reg(s, rd, tmp); + break; + case 4: + case 5: /* 32-bit multiply. Sum of absolute differences. */ + op = (insn >> 4) & 0xf; + tmp = load_reg(s, rn); + tmp2 = load_reg(s, rm); + switch ((insn >> 20) & 7) { + case 0: /* 32 x 32 -> 32 */ + tcg_gen_mul_i32(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + if (rs != 15) { + tmp2 = load_reg(s, rs); + if (op) + tcg_gen_sub_i32(tmp, tmp2, tmp); + else + tcg_gen_add_i32(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + } + break; + case 1: /* 16 x 16 -> 32 */ + gen_mulxy(tmp, tmp2, op & 2, op & 1); + tcg_temp_free_i32(tmp2); + if (rs != 15) { + tmp2 = load_reg(s, rs); + gen_helper_add_setq(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + } + break; + case 2: /* Dual multiply add. */ + case 4: /* Dual multiply subtract. */ + if (op) + gen_swap_half(tmp2); + gen_smul_dual(tmp, tmp2); + if (insn & (1 << 22)) { + /* This subtraction cannot overflow. */ + tcg_gen_sub_i32(tmp, tmp, tmp2); + } else { + /* This addition cannot overflow 32 bits; + * however it may overflow considered as a signed + * operation, in which case we must set the Q flag. + */ + gen_helper_add_setq(tmp, tmp, tmp2); + } + tcg_temp_free_i32(tmp2); + if (rs != 15) { + tmp2 = load_reg(s, rs); + gen_helper_add_setq(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + } + break; + case 3: /* 32 * 16 -> 32msb */ + if (op) + tcg_gen_sari_i32(tmp2, tmp2, 16); + else + gen_sxth(tmp2); + tmp64 = gen_muls_i64_i32(tmp, tmp2); + tcg_gen_shri_i64(tmp64, tmp64, 16); + tmp = tcg_temp_new_i32(); + tcg_gen_trunc_i64_tl(tmp, tmp64); + tcg_temp_free_i64(tmp64); + if (rs != 15) { + tmp2 = load_reg(s, rs); + gen_helper_add_setq(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + } + break; + case 5: + case 6: /* 32 * 32 -> 32msb (SMMUL, SMMLA, SMMLS) */ + tmp64 = gen_muls_i64_i32(tmp, tmp2); + if (rs != 15) { + tmp = load_reg(s, rs); + if (insn & (1 << 20)) { + tmp64 = gen_addq_msw(tmp64, tmp); + } else { + tmp64 = gen_subq_msw(tmp64, tmp); + } + } + if (insn & (1 << 4)) { + tcg_gen_addi_i64(tmp64, tmp64, 0x80000000u); + } + tcg_gen_shri_i64(tmp64, tmp64, 32); + tmp = tcg_temp_new_i32(); + tcg_gen_trunc_i64_tl(tmp, tmp64); + tcg_temp_free_i64(tmp64); + break; + case 7: /* Unsigned sum of absolute differences. */ + gen_helper_usad8(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + if (rs != 15) { + tmp2 = load_reg(s, rs); + tcg_gen_add_i32(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + } + break; + } + store_reg(s, rd, tmp); + break; + case 6: + case 7: /* 64-bit multiply, Divide. */ + op = ((insn >> 4) & 0xf) | ((insn >> 16) & 0x70); + tmp = load_reg(s, rn); + tmp2 = load_reg(s, rm); + if ((op & 0x50) == 0x10) { + /* sdiv, udiv */ + if (!arm_feature(env, ARM_FEATURE_THUMB_DIV)) { + goto illegal_op; + } + if (op & 0x20) + gen_helper_udiv(tmp, tmp, tmp2); + else + gen_helper_sdiv(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + store_reg(s, rd, tmp); + } else if ((op & 0xe) == 0xc) { + /* Dual multiply accumulate long. */ + if (op & 1) + gen_swap_half(tmp2); + gen_smul_dual(tmp, tmp2); + if (op & 0x10) { + tcg_gen_sub_i32(tmp, tmp, tmp2); + } else { + tcg_gen_add_i32(tmp, tmp, tmp2); + } + tcg_temp_free_i32(tmp2); + /* BUGFIX */ + tmp64 = tcg_temp_new_i64(); + tcg_gen_ext_i32_i64(tmp64, tmp); + tcg_temp_free_i32(tmp); + gen_addq(s, tmp64, rs, rd); + gen_storeq_reg(s, rs, rd, tmp64); + tcg_temp_free_i64(tmp64); + } else { + if (op & 0x20) { + /* Unsigned 64-bit multiply */ + tmp64 = gen_mulu_i64_i32(tmp, tmp2); + } else { + if (op & 8) { + /* smlalxy */ + gen_mulxy(tmp, tmp2, op & 2, op & 1); + tcg_temp_free_i32(tmp2); + tmp64 = tcg_temp_new_i64(); + tcg_gen_ext_i32_i64(tmp64, tmp); + tcg_temp_free_i32(tmp); + } else { + /* Signed 64-bit multiply */ + tmp64 = gen_muls_i64_i32(tmp, tmp2); + } + } + if (op & 4) { + /* umaal */ + gen_addq_lo(s, tmp64, rs); + gen_addq_lo(s, tmp64, rd); + } else if (op & 0x40) { + /* 64-bit accumulate. */ + gen_addq(s, tmp64, rs, rd); + } + gen_storeq_reg(s, rs, rd, tmp64); + tcg_temp_free_i64(tmp64); + } + break; + } + break; + case 6: + case 7: + case 14: + case 15: + /* Coprocessor. */ + if (((insn >> 24) & 3) == 3) { + /* Translate into the equivalent ARM encoding. */ + insn = (insn & 0xe2ffffff) | ((insn & (1 << 28)) >> 4) | (1 << 28); + if (disas_neon_data_insn(env, s, insn)) + goto illegal_op; + } else { + if (insn & (1 << 28)) + goto illegal_op; + if (disas_coproc_insn(env, s, insn)) + goto illegal_op; + } + break; + case 8: + case 9: + case 10: + case 11: + if (insn & (1 << 15)) { + /* Branches, misc control. */ + if (insn & 0x5000) { + /* Unconditional branch. */ + /* signextend(hw1[10:0]) -> offset[:12]. */ + offset = ((int32_t) insn << 5) >> 9 & ~(int32_t) 0xfff; + /* hw1[10:0] -> offset[11:1]. */ + offset |= (insn & 0x7ff) << 1; + /* (~hw2[13, 11] ^ offset[24]) -> offset[23,22] + offset[24:22] already have the same value because of the + sign extension above. */ + offset ^= ((~insn) & (1 << 13)) << 10; + offset ^= ((~insn) & (1 << 11)) << 11; + + if (insn & (1 << 14)) { + /* Branch and link. */ + tcg_gen_movi_i32(cpu_R[14], s->pc | 1); + } + + offset += s->pc; + if (insn & (1 << 12)) { + /* b/bl */ + if (insn & (1 << 14)) { // exclude b.w caller + SET_TB_TYPE(TB_CALL); + } + gen_jmp(s, offset); + } else { + /* blx */ + offset &= ~(uint32_t) 2; + /* thumb2 bx, no need to check */ + gen_bx_im(s, offset); + } + } else if (((insn >> 23) & 7) == 7) { + /* Misc control */ + if (insn & (1 << 13)) + goto illegal_op; + + if (insn & (1 << 26)) { + /* Secure monitor call (v6Z) */ + goto illegal_op; /* not implemented. */ + } else { + op = (insn >> 20) & 7; + switch (op) { + case 0: /* msr cpsr. */ + if (IS_M(env)) { + tmp = load_reg(s, rn); + addr = tcg_const_i32(insn & 0xff); + gen_helper_v7m_msr(cpu_env, addr, tmp); + tcg_temp_free_i32(addr); + tcg_temp_free_i32(tmp); + gen_lookup_tb(s); + break; + } + /* fall through */ + case 1: /* msr spsr. */ + if (IS_M(env)) + goto illegal_op; + tmp = load_reg(s, rn); + if (gen_set_psr(s, msr_mask(env, s, (insn >> 8) & 0xf, op == 1), op == 1, tmp)) + goto illegal_op; + break; + case 2: /* cps, nop-hint. */ + if (((insn >> 8) & 7) == 0) { + gen_nop_hint(s, insn & 0xff); + } + /* Implemented as NOP in user mode. */ + if (IS_USER(s)) + break; + offset = 0; + imm = 0; + if (insn & (1 << 10)) { + if (insn & (1 << 7)) + offset |= CPSR_A; + if (insn & (1 << 6)) + offset |= CPSR_I; + if (insn & (1 << 5)) + offset |= CPSR_F; + if (insn & (1 << 9)) + imm = CPSR_A | CPSR_I | CPSR_F; + } + if (insn & (1 << 8)) { + offset |= 0x1f; + imm |= (insn & 0x1f); + } + if (offset) { + gen_set_psr_im(s, offset, 0, imm); + } + break; + case 3: /* Special control operations. */ + ARCH(7); + op = (insn >> 4) & 0xf; + switch (op) { + case 2: /* clrex */ + gen_clrex(s); + break; + case 4: /* dsb */ + case 5: /* dmb */ + case 6: /* isb */ + /* These execute as NOPs. */ + break; + default: + goto illegal_op; + } + break; + case 4: /* bxj */ + /* Trivial implementation equivalent to bx. */ + tmp = load_reg(s, rn); + gen_bx(s, tmp); + break; + case 5: /* Exception return. */ + if (IS_USER(s)) { + goto illegal_op; + } + if (rn != 14 || rd != 15) { + goto illegal_op; + } + tmp = load_reg(s, rn); + tcg_gen_subi_i32(tmp, tmp, insn & 0xff); + gen_exception_return(s, tmp); + break; + case 6: /* mrs cpsr. */ + tmp = tcg_temp_new_i32(); + if (IS_M(env)) { + addr = tcg_const_i32(insn & 0xff); + gen_helper_v7m_mrs(tmp, cpu_env, addr); + tcg_temp_free_i32(addr); + } else { + gen_helper_cpsr_read(tmp, cpu_env); + } + store_reg(s, rd, tmp); + break; + case 7: /* mrs spsr. */ + /* Not accessible in user mode. */ + if (IS_USER(s) || IS_M(env)) + goto illegal_op; + tmp = load_cpu_field(spsr); + store_reg(s, rd, tmp); + break; + } + } + } else { + /* Conditional branch. */ + op = (insn >> 22) & 0xf; + /* Generate a conditional jump to next instruction. */ + s->condlabel = gen_new_label(); + gen_test_cc(op ^ 1, s->condlabel); + s->condjmp = 1; + SET_TB_TYPE(TB_COND_JMP); + + /* offset[11:1] = insn[10:0] */ + offset = (insn & 0x7ff) << 1; + /* offset[17:12] = insn[21:16]. */ + offset |= (insn & 0x003f0000) >> 4; + /* offset[31:20] = insn[26]. */ + offset |= ((int32_t)((insn << 5) & 0x80000000)) >> 11; + /* offset[18] = insn[13]. */ + offset |= (insn & (1 << 13)) << 5; + /* offset[19] = insn[11]. */ + offset |= (insn & (1 << 11)) << 8; + + /* jump to the offset */ + SET_TB_TYPE(TB_JMP); + gen_jmp(s, s->pc + offset); + } + } else { + /* Data processing immediate. */ + if (insn & (1 << 25)) { + if (insn & (1 << 24)) { + if (insn & (1 << 20)) + goto illegal_op; + /* Bitfield/Saturate. */ + op = (insn >> 21) & 7; + imm = insn & 0x1f; + shift = ((insn >> 6) & 3) | ((insn >> 10) & 0x1c); + if (rn == 15) { + tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, 0); + } else { + tmp = load_reg(s, rn); + } + switch (op) { + case 2: /* Signed bitfield extract. */ + imm++; + if (shift + imm > 32) + goto illegal_op; + if (imm < 32) + gen_sbfx(tmp, shift, imm); + break; + case 6: /* Unsigned bitfield extract. */ + imm++; + if (shift + imm > 32) + goto illegal_op; + if (imm < 32) + gen_ubfx(tmp, shift, (1u << imm) - 1); + break; + case 3: /* Bitfield insert/clear. */ + if (imm < shift) + goto illegal_op; + imm = imm + 1 - shift; + if (imm != 32) { + tmp2 = load_reg(s, rd); + gen_bfi(tmp, tmp2, tmp, shift, (1u << imm) - 1); + tcg_temp_free_i32(tmp2); + } + break; + case 7: + goto illegal_op; + default: /* Saturate. */ + if (shift) { + if (op & 1) + tcg_gen_sari_i32(tmp, tmp, shift); + else + tcg_gen_shli_i32(tmp, tmp, shift); + } + tmp2 = tcg_const_i32(imm); + if (op & 4) { + /* Unsigned. */ + if ((op & 1) && shift == 0) + gen_helper_usat16(tmp, tmp, tmp2); + else + gen_helper_usat(tmp, tmp, tmp2); + } else { + /* Signed. */ + if ((op & 1) && shift == 0) + gen_helper_ssat16(tmp, tmp, tmp2); + else + gen_helper_ssat(tmp, tmp, tmp2); + } + tcg_temp_free_i32(tmp2); + break; + } + store_reg(s, rd, tmp); + } else { + imm = ((insn & 0x04000000) >> 15) | ((insn & 0x7000) >> 4) | (insn & 0xff); + if (insn & (1 << 22)) { + /* 16-bit immediate. */ + imm |= (insn >> 4) & 0xf000; + if (insn & (1 << 23)) { + /* movt */ + tmp = load_reg(s, rd); + tcg_gen_ext16u_i32(tmp, tmp); + tcg_gen_ori_i32(tmp, tmp, imm << 16); + } else { + /* movw */ + tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, imm); + } + } else { + /* Add/sub 12-bit immediate. */ + if (rn == 15) { + offset = s->pc & ~(uint32_t) 3; + if (insn & (1 << 23)) + offset -= imm; + else + offset += imm; + tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, offset); + } else { + tmp = load_reg(s, rn); + if (insn & (1 << 23)) + tcg_gen_subi_i32(tmp, tmp, imm); + else + tcg_gen_addi_i32(tmp, tmp, imm); + } + } + store_reg(s, rd, tmp); + } + } else { + int shifter_out = 0; + /* modified 12-bit immediate. */ + shift = ((insn & 0x04000000) >> 23) | ((insn & 0x7000) >> 12); + imm = (insn & 0xff); + switch (shift) { + case 0: /* XY */ + /* Nothing to do. */ + break; + case 1: /* 00XY00XY */ + imm |= imm << 16; + break; + case 2: /* XY00XY00 */ + imm |= imm << 16; + imm <<= 8; + break; + case 3: /* XYXYXYXY */ + imm |= imm << 16; + imm |= imm << 8; + break; + default: /* Rotated constant. */ + shift = (shift << 1) | (imm >> 7); + imm |= 0x80; + imm = imm << (32 - shift); + shifter_out = 1; + break; + } + tmp2 = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp2, imm); + rn = (insn >> 16) & 0xf; + if (rn == 15) { + tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, 0); + } else { + tmp = load_reg(s, rn); + } + op = (insn >> 21) & 0xf; + if (gen_thumb2_data_op(s, op, (insn & (1 << 20)) != 0, shifter_out, tmp, tmp2)) + goto illegal_op; + tcg_temp_free_i32(tmp2); + rd = (insn >> 8) & 0xf; + if (rd != 15) { + store_reg(s, rd, tmp); + } else { + tcg_temp_free_i32(tmp); + } + } + } + break; + case 12: /* Load/store single data item. */ + { + int postinc = 0; + int writeback = 0; + int user; + if ((insn & 0x01100000) == 0x01000000) { + if (disas_neon_ls_insn(env, s, insn)) + goto illegal_op; + break; + } + op = ((insn >> 21) & 3) | ((insn >> 22) & 4); + if (rs == 15) { + if (!(insn & (1 << 20))) { + goto illegal_op; + } + if (op != 2) { + /* Byte or halfword load space with dest == r15 : memory hints. + * Catch them early so we don't emit pointless addressing code. + * This space is a mix of: + * PLD/PLDW/PLI, which we implement as NOPs (note that unlike + * the ARM encodings, PLDW space doesn't UNDEF for non-v7MP + * cores) + * unallocated hints, which must be treated as NOPs + * UNPREDICTABLE space, which we NOP or UNDEF depending on + * which is easiest for the decoding logic + * Some space which must UNDEF + */ + int op1 = (insn >> 23) & 3; + int op2 = (insn >> 6) & 0x3f; + if (op & 2) { + goto illegal_op; + } + if (rn == 15) { + /* UNPREDICTABLE, unallocated hint or + * PLD/PLDW/PLI (literal) + */ + return 0; + } + if (op1 & 1) { + return 0; /* PLD/PLDW/PLI or unallocated hint */ + } + if ((op2 == 0) || ((op2 & 0x3c) == 0x30)) { + return 0; /* PLD/PLDW/PLI or unallocated hint */ + } + /* UNDEF space, or an UNPREDICTABLE */ + return 1; + } + } + user = IS_USER(s); + if (rn == 15) { + addr = tcg_temp_new_i32(); + /* PC relative. */ + /* s->pc has already been incremented by 4. */ + imm = s->pc & 0xfffffffc; + if (insn & (1 << 23)) + imm += insn & 0xfff; + else + imm -= insn & 0xfff; + tcg_gen_movi_i32(addr, imm); + } else { + addr = load_reg(s, rn); + if (insn & (1 << 23)) { + /* Positive offset. */ + imm = insn & 0xfff; + tcg_gen_addi_i32(addr, addr, imm); + } else { + imm = insn & 0xff; + switch ((insn >> 8) & 0xf) { + case 0x0: /* Shifted Register. */ + shift = (insn >> 4) & 0xf; + if (shift > 3) { + tcg_temp_free_i32(addr); + goto illegal_op; + } + tmp = load_reg(s, rm); + if (shift) + tcg_gen_shli_i32(tmp, tmp, shift); + tcg_gen_add_i32(addr, addr, tmp); + tcg_temp_free_i32(tmp); + break; + case 0xc: /* Negative offset. */ + tcg_gen_addi_i32(addr, addr, -imm); + break; + case 0xe: /* User privilege. */ + tcg_gen_addi_i32(addr, addr, imm); + user = 1; + break; + case 0x9: /* Post-decrement. */ + imm = -imm; + /* Fall through. */ + case 0xb: /* Post-increment. */ + postinc = 1; + writeback = 1; + break; + case 0xd: /* Pre-decrement. */ + imm = -imm; + /* Fall through. */ + case 0xf: /* Pre-increment. */ + tcg_gen_addi_i32(addr, addr, imm); + writeback = 1; + break; + default: + tcg_temp_free_i32(addr); + goto illegal_op; + } + } + } + if (insn & (1 << 20)) { + /* Load. */ + switch (op) { + case 0: + tmp = gen_ld8u(addr, user); + break; + case 4: + tmp = gen_ld8s(addr, user); + break; + case 1: + tmp = gen_ld16u(addr, user); + break; + case 5: + tmp = gen_ld16s(addr, user); + break; + case 2: + tmp = gen_ld32(addr, user); + break; + default: + tcg_temp_free_i32(addr); + goto illegal_op; + } + if (rs == 15) { + gen_bx(s, tmp); + } else { + store_reg(s, rs, tmp); + } + } else { + /* Store. */ + tmp = load_reg(s, rs); + switch (op) { + case 0: + gen_st8(tmp, addr, user); + break; + case 1: + gen_st16(tmp, addr, user); + break; + case 2: + gen_st32(tmp, addr, user); + break; + default: + tcg_temp_free_i32(addr); + goto illegal_op; + } + } + if (postinc) + tcg_gen_addi_i32(addr, addr, imm); + if (writeback) { + store_reg(s, rn, addr); + } else { + tcg_temp_free_i32(addr); + } + } break; + default: + goto illegal_op; + } + return 0; +illegal_op: + return 1; +} + +void instr_gen_pc_update(void *context, target_ulong pc); +void instr_gen_pc_update(void *context, target_ulong pc) { + TCGv_i32 cpu_tmp0 = tcg_temp_new_i32(); + tcg_gen_movi_i32(cpu_tmp0, pc); + tcg_gen_st_i32(cpu_tmp0, cpu_env, offsetof(CPUArchState, regs[15])); + tcg_temp_free_i32(cpu_tmp0); +} + +static void disas_thumb_insn(CPUARMState *env, DisasContext *s) { + uint32_t val, insn, op, rm, rn, rd, shift, cond; + int32_t offset; + int i; + TCGv tmp; + TCGv tmp2; + TCGv addr; + + if (s->condexec_mask) { + cond = s->condexec_cond; + if (cond != 0x0e) { /* Skip conditional when condition is AL. */ + s->condlabel = gen_new_label(); + gen_test_cc(cond ^ 1, s->condlabel); + s->condjmp = 1; + SET_TB_TYPE(TB_COND_JMP); + } + } + + insn = arm_lduw_code(s->env, s->pc, s->bswap_code); + s->pc += 2; + + switch (insn >> 12) { + case 0: + case 1: + + rd = insn & 7; + op = (insn >> 11) & 3; + if (op == 3) { + /* add/subtract */ + rn = (insn >> 3) & 7; + tmp = load_reg(s, rn); + if (insn & (1 << 10)) { + /* immediate */ + tmp2 = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp2, (insn >> 6) & 7); + } else { + /* reg */ + rm = (insn >> 6) & 7; + tmp2 = load_reg(s, rm); + } + if (insn & (1 << 9)) { + if (s->condexec_mask) + tcg_gen_sub_i32(tmp, tmp, tmp2); + else + gen_helper_sub_cc(tmp, cpu_env, tmp, tmp2); + } else { + if (s->condexec_mask) + tcg_gen_add_i32(tmp, tmp, tmp2); + else + gen_helper_add_cc(tmp, cpu_env, tmp, tmp2); + } + tcg_temp_free_i32(tmp2); + store_reg(s, rd, tmp); + } else { + /* shift immediate */ + rm = (insn >> 3) & 7; + shift = (insn >> 6) & 0x1f; + tmp = load_reg(s, rm); + gen_arm_shift_im(tmp, op, shift, s->condexec_mask == 0); + if (!s->condexec_mask) + gen_logic_CC(tmp); + store_reg(s, rd, tmp); + } + break; + case 2: + case 3: + /* arithmetic large immediate */ + op = (insn >> 11) & 3; + rd = (insn >> 8) & 0x7; + if (op == 0) { /* mov */ + tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, insn & 0xff); + if (!s->condexec_mask) + gen_logic_CC(tmp); + store_reg(s, rd, tmp); + } else { + tmp = load_reg(s, rd); + tmp2 = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp2, insn & 0xff); + switch (op) { + case 1: /* cmp */ + gen_helper_sub_cc(tmp, cpu_env, tmp, tmp2); + tcg_temp_free_i32(tmp); + tcg_temp_free_i32(tmp2); + break; + case 2: /* add */ + if (s->condexec_mask) + tcg_gen_add_i32(tmp, tmp, tmp2); + else + gen_helper_add_cc(tmp, cpu_env, tmp, tmp2); + tcg_temp_free_i32(tmp2); + store_reg(s, rd, tmp); + break; + case 3: /* sub */ + if (s->condexec_mask) + tcg_gen_sub_i32(tmp, tmp, tmp2); + else + gen_helper_sub_cc(tmp, cpu_env, tmp, tmp2); + tcg_temp_free_i32(tmp2); + store_reg(s, rd, tmp); + break; + } + } + break; + case 4: + if (insn & (1 << 11)) { + rd = (insn >> 8) & 7; + /* load pc-relative. Bit 1 of PC is ignored. */ + val = s->pc + 2 + ((insn & 0xff) * 4); + val &= ~(uint32_t) 2; + addr = tcg_temp_new_i32(); + tcg_gen_movi_i32(addr, val); + tmp = gen_ld32(addr, IS_USER(s)); + tcg_temp_free_i32(addr); + store_reg(s, rd, tmp); + break; + } + if (insn & (1 << 10)) { + /* data processing extended or blx */ + rd = (insn & 7) | ((insn >> 4) & 8); + rm = (insn >> 3) & 0xf; + op = (insn >> 8) & 3; + switch (op) { + case 0: /* add */ + tmp = load_reg(s, rd); + tmp2 = load_reg(s, rm); + tcg_gen_add_i32(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + store_reg(s, rd, tmp); + break; + case 1: /* cmp */ + tmp = load_reg(s, rd); + tmp2 = load_reg(s, rm); + gen_helper_sub_cc(tmp, cpu_env, tmp, tmp2); + tcg_temp_free_i32(tmp2); + tcg_temp_free_i32(tmp); + break; + case 2: /* mov/cpy */ + tmp = load_reg(s, rm); + store_reg(s, rd, tmp); + break; + case 3: /* branch [and link] exchange thumb register */ + tmp = load_reg(s, rm); + if (insn & (1 << 7)) { + ARCH(5); + val = (uint32_t) s->pc | 1; + SET_TB_TYPE(TB_CALL_IND); + tmp2 = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp2, val); + store_reg(s, 14, tmp2); + gen_bx(s, tmp); + } else { + gen_bx(s, tmp); + if (IS_M(env)) { + s->is_jmp = DISAS_BX_EXCRET; + } + } + break; + } + break; + } + + /* data processing register */ + rd = insn & 7; + rm = (insn >> 3) & 7; + op = (insn >> 6) & 0xf; + if (op == 2 || op == 3 || op == 4 || op == 7) { + /* the shift/rotate ops want the operands backwards */ + val = rm; + rm = rd; + rd = val; + val = 1; + } else { + val = 0; + } + + if (op == 9) { /* neg */ + tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, 0); + } else if (op != 0xf) { /* mvn doesn't read its first operand */ + tmp = load_reg(s, rd); + } else { + } + + tmp2 = load_reg(s, rm); + switch (op) { + case 0x0: /* and */ + tcg_gen_and_i32(tmp, tmp, tmp2); + if (!s->condexec_mask) + gen_logic_CC(tmp); + break; + case 0x1: /* eor */ + tcg_gen_xor_i32(tmp, tmp, tmp2); + if (!s->condexec_mask) + gen_logic_CC(tmp); + break; + case 0x2: /* lsl */ + if (s->condexec_mask) { + gen_helper_shl(tmp2, tmp2, tmp); + } else { + gen_helper_shl_cc(tmp2, cpu_env, tmp2, tmp); + gen_logic_CC(tmp2); + } + break; + case 0x3: /* lsr */ + if (s->condexec_mask) { + gen_helper_shr(tmp2, tmp2, tmp); + } else { + gen_helper_shr_cc(tmp2, cpu_env, tmp2, tmp); + gen_logic_CC(tmp2); + } + break; + case 0x4: /* asr */ + if (s->condexec_mask) { + gen_helper_sar(tmp2, tmp2, tmp); + } else { + gen_helper_sar_cc(tmp2, cpu_env, tmp2, tmp); + gen_logic_CC(tmp2); + } + break; + case 0x5: /* adc */ + if (s->condexec_mask) + gen_adc(tmp, tmp2); + else + gen_helper_adc_cc(tmp, cpu_env, tmp, tmp2); + break; + case 0x6: /* sbc */ + if (s->condexec_mask) + gen_sub_carry(tmp, tmp, tmp2); + else + gen_helper_sbc_cc(tmp, cpu_env, tmp, tmp2); + break; + case 0x7: /* ror */ + if (s->condexec_mask) { + tcg_gen_andi_i32(tmp, tmp, 0x1f); + tcg_gen_rotr_i32(tmp2, tmp2, tmp); + } else { + gen_helper_ror_cc(tmp2, cpu_env, tmp2, tmp); + gen_logic_CC(tmp2); + } + break; + case 0x8: /* tst */ + tcg_gen_and_i32(tmp, tmp, tmp2); + gen_logic_CC(tmp); + rd = 16; + break; + case 0x9: /* neg */ + if (s->condexec_mask) + tcg_gen_neg_i32(tmp, tmp2); + else + gen_helper_sub_cc(tmp, cpu_env, tmp, tmp2); + break; + case 0xa: /* cmp */ + gen_helper_sub_cc(tmp, cpu_env, tmp, tmp2); + rd = 16; + break; + case 0xb: /* cmn */ + gen_helper_add_cc(tmp, cpu_env, tmp, tmp2); + rd = 16; + break; + case 0xc: /* orr */ + tcg_gen_or_i32(tmp, tmp, tmp2); + if (!s->condexec_mask) + gen_logic_CC(tmp); + break; + case 0xd: /* mul */ + tcg_gen_mul_i32(tmp, tmp, tmp2); + if (!s->condexec_mask) + gen_logic_CC(tmp); + break; + case 0xe: /* bic */ + tcg_gen_andc_i32(tmp, tmp, tmp2); + if (!s->condexec_mask) + gen_logic_CC(tmp); + break; + case 0xf: /* mvn */ + tcg_gen_not_i32(tmp2, tmp2); + if (!s->condexec_mask) + gen_logic_CC(tmp2); + val = 1; + rm = rd; + break; + } + if (rd != 16) { + if (val) { + store_reg(s, rm, tmp2); + if (op != 0xf) + tcg_temp_free_i32(tmp); + } else { + store_reg(s, rd, tmp); + tcg_temp_free_i32(tmp2); + } + } else { + tcg_temp_free_i32(tmp); + tcg_temp_free_i32(tmp2); + } + break; + + case 5: + /* load/store register offset. */ + rd = insn & 7; + rn = (insn >> 3) & 7; + rm = (insn >> 6) & 7; + op = (insn >> 9) & 7; + addr = load_reg(s, rn); + tmp = load_reg(s, rm); + tcg_gen_add_i32(addr, addr, tmp); + tcg_temp_free_i32(tmp); + + if (op < 3) /* store */ + tmp = load_reg(s, rd); + + switch (op) { + case 0: /* str */ + gen_st32(tmp, addr, IS_USER(s)); + break; + case 1: /* strh */ + gen_st16(tmp, addr, IS_USER(s)); + break; + case 2: /* strb */ + gen_st8(tmp, addr, IS_USER(s)); + break; + case 3: /* ldrsb */ + tmp = gen_ld8s(addr, IS_USER(s)); + break; + case 4: /* ldr */ + tmp = gen_ld32(addr, IS_USER(s)); + break; + case 5: /* ldrh */ + tmp = gen_ld16u(addr, IS_USER(s)); + break; + case 6: /* ldrb */ + tmp = gen_ld8u(addr, IS_USER(s)); + break; + case 7: /* ldrsh */ + tmp = gen_ld16s(addr, IS_USER(s)); + break; + } + if (op >= 3) /* load */ + store_reg(s, rd, tmp); + tcg_temp_free_i32(addr); + break; + + case 6: + /* load/store word immediate offset */ + rd = insn & 7; + rn = (insn >> 3) & 7; + addr = load_reg(s, rn); + val = (insn >> 4) & 0x7c; + tcg_gen_addi_i32(addr, addr, val); + + if (insn & (1 << 11)) { + /* load */ + tmp = gen_ld32(addr, IS_USER(s)); + store_reg(s, rd, tmp); + } else { + /* store */ + tmp = load_reg(s, rd); + gen_st32(tmp, addr, IS_USER(s)); + } + tcg_temp_free_i32(addr); + break; + + case 7: + /* load/store byte immediate offset */ + rd = insn & 7; + rn = (insn >> 3) & 7; + addr = load_reg(s, rn); + val = (insn >> 6) & 0x1f; + tcg_gen_addi_i32(addr, addr, val); + + if (insn & (1 << 11)) { + /* load */ + tmp = gen_ld8u(addr, IS_USER(s)); + store_reg(s, rd, tmp); + } else { + /* store */ + tmp = load_reg(s, rd); + gen_st8(tmp, addr, IS_USER(s)); + } + tcg_temp_free_i32(addr); + break; + + case 8: + /* load/store halfword immediate offset */ + rd = insn & 7; + rn = (insn >> 3) & 7; + addr = load_reg(s, rn); + val = (insn >> 5) & 0x3e; + tcg_gen_addi_i32(addr, addr, val); + + if (insn & (1 << 11)) { + /* load */ + tmp = gen_ld16u(addr, IS_USER(s)); + store_reg(s, rd, tmp); + } else { + /* store */ + tmp = load_reg(s, rd); + gen_st16(tmp, addr, IS_USER(s)); + } + tcg_temp_free_i32(addr); + break; + + case 9: + /* load/store from stack */ + rd = (insn >> 8) & 7; + addr = load_reg(s, 13); + val = (insn & 0xff) * 4; + tcg_gen_addi_i32(addr, addr, val); + + if (insn & (1 << 11)) { + /* load */ + tmp = gen_ld32(addr, IS_USER(s)); + store_reg(s, rd, tmp); + } else { + /* store */ + tmp = load_reg(s, rd); + gen_st32(tmp, addr, IS_USER(s)); + } + tcg_temp_free_i32(addr); + break; + + case 10: + /* add to high reg */ + rd = (insn >> 8) & 7; + if (insn & (1 << 11)) { + /* SP */ + tmp = load_reg(s, 13); + } else { + /* PC. bit 1 is ignored. */ + tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, (s->pc + 2) & ~(uint32_t) 2); + } + val = (insn & 0xff) * 4; + tcg_gen_addi_i32(tmp, tmp, val); + store_reg(s, rd, tmp); + break; + + case 11: + /* misc */ + op = (insn >> 8) & 0xf; + switch (op) { + case 0: + /* adjust stack pointer */ + tmp = load_reg(s, 13); + val = (insn & 0x7f) * 4; + if (insn & (1 << 7)) + val = -(int32_t) val; + tcg_gen_addi_i32(tmp, tmp, val); + store_reg(s, 13, tmp); + break; + + case 2: /* sign/zero extend. */ + ARCH(6); + rd = insn & 7; + rm = (insn >> 3) & 7; + tmp = load_reg(s, rm); + switch ((insn >> 6) & 3) { + case 0: + gen_sxth(tmp); + break; + case 1: + gen_sxtb(tmp); + break; + case 2: + gen_uxth(tmp); + break; + case 3: + gen_uxtb(tmp); + break; + } + store_reg(s, rd, tmp); + break; + case 4: + case 5: + case 0xc: + case 0xd: + /* push/pop */ + addr = load_reg(s, 13); + if (insn & (1 << 8)) + offset = 4; + else + offset = 0; + for (i = 0; i < 8; i++) { + if (insn & (1 << i)) + offset += 4; + } + if ((insn & (1 << 11)) == 0) { + tcg_gen_addi_i32(addr, addr, -offset); + } + for (i = 0; i < 8; i++) { + if (insn & (1 << i)) { + if (insn & (1 << 11)) { + /* pop */ + tmp = gen_ld32(addr, IS_USER(s)); + store_reg(s, i, tmp); + } else { + /* push */ + tmp = load_reg(s, i); + gen_st32(tmp, addr, IS_USER(s)); + } + /* advance to the next address. */ + tcg_gen_addi_i32(addr, addr, 4); + } + } + if (insn & (1 << 8)) { + if (insn & (1 << 11)) { + /* pop pc */ + tmp = gen_ld32(addr, IS_USER(s)); + /* don't set the pc until the rest of the instruction + has completed */ + } else { + /* push lr */ + tmp = load_reg(s, 14); + gen_st32(tmp, addr, IS_USER(s)); + } + tcg_gen_addi_i32(addr, addr, 4); + } + if ((insn & (1 << 11)) == 0) { + tcg_gen_addi_i32(addr, addr, -offset); + } + /* write back the new stack pointer */ + store_reg(s, 13, addr); + /* set the new PC value */ + if ((insn & 0x0900) == 0x0900) { + SET_TB_TYPE(TB_RET); + store_reg_from_load(env, s, 15, tmp); + TPRINTF("pc = 0x%x sp = 0x%x \n", env->regs[15], env->regs[13]); + if (IS_M(env)) { + s->is_jmp = DISAS_BX_EXCRET; + } + } + break; + + case 1: + case 3: + case 9: + case 11: /* czb */ + rm = insn & 7; + tmp = load_reg(s, rm); + s->condlabel = gen_new_label(); + s->condjmp = 1; + if (insn & (1 << 11)) + tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, s->condlabel); + else + tcg_gen_brcondi_i32(TCG_COND_NE, tmp, 0, s->condlabel); + tcg_temp_free_i32(tmp); + offset = ((insn & 0xf8) >> 2) | (insn & 0x200) >> 3; + val = (uint32_t) s->pc + 2; + val += offset; + SET_TB_TYPE(TB_JMP); + gen_jmp(s, val); + break; + + case 15: /* IT, nop-hint. */ + if ((insn & 0xf) == 0) { + gen_nop_hint(s, (insn >> 4) & 0xf); + break; + } + /* If Then. */ + s->condexec_cond = (insn >> 4) & 0xe; + s->condexec_mask = insn & 0x1f; + /* No actual code generated for this insn, just setup state. */ + break; + + case 0xe: /* bkpt */ + ARCH(5); + gen_exception_insn(s, 2, EXCP_BKPT); + break; + + case 0xa: /* rev */ + ARCH(6); + rn = (insn >> 3) & 0x7; + rd = insn & 0x7; + tmp = load_reg(s, rn); + switch ((insn >> 6) & 3) { + case 0: + tcg_gen_bswap32_i32(tmp, tmp); + break; + case 1: + gen_rev16(tmp); + break; + case 3: + gen_revsh(tmp); + break; + default: + goto illegal_op; + } + store_reg(s, rd, tmp); + break; + + case 6: + switch ((insn >> 5) & 7) { + case 2: + /* setend */ + ARCH(6); + if (((insn >> 3) & 1) != s->bswap_code) { + /* Dynamic endianness switching not implemented. */ + goto illegal_op; + } + break; + case 3: + /* cps */ + ARCH(6); + if (IS_USER(s)) { + break; + } + if (IS_M(env)) { + tmp = tcg_const_i32((insn & (1 << 4)) != 0); + /* FAULTMASK */ + if (insn & 1) { + addr = tcg_const_i32(19); + gen_helper_v7m_msr(cpu_env, addr, tmp); + tcg_temp_free_i32(addr); + } + /* PRIMASK */ + if (insn & 2) { + addr = tcg_const_i32(16); + gen_helper_v7m_msr(cpu_env, addr, tmp); + tcg_temp_free_i32(addr); + } + tcg_temp_free_i32(tmp); + gen_lookup_tb(s); + } else { + if (insn & (1 << 4)) { + shift = CPSR_A | CPSR_I | CPSR_F; + } else { + shift = 0; + } + gen_set_psr_im(s, ((insn & 7) << 6), 0, shift); + } + break; + default: + goto undef; + } + break; + + default: + goto undef; + } + break; + + case 12: { + /* load/store multiple */ + TCGv loaded_var; + rn = (insn >> 8) & 0x7; + addr = load_reg(s, rn); + for (i = 0; i < 8; i++) { + if (insn & (1 << i)) { + if (insn & (1 << 11)) { + /* load */ + tmp = gen_ld32(addr, IS_USER(s)); + if (i == rn) { + loaded_var = tmp; + } else { + store_reg(s, i, tmp); + } + } else { + /* store */ + tmp = load_reg(s, i); + gen_st32(tmp, addr, IS_USER(s)); + } + /* advance to the next address */ + tcg_gen_addi_i32(addr, addr, 4); + } + } + if ((insn & (1 << rn)) == 0) { + /* base reg not in list: base register writeback */ + store_reg(s, rn, addr); + } else { + /* base reg in list: if load, complete it now */ + if (insn & (1 << 11)) { + store_reg(s, rn, loaded_var); + } + tcg_temp_free_i32(addr); + } + break; + } + case 13: + /* conditional branch or swi */ + cond = (insn >> 8) & 0xf; + if (cond == 0xe) + goto undef; + + if (cond == 0xf) { + /* swi */ + gen_set_pc_im(s->pc); + s->is_jmp = DISAS_SWI; + break; + } + /* generate a conditional jump to next instruction */ + s->condlabel = gen_new_label(); + gen_test_cc(cond ^ 1, s->condlabel); + s->condjmp = 1; + + /* jump to the offset */ + val = (uint32_t) s->pc + 2; + offset = ((int32_t) insn << 24) >> 24; + val += offset << 1; + SET_TB_TYPE(TB_JMP); + gen_jmp(s, val); + break; + + case 14: + if (insn & (1 << 11)) { + if (disas_thumb2_insn(env, s, insn)) + goto undef32; + break; + } + /* unconditional branch */ + val = (uint32_t) s->pc; + offset = ((int32_t) insn << 21) >> 21; + val += (offset << 1) + 2; + SET_TB_TYPE(TB_JMP); + gen_jmp(s, val); + break; + + case 15: + if (disas_thumb2_insn(env, s, insn)) + goto undef32; + break; + } + return; +undef32: + gen_exception_insn(s, 4, EXCP_UDEF); + return; +illegal_op: +undef: + gen_exception_insn(s, 2, EXCP_UDEF); +} + +/* generate intermediate code in gen_opc_buf and gen_opparam_buf for + basic block 'tb'.*/ +static inline void gen_intermediate_code_internal(CPUARMState *env, TranslationBlock *tb) { + DisasContext dc1, *dc = &dc1; + CPUBreakpoint *bp; + int lj; + target_ulong pc_start; + uint32_t next_page_start; + int num_insns; + int max_insns; + + /* generate intermediate code */ + pc_start = tb->pc; + + memset(dc, 0, sizeof(*dc)); + + dc->tb = tb; + + dc->env = env; + dc->is_jmp = DISAS_NEXT; + dc->pc = pc_start; + dc->singlestep_enabled = env->singlestep_enabled; + dc->condjmp = 0; + dc->thumb = ARM_TBFLAG_THUMB(tb->flags); + dc->bswap_code = ARM_TBFLAG_BSWAP_CODE(tb->flags); + dc->condexec_mask = (ARM_TBFLAG_CONDEXEC(tb->flags) & 0xf) << 1; + dc->condexec_cond = ARM_TBFLAG_CONDEXEC(tb->flags) >> 4; +#if !defined(CONFIG_USER_ONLY) + dc->user = (ARM_TBFLAG_PRIV(tb->flags) == 0); +#endif + dc->vfp_enabled = ARM_TBFLAG_VFPEN(tb->flags); + dc->vec_len = ARM_TBFLAG_VECLEN(tb->flags); + dc->vec_stride = ARM_TBFLAG_VECSTRIDE(tb->flags); + cpu_F0s = tcg_temp_new_i32(); + cpu_F1s = tcg_temp_new_i32(); + cpu_F0d = tcg_temp_new_i64(); + cpu_F1d = tcg_temp_new_i64(); + cpu_V0 = cpu_F0d; + cpu_V1 = cpu_F1d; + /* FIXME: cpu_M0 can probably be the same as cpu_V0. */ + cpu_M0 = tcg_temp_new_i64(); + next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; + lj = -1; + num_insns = 0; + max_insns = tb->cflags & CF_COUNT_MASK; + if (max_insns == 0) + max_insns = TCG_MAX_INSNS; + + tcg_clear_temp_count(); +#ifndef STATIC_TRANSLATOR + gen_tb_start(tb); +#endif + +#ifdef CONFIG_SYMBEX + + dc->instrument = 1; + + dc->enable_jmp_im = 1; + dc->cpuState = env; + tb->se_tb_type = TB_DEFAULT; + tb->se_tb_call_eip = 0; +/* Make sure to refer to the original TB instead of the + temporary one in case we regenerate LLVM bitcode */ +#ifndef STATIC_TRANSLATOR + TCGv_i64 tmp64; + tmp64 = tcg_temp_new_i64(); + + tcg_gen_movi_i64(tmp64, (uint64_t) tb); + tcg_gen_st_i64(tmp64, cpu_env, offsetof(CPUArchState, se_current_tb)); + + if (unlikely(*g_sqi.events.on_translate_block_start_signals_count && dc->instrument)) { + g_sqi.events.on_translate_block_start(dc, tb, pc_start); + } +#endif +#endif + /* A note on handling of the condexec (IT) bits: + * + * We want to avoid the overhead of having to write the updated condexec + * bits back to the CPUARMState for every instruction in an IT block. So: + * (1) if the condexec bits are not already zero then we write + * zero back into the CPUARMState now. This avoids complications trying + * to do it at the end of the block. (For example if we don't do this + * it's hard to identify whether we can safely skip writing condexec + * at the end of the TB, which we definitely want to do for the case + * where a TB doesn't do anything with the IT state at all.) + * (2) if we are going to leave the TB then we call gen_set_condexec() + * which will write the correct value into CPUARMState if zero is wrong. + * This is done both for leaving the TB at the end, and for leaving + * it because of an exception we know will happen, which is done in + * gen_exception_insn(). The latter is necessary because we need to + * leave the TB with the PC/IT state just prior to execution of the + * instruction which caused the exception. + * (3) if we leave the TB unexpectedly (eg a data abort on a load) + * then the CPUARMState will be wrong and we need to reset it. + * This is handled in the same way as restoration of the + * PC in these situations: we will be called again with search_pc=1 + * and generate a mapping of the condexec bits for each PC in + * gen_opc_condexec_bits[]. restore_state_to_opc() then uses + * this to restore the condexec bits. + * + * Note that there are no instructions which can read the condexec + * bits, and none which can write non-static values to them, so + * we don't need to care about whether CPUARMState is correct in the + * middle of a TB. + */ + + /* Reset the conditional execution bits immediately. This avoids + complications trying to do it at the end of the block. */ + if (dc->condexec_mask || dc->condexec_cond) { + TCGv tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, 0); + store_cpu_field(tmp, condexec_bits); + } + do { +#ifdef CONFIG_USER_ONLY + /* Intercept jump to the magic kernel page. */ + if (dc->pc >= 0xffff0000) { + /* We always get here via a jump, so know we are not in a + conditional execution block. */ + gen_exception(EXCP_KERNEL_TRAP); + dc->is_jmp = DISAS_UPDATE; + break; + } +#else +/* We move this judgement to the previous round by using + * function gen_exception(EXCP_EXCEPTION_EXIT) as same as Qemu 3.0 */ +/* if (dc->pc >= 0xfffffff0 && IS_M(env)) { + gen_exception(EXCP_EXCEPTION_EXIT); + dc->is_jmp = DISAS_UPDATE; + break; + } +*/ +#endif + + if (unlikely(!QTAILQ_EMPTY(&env->breakpoints))) { + QTAILQ_FOREACH (bp, &env->breakpoints, entry) { + if (bp->pc == dc->pc) { + gen_exception_insn(dc, 0, EXCP_DEBUG); + /* Advance PC so that clearing the breakpoint will + invalidate this TB. */ + dc->pc += 2; + goto done_generating; + break; + } + } + } + // if (num_insns + 1 == max_insns && (tb->cflags & CF_LAST_IO)) + // gen_io_start(); + + // if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP))) { + // tcg_gen_insn_start(dc->pc); + // } +#ifdef CONFIG_SYMBEX + dc->insPc = dc->pc; + dc->done_instr_end = 0; + dc->done_reg_access_end = 0; + + if (unlikely(*g_sqi.events.on_translate_instruction_start_signals_count && dc->instrument)) { + g_sqi.events.on_translate_instruction_start(dc, tb, dc->pc); + } + + tb->pcOfLastInstr = pc_start; + dc->useNextPc = 0; + dc->nextPc = -1; +#endif + tcg_gen_insn_start(dc->pc, (dc->condexec_cond << 4) | (dc->condexec_mask >> 1), 0); + if (dc->thumb) { + disas_thumb_insn(env, dc); + if (dc->condexec_mask) { + dc->condexec_cond = (dc->condexec_cond & 0xe) | ((dc->condexec_mask >> 4) & 1); + dc->condexec_mask = (dc->condexec_mask << 1) & 0x1f; + if (dc->condexec_mask == 0) { + dc->condexec_cond = 0; + } + } + } else { + disas_arm_insn(env, dc); + } +#ifdef CONFIG_SYMBEX + // Compute the register mask and send the onRegisterAccess event + if (unlikely(*g_sqi.events.on_translate_register_access_signals_count && dc->instrument)) { + instr_translate_compute_reg_mask_end(dc); + } +#endif + +#ifdef CONFIG_SYMBEX + if (!dc->is_jmp) { + // Allow proper pc update for onTranslateInstruction events + dc->nextPc = dc->pc; + dc->useNextPc = 1; + + // Jumps are treated specially, as they end the TB + gen_instr_end(dc); + } +#endif + if (dc->condjmp && !dc->is_jmp) { + gen_set_label(dc->condlabel); + dc->condjmp = 0; + } + + if (tcg_check_temp_count()) { + fprintf(stderr, "TCG temporary leak before %08x\n", dc->pc); + } + + /* Translation stops when a conditional branch is encountered. + * Otherwise the subsequent code could get translated several times. + * Also stop translation when a page boundary is reached. This + * ensures prefetch aborts occur at the right place. */ + num_insns++; + } while (!dc->is_jmp && !tcg_op_buf_full() && !env->singlestep_enabled && !singlestep && + dc->pc < next_page_start && num_insns < max_insns); + + if (tb->cflags & CF_LAST_IO) { + if (dc->condjmp) { + /* FIXME: This can theoretically happen with self-modifying + code. */ + cpu_abort(env, "IO on conditional branch instruction"); + } + // gen_io_end(); + } + + /* At this stage dc->condjmp will only be set when the skipped + instruction was a conditional branch or trap, and the PC has + already been written. */ + if (unlikely(env->singlestep_enabled)) { + /* Make sure the pc is updated, and raise a debug exception. */ + if (dc->condjmp) { + gen_set_condexec(dc); + if (dc->is_jmp == DISAS_SWI) { + gen_exception(EXCP_SWI); + } else { + gen_exception(EXCP_DEBUG); + } + gen_set_label(dc->condlabel); + } + if (dc->condjmp || !dc->is_jmp) { + gen_set_pc_im(dc->pc); + dc->condjmp = 0; + } + gen_set_condexec(dc); + if (dc->is_jmp == DISAS_SWI && !dc->condjmp) { + gen_exception(EXCP_SWI); + } else { + /* FIXME: Single stepping a WFI insn will not halt + the CPU. */ + gen_exception(EXCP_DEBUG); + } + } else { + /* While branches must always occur at the end of an IT block, + there are a few other things that can cause us to terminate + the TB in the middel of an IT block: + - Exception generating instructions (bkpt, swi, undefined). + - Page boundaries. + - Hardware watchpoints. + Hardware breakpoints have already been handled and skip this code. + */ + gen_set_condexec(dc); + if (dc->is_jmp == DISAS_BX_EXCRET) { + /* Generate the code to finish possible exception return and end the TB */ + TCGLabel *excret_label = gen_new_label(); + /* Is the new PC value in the magic range indicating exception return? */ + tcg_gen_brcondi_i32(TCG_COND_GEU, cpu_R[15], 0xff000000, excret_label); +#ifdef CONFIG_SYMBEX + gen_eob_event(dc, 0, 0); +#endif + /* No: end the TB as we would for a DISAS_JMP */ + tcg_gen_exit_tb(NULL, 0); + gen_set_label(excret_label); + gen_exception(EXCP_EXCEPTION_EXIT); + } else { + switch (dc->is_jmp) { + case DISAS_NEXT: + gen_goto_tb(dc, 1, dc->pc); + break; + default: + case DISAS_JUMP: + case DISAS_UPDATE: +#ifdef CONFIG_SYMBEX + gen_eob_event(dc, 0, 0); +#endif + /* indicate that the hash table must be used to find the next TB */ + tcg_gen_exit_tb(NULL, 0); + break; + case DISAS_TB_JUMP: + /* nothing more to generate */ + break; + case DISAS_WFI: + // donot sleep + gen_goto_tb(dc, 1, dc->pc); + //gen_helper_wfi(); + break; + case DISAS_SWI: + gen_exception(EXCP_SWI); + break; + } + } + if (dc->condjmp) { + gen_set_label(dc->condlabel); + gen_set_condexec(dc); + gen_goto_tb(dc, 1, dc->pc); + dc->condjmp = 0; + } + } + +done_generating: +#ifndef STATIC_TRANSLATOR + gen_tb_end(tb); +#endif + +#ifdef DEBUG_DISAS + if (libcpu_loglevel_mask(CPU_LOG_TB_IN_ASM)) { + libcpu_log("----------------\n"); + libcpu_log("IN %#" PRIx64 ":\n", (uint64_t) pc_start); + log_target_disas(env, pc_start, dc->pc - pc_start, + dc->thumb | (dc->bswap_code << 1)); + libcpu_log("\n"); + } +#endif + + tb->size = dc->pc - pc_start; + tb->icount = num_insns; +#ifdef CONFIG_SYMBEX + if (unlikely(*g_sqi.events.on_translate_block_complete_signals_count && dc->instrument)) { + g_sqi.events.on_translate_block_complete(tb, dc->insPc); + } +#endif +} + +void gen_intermediate_code(CPUARMState *env, TranslationBlock *tb) { + gen_intermediate_code_internal(env, tb); +} + +static const char *cpu_mode_names[16] = {"usr", "fiq", "irq", "svc", "???", "???", "???", "abt", + "???", "???", "???", "und", "???", "???", "???", "sys"}; + +void cpu_dump_state(CPUARMState *env, FILE *f, fprintf_function cpu_fprintf, int flags) { + int i; +#if 0 + union { + uint32_t i; + float s; + } s0, s1; + CPU_DoubleU d; + /* ??? This assumes float64 and double have the same layout. + Oh well, it's only debug dumps. */ + union { + float64 f64; + double d; + } d0; +#endif + uint32_t psr; + + for (i = 0; i < 15; i++) { + cpu_fprintf(f, "R%02d=%08x", i, RR_cpu(env,regs[i])); + if ((i % 4) == 3) + cpu_fprintf(f, "\n"); + else + cpu_fprintf(f, " "); + } + psr = cpsr_read(env); + cpu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%d\n", psr, psr & (1 << 31) ? 'N' : '-', psr & (1 << 30) ? 'Z' : '-', + psr & (1 << 29) ? 'C' : '-', psr & (1 << 28) ? 'V' : '-', psr & CPSR_T ? 'T' : 'A', + cpu_mode_names[psr & 0xf], (psr & 0x10) ? 32 : 26); + +#if 0 + for (i = 0; i < 16; i++) { + d.d = env->vfp.regs[i]; + s0.i = d.l.lower; + s1.i = d.l.upper; + d0.f64 = d.d; + cpu_fprintf(f, "s%02d=%08x(%8g) s%02d=%08x(%8g) d%02d=%08x%08x(%8g)\n", + i * 2, (int)s0.i, s0.s, + i * 2 + 1, (int)s1.i, s1.s, + i, (int)(uint32_t)d.l.upper, (int)(uint32_t)d.l.lower, + d0.d); + } + cpu_fprintf(f, "FPSCR: %08x\n", (int)env->vfp.xregs[ARM_VFP_FPSCR]); +#endif +} + +void restore_state_to_opc(CPUARMState *env, TranslationBlock *tb, target_ulong *data) { + env->regs[15] = data[0]; + env->condexec_bits = data[1]; +} diff --git a/src/translate-all.c b/src/translate-all.c index 0dffebd..ea22884 100644 --- a/src/translate-all.c +++ b/src/translate-all.c @@ -47,6 +47,14 @@ #include "exec-tb.h" #include "exec.h" +#define DEBUG_TS + +#ifdef DEBUG_TS +#define TPRINTF(...) fprintf(logfile, __VA_ARGS__) +#else +#define TPRINTF(...) +#endif + /* code generation context */ __thread TCGContext *tcg_ctx; @@ -146,7 +154,7 @@ static void *qemu_st_helpers[4] = { static void cpu_gen_init(TCGContext *ctx, tcg_settings_t *settings) { settings->tlb_flags_mask = TLB_FLAGS_MASK; - settings->tlb_mask_offset = offsetof(CPUX86State, tlb_mask); + settings->tlb_mask_offset = offsetof(CPUArchState, tlb_mask); settings->tlb_entry_addend_offset = offsetof(CPUTLBEntry, addend); settings->tlb_entry_addr_read_offset = offsetof(CPUTLBEntry, addr_read); settings->tlb_entry_addr_write_offset = offsetof(CPUTLBEntry, addr_write); @@ -171,11 +179,18 @@ static void cpu_gen_init(TCGContext *ctx, tcg_settings_t *settings) { extern CPUArchState *env; ctx->tcg_struct_size = sizeof(*tcg_ctx); ctx->env_ptr = (uintptr_t) &env; +#if defined(TARGET_I386) || defined(TARGET_X86_64) ctx->env_offset_eip = offsetof(CPUArchState, eip); ctx->env_sizeof_eip = sizeof(env->eip); ctx->env_offset_ccop = offsetof(CPUArchState, cc_op); ctx->env_sizeof_ccop = sizeof(env->cc_op); ctx->env_offset_df = offsetof(CPUArchState, df); +#elif defined(TARGET_ARM) + ctx->env_offset_eip = offsetof(CPUArchState, regs[15]); + ctx->env_sizeof_eip = sizeof(env->regs[15]); +#else +#error Unsupported target architecture +#endif ctx->env_offset_tlb[0] = offsetof(CPUArchState, tlb_table[0]); ctx->env_offset_tlb[1] = offsetof(CPUArchState, tlb_table[1]); @@ -245,9 +260,15 @@ int cpu_gen_code(CPUArchState *env, TranslationBlock *tb) { if (libcpu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) { libcpu_log("----------------\n"); +#if defined(TARGET_I386) || defined(TARGET_X86_64) libcpu_log("OUT %#" PRIx64 " - cs:eip=%#" PRIx64 ":%#" PRIx64 "\n", (uint64_t) tb->pc, (uint64_t) tb->cs_base, (uint64_t) env->eip); - +#elif defined(TARGET_ARM) + libcpu_log("OUT %#" PRIx64 " - sp=%#" PRIx32 " pc=%#" PRIx32 "\n", (uint64_t) tb->pc, (uint32_t) env->regs[13], + (uint32_t) env->regs[15]); +#else +#error Unsupported target architecture +#endif log_host_disas(tb->tc.ptr, gen_code_size); libcpu_log("\n"); }