|
117 | 117 | }, |
118 | 118 | { |
119 | 119 | "cell_type": "code", |
120 | | - "execution_count": 3, |
| 120 | + "execution_count": null, |
121 | 121 | "metadata": {}, |
122 | | - "outputs": [ |
123 | | - { |
124 | | - "name": "stdout", |
125 | | - "output_type": "stream", |
126 | | - "text": [ |
127 | | - "BasicUNetPlusPlus features: (32, 32, 64, 128, 256, 32).\n", |
128 | | - "BasicUNetPlusPlus(\n", |
129 | | - " (conv_0_0): TwoConv(\n", |
130 | | - " (conv_0): Convolution(\n", |
131 | | - " (conv): Conv3d(3, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
132 | | - " (adn): ADN(\n", |
133 | | - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
134 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
135 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
136 | | - " )\n", |
137 | | - " )\n", |
138 | | - " (conv_1): Convolution(\n", |
139 | | - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
140 | | - " (adn): ADN(\n", |
141 | | - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
142 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
143 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
144 | | - " )\n", |
145 | | - " )\n", |
146 | | - " )\n", |
147 | | - " (conv_1_0): Down(\n", |
148 | | - " (max_pooling): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", |
149 | | - " (convs): TwoConv(\n", |
150 | | - " (conv_0): Convolution(\n", |
151 | | - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
152 | | - " (adn): ADN(\n", |
153 | | - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
154 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
155 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
156 | | - " )\n", |
157 | | - " )\n", |
158 | | - " (conv_1): Convolution(\n", |
159 | | - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
160 | | - " (adn): ADN(\n", |
161 | | - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
162 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
163 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
164 | | - " )\n", |
165 | | - " )\n", |
166 | | - " )\n", |
167 | | - " )\n", |
168 | | - " (conv_2_0): Down(\n", |
169 | | - " (max_pooling): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", |
170 | | - " (convs): TwoConv(\n", |
171 | | - " (conv_0): Convolution(\n", |
172 | | - " (conv): Conv3d(32, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
173 | | - " (adn): ADN(\n", |
174 | | - " (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
175 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
176 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
177 | | - " )\n", |
178 | | - " )\n", |
179 | | - " (conv_1): Convolution(\n", |
180 | | - " (conv): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
181 | | - " (adn): ADN(\n", |
182 | | - " (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
183 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
184 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
185 | | - " )\n", |
186 | | - " )\n", |
187 | | - " )\n", |
188 | | - " )\n", |
189 | | - " (conv_3_0): Down(\n", |
190 | | - " (max_pooling): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", |
191 | | - " (convs): TwoConv(\n", |
192 | | - " (conv_0): Convolution(\n", |
193 | | - " (conv): Conv3d(64, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
194 | | - " (adn): ADN(\n", |
195 | | - " (N): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
196 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
197 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
198 | | - " )\n", |
199 | | - " )\n", |
200 | | - " (conv_1): Convolution(\n", |
201 | | - " (conv): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
202 | | - " (adn): ADN(\n", |
203 | | - " (N): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
204 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
205 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
206 | | - " )\n", |
207 | | - " )\n", |
208 | | - " )\n", |
209 | | - " )\n", |
210 | | - " (conv_4_0): Down(\n", |
211 | | - " (max_pooling): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", |
212 | | - " (convs): TwoConv(\n", |
213 | | - " (conv_0): Convolution(\n", |
214 | | - " (conv): Conv3d(128, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
215 | | - " (adn): ADN(\n", |
216 | | - " (N): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
217 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
218 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
219 | | - " )\n", |
220 | | - " )\n", |
221 | | - " (conv_1): Convolution(\n", |
222 | | - " (conv): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
223 | | - " (adn): ADN(\n", |
224 | | - " (N): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
225 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
226 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
227 | | - " )\n", |
228 | | - " )\n", |
229 | | - " )\n", |
230 | | - " )\n", |
231 | | - " (upcat_0_1): UpCat(\n", |
232 | | - " (upsample): UpSample(\n", |
233 | | - " (deconv): ConvTranspose3d(32, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
234 | | - " )\n", |
235 | | - " (convs): TwoConv(\n", |
236 | | - " (conv_0): Convolution(\n", |
237 | | - " (conv): Conv3d(64, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
238 | | - " (adn): ADN(\n", |
239 | | - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
240 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
241 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
242 | | - " )\n", |
243 | | - " )\n", |
244 | | - " (conv_1): Convolution(\n", |
245 | | - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
246 | | - " (adn): ADN(\n", |
247 | | - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
248 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
249 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
250 | | - " )\n", |
251 | | - " )\n", |
252 | | - " )\n", |
253 | | - " )\n", |
254 | | - " (upcat_1_1): UpCat(\n", |
255 | | - " (upsample): UpSample(\n", |
256 | | - " (deconv): ConvTranspose3d(64, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
257 | | - " )\n", |
258 | | - " (convs): TwoConv(\n", |
259 | | - " (conv_0): Convolution(\n", |
260 | | - " (conv): Conv3d(64, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
261 | | - " (adn): ADN(\n", |
262 | | - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
263 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
264 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
265 | | - " )\n", |
266 | | - " )\n", |
267 | | - " (conv_1): Convolution(\n", |
268 | | - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
269 | | - " (adn): ADN(\n", |
270 | | - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
271 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
272 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
273 | | - " )\n", |
274 | | - " )\n", |
275 | | - " )\n", |
276 | | - " )\n", |
277 | | - " (upcat_2_1): UpCat(\n", |
278 | | - " (upsample): UpSample(\n", |
279 | | - " (deconv): ConvTranspose3d(128, 64, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
280 | | - " )\n", |
281 | | - " (convs): TwoConv(\n", |
282 | | - " (conv_0): Convolution(\n", |
283 | | - " (conv): Conv3d(128, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
284 | | - " (adn): ADN(\n", |
285 | | - " (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
286 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
287 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
288 | | - " )\n", |
289 | | - " )\n", |
290 | | - " (conv_1): Convolution(\n", |
291 | | - " (conv): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
292 | | - " (adn): ADN(\n", |
293 | | - " (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
294 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
295 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
296 | | - " )\n", |
297 | | - " )\n", |
298 | | - " )\n", |
299 | | - " )\n", |
300 | | - " (upcat_3_1): UpCat(\n", |
301 | | - " (upsample): UpSample(\n", |
302 | | - " (deconv): ConvTranspose3d(256, 128, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
303 | | - " )\n", |
304 | | - " (convs): TwoConv(\n", |
305 | | - " (conv_0): Convolution(\n", |
306 | | - " (conv): Conv3d(256, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
307 | | - " (adn): ADN(\n", |
308 | | - " (N): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
309 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
310 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
311 | | - " )\n", |
312 | | - " )\n", |
313 | | - " (conv_1): Convolution(\n", |
314 | | - " (conv): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
315 | | - " (adn): ADN(\n", |
316 | | - " (N): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
317 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
318 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
319 | | - " )\n", |
320 | | - " )\n", |
321 | | - " )\n", |
322 | | - " )\n", |
323 | | - " (upcat_0_2): UpCat(\n", |
324 | | - " (upsample): UpSample(\n", |
325 | | - " (deconv): ConvTranspose3d(32, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
326 | | - " )\n", |
327 | | - " (convs): TwoConv(\n", |
328 | | - " (conv_0): Convolution(\n", |
329 | | - " (conv): Conv3d(96, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
330 | | - " (adn): ADN(\n", |
331 | | - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
332 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
333 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
334 | | - " )\n", |
335 | | - " )\n", |
336 | | - " (conv_1): Convolution(\n", |
337 | | - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
338 | | - " (adn): ADN(\n", |
339 | | - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
340 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
341 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
342 | | - " )\n", |
343 | | - " )\n", |
344 | | - " )\n", |
345 | | - " )\n", |
346 | | - " (upcat_1_2): UpCat(\n", |
347 | | - " (upsample): UpSample(\n", |
348 | | - " (deconv): ConvTranspose3d(64, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
349 | | - " )\n", |
350 | | - " (convs): TwoConv(\n", |
351 | | - " (conv_0): Convolution(\n", |
352 | | - " (conv): Conv3d(96, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
353 | | - " (adn): ADN(\n", |
354 | | - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
355 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
356 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
357 | | - " )\n", |
358 | | - " )\n", |
359 | | - " (conv_1): Convolution(\n", |
360 | | - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
361 | | - " (adn): ADN(\n", |
362 | | - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
363 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
364 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
365 | | - " )\n", |
366 | | - " )\n", |
367 | | - " )\n", |
368 | | - " )\n", |
369 | | - " (upcat_2_2): UpCat(\n", |
370 | | - " (upsample): UpSample(\n", |
371 | | - " (deconv): ConvTranspose3d(128, 64, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
372 | | - " )\n", |
373 | | - " (convs): TwoConv(\n", |
374 | | - " (conv_0): Convolution(\n", |
375 | | - " (conv): Conv3d(192, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
376 | | - " (adn): ADN(\n", |
377 | | - " (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
378 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
379 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
380 | | - " )\n", |
381 | | - " )\n", |
382 | | - " (conv_1): Convolution(\n", |
383 | | - " (conv): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
384 | | - " (adn): ADN(\n", |
385 | | - " (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
386 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
387 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
388 | | - " )\n", |
389 | | - " )\n", |
390 | | - " )\n", |
391 | | - " )\n", |
392 | | - " (upcat_0_3): UpCat(\n", |
393 | | - " (upsample): UpSample(\n", |
394 | | - " (deconv): ConvTranspose3d(32, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
395 | | - " )\n", |
396 | | - " (convs): TwoConv(\n", |
397 | | - " (conv_0): Convolution(\n", |
398 | | - " (conv): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
399 | | - " (adn): ADN(\n", |
400 | | - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
401 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
402 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
403 | | - " )\n", |
404 | | - " )\n", |
405 | | - " (conv_1): Convolution(\n", |
406 | | - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
407 | | - " (adn): ADN(\n", |
408 | | - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
409 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
410 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
411 | | - " )\n", |
412 | | - " )\n", |
413 | | - " )\n", |
414 | | - " )\n", |
415 | | - " (upcat_1_3): UpCat(\n", |
416 | | - " (upsample): UpSample(\n", |
417 | | - " (deconv): ConvTranspose3d(64, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
418 | | - " )\n", |
419 | | - " (convs): TwoConv(\n", |
420 | | - " (conv_0): Convolution(\n", |
421 | | - " (conv): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
422 | | - " (adn): ADN(\n", |
423 | | - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
424 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
425 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
426 | | - " )\n", |
427 | | - " )\n", |
428 | | - " (conv_1): Convolution(\n", |
429 | | - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
430 | | - " (adn): ADN(\n", |
431 | | - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
432 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
433 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
434 | | - " )\n", |
435 | | - " )\n", |
436 | | - " )\n", |
437 | | - " )\n", |
438 | | - " (upcat_0_4): UpCat(\n", |
439 | | - " (upsample): UpSample(\n", |
440 | | - " (deconv): ConvTranspose3d(32, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
441 | | - " )\n", |
442 | | - " (convs): TwoConv(\n", |
443 | | - " (conv_0): Convolution(\n", |
444 | | - " (conv): Conv3d(160, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
445 | | - " (adn): ADN(\n", |
446 | | - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
447 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
448 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
449 | | - " )\n", |
450 | | - " )\n", |
451 | | - " (conv_1): Convolution(\n", |
452 | | - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
453 | | - " (adn): ADN(\n", |
454 | | - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
455 | | - " (D): Dropout(p=0.0, inplace=False)\n", |
456 | | - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
457 | | - " )\n", |
458 | | - " )\n", |
459 | | - " )\n", |
460 | | - " )\n", |
461 | | - " (final_conv_0_1): Conv3d(32, 3, kernel_size=(1, 1, 1), stride=(1, 1, 1))\n", |
462 | | - " (final_conv_0_2): Conv3d(32, 3, kernel_size=(1, 1, 1), stride=(1, 1, 1))\n", |
463 | | - " (final_conv_0_3): Conv3d(32, 3, kernel_size=(1, 1, 1), stride=(1, 1, 1))\n", |
464 | | - " (final_conv_0_4): Conv3d(32, 3, kernel_size=(1, 1, 1), stride=(1, 1, 1))\n", |
465 | | - ")\n" |
466 | | - ] |
467 | | - } |
468 | | - ], |
| 122 | + "outputs": [], |
469 | 123 | "source": [ |
470 | 124 | "model = BasicUnetPlusPlus(\n", |
471 | 125 | " spatial_dims=3,\n", |
|
0 commit comments