@@ -140,7 +140,7 @@ def __call__(self, signal: NdarrayOrTensor) -> NdarrayOrTensor:
140140 self .randomize (None )
141141 self .magnitude = self .R .uniform (low = self .boundaries [0 ], high = self .boundaries [1 ])
142142
143- length = signal .shape [len ( signal . shape ) - 1 ]
143+ length = signal .shape [- 1 ]
144144 mask = torch .zeros (round (self .magnitude * length ))
145145 trange = torch .arange (length )
146146 loc = trange [torch .randint (0 , trange .size (0 ), (1 ,))]
@@ -265,7 +265,7 @@ def __call__(self, signal: NdarrayOrTensor) -> NdarrayOrTensor:
265265 self .fracs = self .R .uniform (low = self .fraction [0 ], high = self .fraction [1 ])
266266 self .freqs = self .R .uniform (low = self .frequencies [0 ], high = self .frequencies [1 ])
267267
268- length = signal .shape [len ( signal . shape ) - 1 ]
268+ length = signal .shape [- 1 ]
269269
270270 time_partial = np .arange (0 , round (self .fracs * length ), 1 )
271271 data = convert_to_tensor (self .freqs * time_partial )
@@ -347,7 +347,7 @@ def __call__(self, signal: NdarrayOrTensor) -> NdarrayOrTensor:
347347 self .fracs = self .R .uniform (low = self .fraction [0 ], high = self .fraction [1 ])
348348 self .freqs = self .R .uniform (low = self .frequencies [0 ], high = self .frequencies [1 ])
349349
350- length = signal .shape [len ( signal . shape ) - 1 ]
350+ length = signal .shape [- 1 ]
351351
352352 time_partial = np .arange (0 , round (self .fracs * length ), 1 )
353353 squaredpulse_partial = self .magnitude * squarepulse (self .freqs * time_partial )
0 commit comments