|
| 1 | +import numpy as np |
| 2 | +import pytest |
| 3 | +import torch |
| 4 | + |
| 5 | +from pytorch_forecasting import TimeSeriesDataSet |
| 6 | +from pytorch_forecasting.data import EncoderNormalizer, GroupNormalizer, NaNLabelEncoder |
| 7 | +from pytorch_forecasting.data.examples import generate_ar_data, get_stallion_data |
| 8 | + |
| 9 | +torch.manual_seed(23) |
| 10 | + |
| 11 | + |
| 12 | +@pytest.fixture(scope="session") |
| 13 | +def gpus(): |
| 14 | + if torch.cuda.is_available(): |
| 15 | + return [0] |
| 16 | + else: |
| 17 | + return 0 |
| 18 | + |
| 19 | + |
| 20 | +def data_with_covariates(): |
| 21 | + data = get_stallion_data() |
| 22 | + data["month"] = data.date.dt.month.astype(str) |
| 23 | + data["log_volume"] = np.log1p(data.volume) |
| 24 | + data["weight"] = 1 + np.sqrt(data.volume) |
| 25 | + |
| 26 | + data["time_idx"] = data["date"].dt.year * 12 + data["date"].dt.month |
| 27 | + data["time_idx"] -= data["time_idx"].min() |
| 28 | + |
| 29 | + # convert special days into strings |
| 30 | + special_days = [ |
| 31 | + "easter_day", |
| 32 | + "good_friday", |
| 33 | + "new_year", |
| 34 | + "christmas", |
| 35 | + "labor_day", |
| 36 | + "independence_day", |
| 37 | + "revolution_day_memorial", |
| 38 | + "regional_games", |
| 39 | + "fifa_u_17_world_cup", |
| 40 | + "football_gold_cup", |
| 41 | + "beer_capital", |
| 42 | + "music_fest", |
| 43 | + ] |
| 44 | + data[special_days] = ( |
| 45 | + data[special_days].apply(lambda x: x.map({0: "", 1: x.name})).astype("category") |
| 46 | + ) |
| 47 | + data = data.astype(dict(industry_volume=float)) |
| 48 | + |
| 49 | + # select data subset |
| 50 | + data = data[lambda x: x.sku.isin(data.sku.unique()[:2])][ |
| 51 | + lambda x: x.agency.isin(data.agency.unique()[:2]) |
| 52 | + ] |
| 53 | + |
| 54 | + # default target |
| 55 | + data["target"] = data["volume"].clip(1e-3, 1.0) |
| 56 | + |
| 57 | + return data |
| 58 | + |
| 59 | + |
| 60 | +def make_dataloaders(data_with_covariates, **kwargs): |
| 61 | + training_cutoff = "2016-09-01" |
| 62 | + max_encoder_length = 4 |
| 63 | + max_prediction_length = 3 |
| 64 | + |
| 65 | + kwargs.setdefault("target", "volume") |
| 66 | + kwargs.setdefault("group_ids", ["agency", "sku"]) |
| 67 | + kwargs.setdefault("add_relative_time_idx", True) |
| 68 | + kwargs.setdefault("time_varying_unknown_reals", ["volume"]) |
| 69 | + |
| 70 | + training = TimeSeriesDataSet( |
| 71 | + data_with_covariates[lambda x: x.date < training_cutoff].copy(), |
| 72 | + time_idx="time_idx", |
| 73 | + max_encoder_length=max_encoder_length, |
| 74 | + max_prediction_length=max_prediction_length, |
| 75 | + **kwargs, # fixture parametrization |
| 76 | + ) |
| 77 | + |
| 78 | + validation = TimeSeriesDataSet.from_dataset( |
| 79 | + training, |
| 80 | + data_with_covariates.copy(), |
| 81 | + min_prediction_idx=training.index.time.max() + 1, |
| 82 | + ) |
| 83 | + train_dataloader = training.to_dataloader(train=True, batch_size=2, num_workers=0) |
| 84 | + val_dataloader = validation.to_dataloader(train=False, batch_size=2, num_workers=0) |
| 85 | + test_dataloader = validation.to_dataloader(train=False, batch_size=1, num_workers=0) |
| 86 | + |
| 87 | + return dict(train=train_dataloader, val=val_dataloader, test=test_dataloader) |
| 88 | + |
| 89 | + |
| 90 | +@pytest.fixture( |
| 91 | + params=[ |
| 92 | + dict(), |
| 93 | + dict( |
| 94 | + static_categoricals=["agency", "sku"], |
| 95 | + static_reals=["avg_population_2017", "avg_yearly_household_income_2017"], |
| 96 | + time_varying_known_categoricals=["special_days", "month"], |
| 97 | + variable_groups=dict( |
| 98 | + special_days=[ |
| 99 | + "easter_day", |
| 100 | + "good_friday", |
| 101 | + "new_year", |
| 102 | + "christmas", |
| 103 | + "labor_day", |
| 104 | + "independence_day", |
| 105 | + "revolution_day_memorial", |
| 106 | + "regional_games", |
| 107 | + "fifa_u_17_world_cup", |
| 108 | + "football_gold_cup", |
| 109 | + "beer_capital", |
| 110 | + "music_fest", |
| 111 | + ] |
| 112 | + ), |
| 113 | + time_varying_known_reals=[ |
| 114 | + "time_idx", |
| 115 | + "price_regular", |
| 116 | + "price_actual", |
| 117 | + "discount", |
| 118 | + "discount_in_percent", |
| 119 | + ], |
| 120 | + time_varying_unknown_categoricals=[], |
| 121 | + time_varying_unknown_reals=[ |
| 122 | + "volume", |
| 123 | + "log_volume", |
| 124 | + "industry_volume", |
| 125 | + "soda_volume", |
| 126 | + "avg_max_temp", |
| 127 | + ], |
| 128 | + constant_fill_strategy={"volume": 0}, |
| 129 | + categorical_encoders={"sku": NaNLabelEncoder(add_nan=True)}, |
| 130 | + ), |
| 131 | + dict(static_categoricals=["agency", "sku"]), |
| 132 | + dict(randomize_length=True, min_encoder_length=2), |
| 133 | + dict(target_normalizer=EncoderNormalizer(), min_encoder_length=2), |
| 134 | + dict(target_normalizer=GroupNormalizer(transformation="log1p")), |
| 135 | + dict( |
| 136 | + target_normalizer=GroupNormalizer( |
| 137 | + groups=["agency", "sku"], transformation="softplus", center=False |
| 138 | + ) |
| 139 | + ), |
| 140 | + dict(target="agency"), |
| 141 | + # test multiple targets |
| 142 | + dict(target=["industry_volume", "volume"]), |
| 143 | + dict(target=["agency", "volume"]), |
| 144 | + dict( |
| 145 | + target=["agency", "volume"], min_encoder_length=1, min_prediction_length=1 |
| 146 | + ), |
| 147 | + dict(target=["agency", "volume"], weight="volume"), |
| 148 | + # test weights |
| 149 | + dict(target="volume", weight="volume"), |
| 150 | + ], |
| 151 | + scope="session", |
| 152 | +) |
| 153 | +def multiple_dataloaders_with_covariates(data_with_covariates, request): |
| 154 | + return make_dataloaders(data_with_covariates, **request.param) |
| 155 | + |
| 156 | + |
| 157 | +@pytest.fixture(scope="session") |
| 158 | +def dataloaders_with_different_encoder_decoder_length(data_with_covariates): |
| 159 | + return make_dataloaders( |
| 160 | + data_with_covariates.copy(), |
| 161 | + target="target", |
| 162 | + time_varying_known_categoricals=["special_days", "month"], |
| 163 | + variable_groups=dict( |
| 164 | + special_days=[ |
| 165 | + "easter_day", |
| 166 | + "good_friday", |
| 167 | + "new_year", |
| 168 | + "christmas", |
| 169 | + "labor_day", |
| 170 | + "independence_day", |
| 171 | + "revolution_day_memorial", |
| 172 | + "regional_games", |
| 173 | + "fifa_u_17_world_cup", |
| 174 | + "football_gold_cup", |
| 175 | + "beer_capital", |
| 176 | + "music_fest", |
| 177 | + ] |
| 178 | + ), |
| 179 | + time_varying_known_reals=[ |
| 180 | + "time_idx", |
| 181 | + "price_regular", |
| 182 | + "price_actual", |
| 183 | + "discount", |
| 184 | + "discount_in_percent", |
| 185 | + ], |
| 186 | + time_varying_unknown_categoricals=[], |
| 187 | + time_varying_unknown_reals=[ |
| 188 | + "target", |
| 189 | + "volume", |
| 190 | + "log_volume", |
| 191 | + "industry_volume", |
| 192 | + "soda_volume", |
| 193 | + "avg_max_temp", |
| 194 | + ], |
| 195 | + static_categoricals=["agency"], |
| 196 | + add_relative_time_idx=False, |
| 197 | + target_normalizer=GroupNormalizer(groups=["agency", "sku"], center=False), |
| 198 | + ) |
| 199 | + |
| 200 | + |
| 201 | +@pytest.fixture(scope="session") |
| 202 | +def dataloaders_with_covariates(data_with_covariates): |
| 203 | + return make_dataloaders( |
| 204 | + data_with_covariates.copy(), |
| 205 | + target="target", |
| 206 | + time_varying_known_reals=["discount"], |
| 207 | + time_varying_unknown_reals=["target"], |
| 208 | + static_categoricals=["agency"], |
| 209 | + add_relative_time_idx=False, |
| 210 | + target_normalizer=GroupNormalizer(groups=["agency", "sku"], center=False), |
| 211 | + ) |
| 212 | + |
| 213 | + |
| 214 | +@pytest.fixture(scope="session") |
| 215 | +def dataloaders_multi_target(data_with_covariates): |
| 216 | + return make_dataloaders( |
| 217 | + data_with_covariates.copy(), |
| 218 | + time_varying_unknown_reals=["target", "discount"], |
| 219 | + target=["target", "discount"], |
| 220 | + add_relative_time_idx=False, |
| 221 | + ) |
| 222 | + |
| 223 | + |
| 224 | +@pytest.fixture(scope="session") |
| 225 | +def dataloaders_fixed_window_without_covariates(): |
| 226 | + data = generate_ar_data(seasonality=10.0, timesteps=50, n_series=2) |
| 227 | + validation = data.series.iloc[:2] |
| 228 | + |
| 229 | + max_encoder_length = 30 |
| 230 | + max_prediction_length = 10 |
| 231 | + |
| 232 | + training = TimeSeriesDataSet( |
| 233 | + data[lambda x: ~x.series.isin(validation)], |
| 234 | + time_idx="time_idx", |
| 235 | + target="value", |
| 236 | + categorical_encoders={"series": NaNLabelEncoder().fit(data.series)}, |
| 237 | + group_ids=["series"], |
| 238 | + static_categoricals=[], |
| 239 | + max_encoder_length=max_encoder_length, |
| 240 | + max_prediction_length=max_prediction_length, |
| 241 | + time_varying_unknown_reals=["value"], |
| 242 | + target_normalizer=EncoderNormalizer(), |
| 243 | + ) |
| 244 | + |
| 245 | + validation = TimeSeriesDataSet.from_dataset( |
| 246 | + training, |
| 247 | + data[lambda x: x.series.isin(validation)], |
| 248 | + stop_randomization=True, |
| 249 | + ) |
| 250 | + batch_size = 2 |
| 251 | + train_dataloader = training.to_dataloader( |
| 252 | + train=True, batch_size=batch_size, num_workers=0 |
| 253 | + ) |
| 254 | + val_dataloader = validation.to_dataloader( |
| 255 | + train=False, batch_size=batch_size, num_workers=0 |
| 256 | + ) |
| 257 | + test_dataloader = validation.to_dataloader( |
| 258 | + train=False, batch_size=batch_size, num_workers=0 |
| 259 | + ) |
| 260 | + |
| 261 | + return dict(train=train_dataloader, val=val_dataloader, test=test_dataloader) |
0 commit comments