|
| 1 | +import pickle |
| 2 | +import shutil |
| 3 | +import sys |
| 4 | + |
| 5 | +import lightning.pytorch as pl |
| 6 | +from lightning.pytorch.callbacks import EarlyStopping |
| 7 | +from lightning.pytorch.loggers import TensorBoardLogger |
| 8 | +import numpy as np |
| 9 | +import pandas as pd |
| 10 | +import pytest |
| 11 | +from test_models.conftest import make_dataloaders |
| 12 | +import torch |
| 13 | + |
| 14 | +from pytorch_forecasting import TimeSeriesDataSet |
| 15 | +from pytorch_forecasting.data.encoders import ( |
| 16 | + GroupNormalizer, |
| 17 | + MultiNormalizer, |
| 18 | + NaNLabelEncoder, |
| 19 | +) |
| 20 | +from pytorch_forecasting.metrics import ( |
| 21 | + MAE, |
| 22 | + MAPE, |
| 23 | + SMAPE, |
| 24 | + CrossEntropy, |
| 25 | + MultiLoss, |
| 26 | + PoissonLoss, |
| 27 | + QuantileLoss, |
| 28 | +) |
| 29 | +from pytorch_forecasting.metrics.distributions import NegativeBinomialDistributionLoss |
| 30 | +from pytorch_forecasting.models import TiDEModel |
| 31 | +from pytorch_forecasting.utils._dependencies import _get_installed_packages |
| 32 | + |
| 33 | + |
| 34 | +def _integration(dataloader, tmp_path, loss=None, trainer_kwargs=None, **kwargs): |
| 35 | + "Integration test for TiDEModel functionality." |
| 36 | + |
| 37 | + train_dataloader = dataloader["train"] |
| 38 | + val_dataloader = dataloader["val"] |
| 39 | + test_dataloader = dataloader["test"] |
| 40 | + |
| 41 | + early_stop = EarlyStopping( |
| 42 | + monitor="val_loss", |
| 43 | + patience=1, |
| 44 | + verbose=False, |
| 45 | + mode="min", |
| 46 | + ) |
| 47 | + |
| 48 | + logger = TensorBoardLogger(tmp_path) |
| 49 | + |
| 50 | + if trainer_kwargs is None: |
| 51 | + trainer_kwargs = {} |
| 52 | + |
| 53 | + trainer = pl.Trainer( |
| 54 | + max_epochs=2, |
| 55 | + gradient_clip_val=0.1, |
| 56 | + callbacks=[early_stop], |
| 57 | + enable_checkpointing=True, |
| 58 | + default_root_dir=tmp_path, |
| 59 | + limit_train_batches=2, |
| 60 | + limit_val_batches=2, |
| 61 | + limit_test_batches=2, |
| 62 | + logger=logger, |
| 63 | + **trainer_kwargs, |
| 64 | + ) |
| 65 | + |
| 66 | + kwargs.setdefault("learning_rate", 0.15) |
| 67 | + |
| 68 | + if loss is not None: |
| 69 | + pass |
| 70 | + elif isinstance(train_dataloader.dataset.target_normalizer, NaNLabelEncoder): |
| 71 | + loss = CrossEntropy() |
| 72 | + elif isinstance(train_dataloader.dataset.target_normalizer, MultiNormalizer): |
| 73 | + loss = MultiLoss( |
| 74 | + [ |
| 75 | + ( |
| 76 | + ( |
| 77 | + CrossEntropy() |
| 78 | + if isinstance(normalizer, NaNLabelEncoder) |
| 79 | + else QuantileLoss() |
| 80 | + ), |
| 81 | + ) |
| 82 | + for normalizer in train_dataloader.dataset.target_normalizer.normalizers |
| 83 | + ] |
| 84 | + ) |
| 85 | + else: |
| 86 | + loss = QuantileLoss() |
| 87 | + |
| 88 | + net = TiDEModel.from_dataset( |
| 89 | + train_dataloader.dataset, |
| 90 | + hidden_size=4, |
| 91 | + decoder_output_dim=4, |
| 92 | + num_encoder_layers=2, |
| 93 | + num_decoder_layers=2, |
| 94 | + dropout=0.2, |
| 95 | + loss=loss, |
| 96 | + add_relative_time_idx=False, |
| 97 | + temporal_decoder_hidden=4, |
| 98 | + temporal_width_future=2, |
| 99 | + temporal_hidden_size_future=4, |
| 100 | + log_interval=5, |
| 101 | + log_val_interval=1, |
| 102 | + **kwargs, |
| 103 | + ) |
| 104 | + |
| 105 | + net.size() |
| 106 | + |
| 107 | + try: |
| 108 | + trainer.fit( |
| 109 | + net, |
| 110 | + train_dataloaders=train_dataloader, |
| 111 | + val_dataloaders=val_dataloader, |
| 112 | + ) |
| 113 | + |
| 114 | + test_outputs = trainer.test( |
| 115 | + net, |
| 116 | + test_dataloaders=test_dataloader, |
| 117 | + ) |
| 118 | + assert len(test_outputs) > 0 |
| 119 | + |
| 120 | + net = TiDEModel.load_from_checkpoint( |
| 121 | + trainer.checkpoint_callback.best_model_path |
| 122 | + ) |
| 123 | + |
| 124 | + predictions = net.predict( |
| 125 | + val_dataloader, |
| 126 | + return_index=True, |
| 127 | + return_x=True, |
| 128 | + return_y=True, |
| 129 | + fast_dev_run=True, |
| 130 | + trainer_kwargs=trainer_kwargs, |
| 131 | + ) |
| 132 | + |
| 133 | + pred_len = len(predictions.index) |
| 134 | + |
| 135 | + def check(x): |
| 136 | + if isinstance(x, (tuple, list)): |
| 137 | + for xi in x: |
| 138 | + check(xi) |
| 139 | + elif isinstance(x, dict): |
| 140 | + for xi in x.values(): |
| 141 | + check(xi) |
| 142 | + else: |
| 143 | + assert ( |
| 144 | + pred_len == x.shape[0] |
| 145 | + ), "first dimension should be prediction length" |
| 146 | + |
| 147 | + check(predictions.output) |
| 148 | + if isinstance(predictions.output, torch.Tensor): |
| 149 | + assert ( |
| 150 | + predictions.output.ndim == 2 |
| 151 | + ), "shape of predictions should be batch_size x timesteps" |
| 152 | + else: |
| 153 | + assert all( |
| 154 | + p.ndim == 2 for p in predictions.output |
| 155 | + ), "shape of predictions should be batch_size x timesteps" |
| 156 | + |
| 157 | + check(predictions.output) |
| 158 | + |
| 159 | + if isinstance(predictions.output, torch.Tensor): |
| 160 | + assert ( |
| 161 | + predictions.output.ndim == 2 |
| 162 | + ), "shape of predictions should be batch_size x timesteps" |
| 163 | + else: |
| 164 | + assert all( |
| 165 | + p.ndim == 2 for p in predictions.output |
| 166 | + ), "shape of predictions should be batch_size x timesteps" |
| 167 | + check(predictions.x) |
| 168 | + check(predictions.index) |
| 169 | + finally: |
| 170 | + shutil.rmtree(tmp_path, ignore_errors=True) |
| 171 | + |
| 172 | + |
| 173 | +def test_integration(multiple_dataloaders_with_covariates, tmp_path): |
| 174 | + """Test basic integration of model with covariates.""" |
| 175 | + _integration( |
| 176 | + multiple_dataloaders_with_covariates, |
| 177 | + tmp_path, |
| 178 | + trainer_kwargs=dict(accelerator="cpu"), |
| 179 | + ) |
| 180 | + |
| 181 | + |
| 182 | +@pytest.fixture |
| 183 | +def model(dataloaders_with_covariates): |
| 184 | + """Create a model for testing.""" |
| 185 | + |
| 186 | + dataset = dataloaders_with_covariates["train"].dataset |
| 187 | + |
| 188 | + net = TiDEModel.from_dataset( |
| 189 | + dataset=dataset, |
| 190 | + learning_rate=0.15, |
| 191 | + hidden_size=4, |
| 192 | + num_encoder_layers=2, |
| 193 | + num_decoder_layers=2, |
| 194 | + decoder_output_dim=4, |
| 195 | + dropout=0.2, |
| 196 | + temporal_decoder_hidden=4, |
| 197 | + temporal_width_future=2, |
| 198 | + temporal_hidden_size_future=4, |
| 199 | + loss=PoissonLoss(), |
| 200 | + output_size=1, |
| 201 | + log_interval=5, |
| 202 | + log_val_interval=1, |
| 203 | + ) |
| 204 | + return net |
| 205 | + |
| 206 | + |
| 207 | +def test_tensorboard_graph_log(dataloaders_with_covariates, model, tmp_path): |
| 208 | + """Test if tensorboard graph can be logged.""" |
| 209 | + d = next(iter(dataloaders_with_covariates["train"])) |
| 210 | + logger = TensorBoardLogger("test", str(tmp_path), log_graph=True) |
| 211 | + logger.log_graph(model, d[0]) |
| 212 | + |
| 213 | + |
| 214 | +def test_pickle(model): |
| 215 | + """Test that model can be pickled and unpickled.""" |
| 216 | + pkl = pickle.dumps(model) |
| 217 | + pickle.loads(pkl) # noqa: S301 |
| 218 | + |
| 219 | + |
| 220 | +@pytest.mark.parametrize( |
| 221 | + "kwargs", [dict(mode="dataframe"), dict(mode="series"), dict(mode="raw")] |
| 222 | +) |
| 223 | +def test_predict_dependency( |
| 224 | + model, dataloaders_with_covariates, data_with_covariates, kwargs |
| 225 | +): |
| 226 | + """Test if predict_dependency works correctly.""" |
| 227 | + train_dataset = dataloaders_with_covariates["train"].dataset |
| 228 | + data_with_covariates = data_with_covariates.copy() |
| 229 | + dataset = TimeSeriesDataSet.from_dataset( |
| 230 | + train_dataset, |
| 231 | + data_with_covariates[lambda x: x.agency == data_with_covariates.agency.iloc[0]], |
| 232 | + predict=True, |
| 233 | + ) |
| 234 | + model.predict_dependency(dataset, variable="discount", values=[0.1, 0.0], **kwargs) |
| 235 | + model.predict_dependency( |
| 236 | + dataset, |
| 237 | + variable="agency", |
| 238 | + values=data_with_covariates.agency.unique()[:2], |
| 239 | + **kwargs, |
| 240 | + ) |
| 241 | + |
| 242 | + |
| 243 | +@pytest.mark.parametrize( |
| 244 | + "kwargs", |
| 245 | + [ |
| 246 | + dict(mode="raw"), |
| 247 | + dict(mode="quantiles"), |
| 248 | + dict(return_index=True), |
| 249 | + dict(return_decoder_lengths=True), |
| 250 | + dict(return_x=True), |
| 251 | + dict(return_y=True), |
| 252 | + ], |
| 253 | +) |
| 254 | +def test_prediction_with_dataloader(model, dataloaders_with_covariates, kwargs): |
| 255 | + """Test prediction with dataloader.""" |
| 256 | + val_dataloader = dataloaders_with_covariates["val"] |
| 257 | + model.predict(val_dataloader, fast_dev_run=True, **kwargs) |
| 258 | + |
| 259 | + |
| 260 | +def test_prediction_with_dataset(model, dataloaders_with_covariates): |
| 261 | + """Test prediction with dataset.""" |
| 262 | + val_dataloader = dataloaders_with_covariates["val"] |
| 263 | + model.predict(val_dataloader.dataset, fast_dev_run=True) |
| 264 | + |
| 265 | + |
| 266 | +def test_prediction_with_dataframe(model, data_with_covariates): |
| 267 | + """Test the prediction with dataframe.""" |
| 268 | + model.predict(data_with_covariates, fast_dev_run=True) |
| 269 | + |
| 270 | + |
| 271 | +def test_no_exogenous_variable(): |
| 272 | + """Test whether model works without exogenous variables.""" |
| 273 | + data = pd.DataFrame( |
| 274 | + { |
| 275 | + "target": np.ones(1600), |
| 276 | + "group_id": np.repeat(np.arange(16), 100), |
| 277 | + "time_idx": np.tile(np.arange(100), 16), |
| 278 | + } |
| 279 | + ) |
| 280 | + training_dataset = TimeSeriesDataSet( |
| 281 | + data=data, |
| 282 | + time_idx="time_idx", |
| 283 | + target="target", |
| 284 | + group_ids=["group_id"], |
| 285 | + max_encoder_length=10, |
| 286 | + max_prediction_length=5, |
| 287 | + min_encoder_length=10, |
| 288 | + min_prediction_length=5, |
| 289 | + time_varying_unknown_reals=["target"], |
| 290 | + time_varying_known_reals=[], |
| 291 | + ) |
| 292 | + validation_dataset = TimeSeriesDataSet.from_dataset( |
| 293 | + training_dataset, data, stop_randomization=True, predict=True |
| 294 | + ) |
| 295 | + training_data_loader = training_dataset.to_dataloader( |
| 296 | + train=True, batch_size=8, num_workers=0 |
| 297 | + ) |
| 298 | + validation_data_loader = validation_dataset.to_dataloader( |
| 299 | + train=False, batch_size=8, num_workers=0 |
| 300 | + ) |
| 301 | + forecaster = TiDEModel.from_dataset( |
| 302 | + training_dataset, |
| 303 | + log_interval=1, |
| 304 | + ) |
| 305 | + from lightning.pytorch import Trainer |
| 306 | + |
| 307 | + trainer = Trainer( |
| 308 | + max_epochs=2, |
| 309 | + limit_train_batches=8, |
| 310 | + limit_val_batches=8, |
| 311 | + ) |
| 312 | + trainer.fit( |
| 313 | + forecaster, |
| 314 | + train_dataloaders=training_data_loader, |
| 315 | + val_dataloaders=validation_data_loader, |
| 316 | + ) |
| 317 | + best_model_path = trainer.checkpoint_callback.best_model_path |
| 318 | + best_model = TiDEModel.load_from_checkpoint(best_model_path) |
| 319 | + best_model.predict( |
| 320 | + validation_data_loader, |
| 321 | + return_x=True, |
| 322 | + return_y=True, |
| 323 | + return_index=True, |
| 324 | + ) |
0 commit comments