Skip to content

tf-probability error using Wishart prior #194

@doctorwes

Description

@doctorwes

I am having trouble estimating a covariance matrix using a Wishart prior. This may be related to a previously reported issue in tensorflow-probability: https://github.com/GPflow/GPflow/issues/553

Error message:

InvalidArgumentError: Cholesky decomposition was not successful. The input might not be valid. [[{{node cov_194/log_prob/Cholesky}}]]

Code:

def flat_model(mean=mean0, cov=cov0):
    meanrets = inf.Normal(mean0, scale=0.01, name='meanrets')
    cov = inf.Wishart(df=n, scale=cov0, name='cov')
    with inf.datamodel():
        x = inf.MultivariateNormalFullCovariance(loc=meanrets, covariance_matrix=cov, name='x')
 
@inf.probmodel
def flat_qmodel():
    q_means_loc = inf.Parameter(np.zeros([n]), name='q_means_loc')
    q_means_scale = tf.math.softplus(inf.Parameter(np.ones([n]), name='q_means_scale'))
    qmeans = inf.Normal(q_means_loc, q_means_scale, name='meanrets')  
    q_cov_scale = inf.Parameter(np.diag(n*[1.]), name='q_cov_scale')
    qcov = inf.Wishart(df=n, scale=q_cov_scale, name='cov')```

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions