-
Notifications
You must be signed in to change notification settings - Fork 14
Open
Description
I am having trouble estimating a covariance matrix using a Wishart prior. This may be related to a previously reported issue in tensorflow-probability: https://github.com/GPflow/GPflow/issues/553
Error message:
InvalidArgumentError: Cholesky decomposition was not successful. The input might not be valid. [[{{node cov_194/log_prob/Cholesky}}]]
Code:
def flat_model(mean=mean0, cov=cov0):
meanrets = inf.Normal(mean0, scale=0.01, name='meanrets')
cov = inf.Wishart(df=n, scale=cov0, name='cov')
with inf.datamodel():
x = inf.MultivariateNormalFullCovariance(loc=meanrets, covariance_matrix=cov, name='x')
@inf.probmodel
def flat_qmodel():
q_means_loc = inf.Parameter(np.zeros([n]), name='q_means_loc')
q_means_scale = tf.math.softplus(inf.Parameter(np.ones([n]), name='q_means_scale'))
qmeans = inf.Normal(q_means_loc, q_means_scale, name='meanrets')
q_cov_scale = inf.Parameter(np.diag(n*[1.]), name='q_cov_scale')
qcov = inf.Wishart(df=n, scale=q_cov_scale, name='cov')```
Metadata
Metadata
Assignees
Labels
No labels