Skip to content

Webinar notebook on Plotly #218

@GBZH

Description

@GBZH

Hello,
When running the Plotly webinar notebook from github, at the following command:
df_pvss = endaq.calc.shock.pseudo_velocity(df, get_log_freqs(df,init_freq=1,bins_per_octave=12), damp=0.05, two_sided=False)-'

I get the following error message:

`---------------------------------------------------------------------------

TypeError Traceback (most recent call last)

in
----> 1 df_pvss = endaq.calc.shock.pseudo_velocity(df,
2 get_log_freqs(df,init_freq=1,bins_per_octave=12),
3 damp=0.05, two_sided=False)
4 df_pvss = df_pvss9.8139.37 #convert to in/s

TypeError: pseudo_velocity() got an unexpected keyword argument 'two_sided'`

When removing this argument from the list I get new error messages running either Python 3.8, 3.9 or 3.10:

`/usr/local/lib/python3.8/dist-packages/numpy/core/shape_base.py:65: VisibleDeprecationWarning:

Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.


ValueError Traceback (most recent call last)

in
----> 1 df_pvss = endaq.calc.shock.pseudo_velocity(df,
2 get_log_freqs(df,init_freq=1,bins_per_octave=12),
3 damp=0.05)
4 df_pvss = df_pvss9.8139.37 #convert to in/s

/usr/local/lib/python3.8/dist-packages/endaq/calc/shock.py in pseudo_velocity(accel, omega, damp)
313 Q = 1./(2.*damp)
314
--> 315 return accel.apply(
316 functools.partial(
317 scipy.signal.lfilter,

/usr/local/lib/python3.8/dist-packages/pandas/core/frame.py in apply(self, func, axis, raw, result_type, args, **kwargs)
8738 kwargs=kwargs,
8739 )
-> 8740 return op.apply()
8741
8742 def applymap(

/usr/local/lib/python3.8/dist-packages/pandas/core/apply.py in apply(self)
684 # raw
685 elif self.raw:
--> 686 return self.apply_raw()
687
688 return self.apply_standard()

/usr/local/lib/python3.8/dist-packages/pandas/core/apply.py in apply_raw(self)
772 return wrapper
773
--> 774 result = np.apply_along_axis(wrap_function(self.f), self.axis, self.values)
775
776 # TODO: mixed type case

<array_function internals> in apply_along_axis(*args, **kwargs)

/usr/local/lib/python3.8/dist-packages/numpy/lib/shape_base.py in apply_along_axis(func1d, axis, arr, *args, **kwargs)
377 'Cannot apply_along_axis when any iteration dimensions are 0'
378 ) from None
--> 379 res = asanyarray(func1d(inarr_view[ind0], *args, **kwargs))
380
381 # build a buffer for storing evaluations of func1d.

/usr/local/lib/python3.8/dist-packages/pandas/core/apply.py in wrapper(*args, **kwargs)
765
766 def wrapper(*args, **kwargs):
--> 767 result = func(*args, **kwargs)
768 if isinstance(result, str):
769 result = np.array(result, dtype=object)

/usr/local/lib/python3.8/dist-packages/scipy/signal/signaltools.py in lfilter(b, a, x, axis, zi)
2053 else:
2054 if zi is None:
-> 2055 return sigtools._linear_filter(b, a, x, axis)
2056 else:
2057 return sigtools._linear_filter(b, a, x, axis, zi)

ValueError: could not convert b, a, and x to a common type`

Is there a way to fix this ?

Thanks a lot for your help and for providing this software as an open version !

Gilles

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions