@@ -94,7 +94,7 @@ def __init__(
9494 params_known += [
9595 "contributivity_methods" ,
9696 "multi_partner_learning_approach" ,
97- "aggregation " ,
97+ "aggregation_weighting " ,
9898 ] # federated learning related
9999 params_known += [
100100 "partners_count" ,
@@ -232,9 +232,9 @@ def __init__(
232232
233233 # Define how federated learning aggregation steps are weighted...
234234 # ... Toggle between 'uniform' (default) and 'data_volume'
235- self .aggregation = aggregation_weighting
235+ self .aggregation_weighting = aggregation_weighting
236236 try :
237- self ._aggregation = AGGREGATORS [aggregation_weighting ]
237+ self ._aggregation_weighting = AGGREGATORS [aggregation_weighting ]
238238 except KeyError :
239239 raise ValueError (f"aggregation approach '{ aggregation_weighting } ' is not a valid approach. " )
240240
@@ -380,7 +380,7 @@ def copy(self, **kwargs):
380380 for key in ['partners_list' ,
381381 'mpl' ,
382382 '_multi_partner_learning_approach' ,
383- '_aggregation ' ,
383+ '_aggregation_weighting ' ,
384384 'use_saved_weights' ,
385385 'contributivity_list' ,
386386 'scenario_name' ,
@@ -408,7 +408,7 @@ def log_scenario_description(self):
408408 logger .info (f" Number of partners defined: { self .partners_count } " )
409409 logger .info (f" Data distribution scenario chosen: { self .splitter } " )
410410 logger .info (f" Multi-partner learning approach: { self .multi_partner_learning_approach } " )
411- logger .info (f" Weighting option: { self .aggregation } " )
411+ logger .info (f" Weighting option: { self .aggregation_weighting } " )
412412 logger .info (f" Iterations parameters: "
413413 f"{ self .epoch_count } epochs > "
414414 f"{ self .minibatch_count } mini-batches > "
@@ -515,7 +515,7 @@ def to_dataframe(self):
515515
516516 # Multi-partner learning approach parameters
517517 dict_results ["multi_partner_learning_approach" ] = self .multi_partner_learning_approach
518- dict_results ["aggregation " ] = self .aggregation
518+ dict_results ["aggregation_weighting " ] = self .aggregation_weighting
519519 dict_results ["epoch_count" ] = self .epoch_count
520520 dict_results ["minibatch_count" ] = self .minibatch_count
521521 dict_results ["gradient_updates_per_pass_count" ] = self .gradient_updates_per_pass_count
0 commit comments