@@ -68,7 +68,7 @@ function =={T}(P::FormalPowerSeries{T}, Q::FormalPowerSeries{T})
6868 for (k,v) in P. c
6969 if v== 0 # ignore explicit zeros
7070 continue
71- elseif ! has (Q. c, k)
71+ elseif ! haskey (Q. c, k)
7272 return false
7373 elseif Q. c[k] != v
7474 return false
@@ -77,7 +77,7 @@ function =={T}(P::FormalPowerSeries{T}, Q::FormalPowerSeries{T})
7777 for (k,v) in Q. c
7878 if v== 0 # ignore explicit zeros
7979 continue
80- elseif ! has (P. c, k)
80+ elseif ! haskey (P. c, k)
8181 return false
8282 elseif P. c[k] != v
8383 return false
9090function + {T}(P:: FormalPowerSeries{T} , Q:: FormalPowerSeries{T} )
9191 c = Dict {BigInt, T} ()
9292 for (k,v) in P. c
93- has (c,k) ? (c[k]+= v) : (c[k]= v)
93+ haskey (c,k) ? (c[k]+= v) : (c[k]= v)
9494 end
9595 for (k,v) in Q. c
96- has (c,k) ? (c[k]+= v) : (c[k]= v)
96+ haskey (c,k) ? (c[k]+= v) : (c[k]= v)
9797 end
9898 FormalPowerSeries {T} (c)
9999end
100100
101101function - {T}(P:: FormalPowerSeries{T} , Q:: FormalPowerSeries{T} )
102102 c = Dict {BigInt, T} ()
103103 for (k,v) in P. c
104- has (c,k) ? (c[k]+= v) : (c[k]= v)
104+ haskey (c,k) ? (c[k]+= v) : (c[k]= v)
105105 end
106106 for (k,v) in Q. c
107- has (c,k) ? (c[k]-= v) : (c[k]= - v)
107+ haskey (c,k) ? (c[k]-= v) : (c[k]= - v)
108108 end
109109 FormalPowerSeries {T} (c)
110110end
@@ -134,7 +134,7 @@ function CauchyProduct{T}(P::FormalPowerSeries{T}, Q::FormalPowerSeries{T})
134134 c = Dict {BigInt, T} ()
135135 for (k1, v1) in P. c
136136 for (k2, v2) in Q. c
137- has (c, k1+ k2) ? (c[k1+ k2]+= v1* v2) : (c[k1+ k2]= v1* v2)
137+ haskey (c, k1+ k2) ? (c[k1+ k2]+= v1* v2) : (c[k1+ k2]= v1* v2)
138138 end
139139 end
140140 FormalPowerSeries {T} (c)
145145function HadamardProduct {T} (P:: FormalPowerSeries{T} , Q:: FormalPowerSeries{T} )
146146 c = Dict {BigInt, T} ()
147147 for (k,v) in P. c
148- if v!= 0 && has (Q. c,k) && Q. c[k]== 0
148+ if v!= 0 && haskey (Q. c,k) && Q. c[k]== 0
149149 c[k] = v * Q. c[k]
150150 end
151151 end
162162isunit {T <: Number} (P:: FormalPowerSeries{T} ) = P== eye (P)
163163
164164# [H, p.12]
165- isnonunit {T} (P:: FormalPowerSeries{T} ) = (! has (P. c, 0 ) || P. c[0 ]== 0 ) && ! isunit (P)
165+ isnonunit {T} (P:: FormalPowerSeries{T} ) = (! haskey (P. c, 0 ) || P. c[0 ]== 0 ) && ! isunit (P)
166166
167167# Constructs the top left m x m block of the (infinite) semicirculant matrix
168168# associated with the fps [H, Sec.1.3, p.14]
260260
261261# [H, p.45]
262262function isalmostunit {T} (P:: FormalPowerSeries{T} )
263- (has (P. c, 0 ) && P. c[0 ]!= 0 ) ? (return false ) : true
264- (has (P. c, 1 ) && P. c[1 ]!= 0 ) ? (return true ) : (return false )
263+ (haskey (P. c, 0 ) && P. c[0 ]!= 0 ) ? (return false ) : true
264+ (haskey (P. c, 1 ) && P. c[1 ]!= 0 ) ? (return true ) : (return false )
265265end
266266
267267
0 commit comments