@@ -685,34 +685,30 @@ end
685685
686686
687687 # issue 240
688- P = Polynomial
689-
690- a = P ([0.8457170323029561 , 0.47175077674705257 , 0.9775441940117577 ]);
691- b = P ([0.5410010714904849 , 0.533604905984294 ]);
692- d = P ([0.5490673726445683 , 0.15991109487875477 ]);
693- @test degree (gcd (a* d,b* d)) == 0
694- @test degree (gcd (a* d, b* d, atol= sqrt (eps ()))) > 0
695- if VERSION >= v " 1.2.0"
696- @test degree (gcd (a* d,b* d, method= :noda_sasaki )) == degree (d)
697- @test degree (gcd (a* d,b* d, method= :numerical )) == degree (d)
698- end
699-
700- l,m,n = (5 ,5 ,5 ) # realiable, though for larger l,m,n only **usually** correct
701- u,v,w = fromroots .(rand .((l,m,n)))
702- @test degree (gcd (u* v, u* w, method= :numerical )) == degree (u)
688+ if VERSION >= v " 1.2.0" # rank with keywords; require_one_based_indexing
703689
704- # Example of Zeng
705- x = variable (P{Float64})
706- p = (x+ 10 )* (x^ 9 + x^ 8 / 3 + 1 )
707- q = (x+ 10 )* (x^ 9 + x^ 8 / 7 - 6 // 7 )
690+ P = Polynomial
708691
709- @test degree (gcd (p,q)) == 0
710- if VERSION >= v " 1.2.0"
692+ a = P ([0.8457170323029561 , 0.47175077674705257 , 0.9775441940117577 ]);
693+ b = P ([0.5410010714904849 , 0.533604905984294 ]);
694+ d = P ([0.5490673726445683 , 0.15991109487875477 ]);
695+ @test degree (gcd (a* d,b* d)) == 0
696+ @test degree (gcd (a* d, b* d, atol= sqrt (eps ()))) > 0
697+ @test degree (gcd (a* d,b* d, method= :noda_sasaki )) == degree (d)
698+ @test degree (gcd (a* d,b* d, method= :numerical )) == degree (d)
699+ l,m,n = (5 ,5 ,5 ) # realiable, though for larger l,m,n only **usually** correct
700+ u,v,w = fromroots .(rand .((l,m,n)))
701+ @test degree (gcd (u* v, u* w, method= :numerical )) == degree (u)
702+
703+ # Example of Zeng
704+ x = variable (P{Float64})
705+ p = (x+ 10 )* (x^ 9 + x^ 8 / 3 + 1 )
706+ q = (x+ 10 )* (x^ 9 + x^ 8 / 7 - 6 // 7 )
707+
708+ @test degree (gcd (p,q)) == 0
711709 (@test degree (gcd (p,q, method= :noda_sasaki )) == 1 )
712710 @test degree (gcd (p,q, method= :numerical )) == 1
713- end
714711
715- if VERSION >= v " 1.2.0"
716712 # more bits don't help Euclidean
717713 x = variable (P{BigFloat})
718714 p = (x+ 10 )* (x^ 9 + x^ 8 / 3 + 1 )
750746 q = (x- 1 ) * (x- 2 ) * (x- 4 )
751747 @test degree (gcd (p,q, method= :numerical )) == 2
752748 end
753-
754- end
755-
749+ end
756750end
757751
758-
759752@testset " Showing" begin
760753
761754 p = Polynomial {Rational} ([1 , 4 ])
0 commit comments