Skip to content

Commit f023da8

Browse files
committed
manual : friction coefficient capital letter K
1 parent 853ce1e commit f023da8

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

docs/src/manual.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -155,19 +155,19 @@ The plant model is nonlinear:
155155
```math
156156
\begin{aligned}
157157
\dot{θ}(t) &= ω(t) \\
158-
\dot{ω}(t) &= -\frac{g}{L}\sin\big( θ(t) \big) - \frac{k}{m} ω(t) + \frac{1}{m L^2} τ(t)
158+
\dot{ω}(t) &= -\frac{g}{L}\sin\big( θ(t) \big) - \frac{K}{m} ω(t) + \frac{1}{m L^2} τ(t)
159159
\end{aligned}
160160
```
161161

162-
in which ``g`` is the gravitational acceleration, ``L``, the pendulum length, ``k``, the
162+
in which ``g`` is the gravitational acceleration, ``L``, the pendulum length, ``K``, the
163163
friction coefficient at the pivot point, and ``m``, the mass attached at the end of the
164164
pendulum. Here, the explicit Euler method discretizes the system to construct a
165165
[`NonLinModel`](@ref):
166166

167167
```@example 2
168168
using ModelPredictiveControl
169169
function pendulum(par, x, u)
170-
g, L, k, m = par # [m/s], [m], [kg/s], [kg]
170+
g, L, K, m = par # [m/s], [m], [kg/s], [kg]
171171
θ, ω = x[1], x[2] # [rad], [rad/s]
172172
τ = u[1] # [N m]
173173
dθ = ω
@@ -199,7 +199,7 @@ estim = UnscentedKalmanFilter(model, σQ=[0.5, 2.5], σQ_int=[0.5])
199199

200200
The standard deviation of the angular velocity ``ω`` is higher here (`σQ` second value)
201201
since ``\dot{ω}(t)`` equation includes an uncertain parameter: the friction coefficient
202-
``k``. The estimator tuning is tested on a plant simulated with a different ``k``:
202+
``K``. The estimator tuning is tested on a plant simulated with a different ``K``:
203203

204204
```@example 2
205205
par_plant = (par[1], par[2], par[3] + 0.25, par[4])
@@ -225,4 +225,4 @@ res = sim!(mpc, 30, [180.0], x̂0=zeros(mpc.estim.nx̂), plant=plant, x0=zeros(p
225225
plot(res, plotŷ=true)
226226
```
227227

228-
The controller seems robust enough to variations on ``k`` coefficient.
228+
The controller seems robust enough to variations on ``K`` coefficient.

0 commit comments

Comments
 (0)