@@ -155,19 +155,19 @@ The plant model is nonlinear:
155155``` math
156156\begin{aligned}
157157 \dot{θ}(t) &= ω(t) \\
158- \dot{ω}(t) &= -\frac{g}{L}\sin\big( θ(t) \big) - \frac{k }{m} ω(t) + \frac{1}{m L^2} τ(t)
158+ \dot{ω}(t) &= -\frac{g}{L}\sin\big( θ(t) \big) - \frac{K }{m} ω(t) + \frac{1}{m L^2} τ(t)
159159\end{aligned}
160160```
161161
162- in which `` g `` is the gravitational acceleration, `` L `` , the pendulum length, `` k `` , the
162+ in which `` g `` is the gravitational acceleration, `` L `` , the pendulum length, `` K `` , the
163163friction coefficient at the pivot point, and `` m `` , the mass attached at the end of the
164164pendulum. Here, the explicit Euler method discretizes the system to construct a
165165[ ` NonLinModel ` ] ( @ref ) :
166166
167167``` @example 2
168168using ModelPredictiveControl
169169function pendulum(par, x, u)
170- g, L, k , m = par # [m/s], [m], [kg/s], [kg]
170+ g, L, K , m = par # [m/s], [m], [kg/s], [kg]
171171 θ, ω = x[1], x[2] # [rad], [rad/s]
172172 τ = u[1] # [N m]
173173 dθ = ω
@@ -199,7 +199,7 @@ estim = UnscentedKalmanFilter(model, σQ=[0.5, 2.5], σQ_int=[0.5])
199199
200200The standard deviation of the angular velocity `` ω `` is higher here (` σQ ` second value)
201201since `` \dot{ω}(t) `` equation includes an uncertain parameter: the friction coefficient
202- `` k `` . The estimator tuning is tested on a plant simulated with a different `` k `` :
202+ `` K `` . The estimator tuning is tested on a plant simulated with a different `` K `` :
203203
204204``` @example 2
205205par_plant = (par[1], par[2], par[3] + 0.25, par[4])
@@ -225,4 +225,4 @@ res = sim!(mpc, 30, [180.0], x̂0=zeros(mpc.estim.nx̂), plant=plant, x0=zeros(p
225225plot(res, plotŷ=true)
226226```
227227
228- The controller seems robust enough to variations on `` k `` coefficient.
228+ The controller seems robust enough to variations on `` K `` coefficient.
0 commit comments