You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
SteadyKalmanFilter estimator with a sample time Ts = 0.5 s, LinModel and:
110
110
1 manipulated inputs u
111
111
3 states x̂
@@ -115,19 +115,20 @@ SteadyKalmanFilter estimator with a sample time Ts = 0.5 s, LinModel and:
115
115
```
116
116
117
117
# Extended Help
118
-
The model augmentation with `nint_u` vector adds integrators at model manipulated inputs,
118
+
The model augmentation with `nint_u` vector adds integrators at model manipulated inputs,
119
119
and `nint_ym`, at measured outputs. They create the integral action when the estimator is
120
-
used in a controller as state feedback. The method [`default_nint`](@ref) computes the
121
-
default value of `nint_ym`. It can also be tweaked by following these rules on each measured output:
120
+
used in a controller as state feedback. By default, the method [`default_nint`](@ref) adds
121
+
one integrator per measured output if feasible. The argument `nint_ym` can also be tweaked
122
+
by following these rules on each measured output:
122
123
123
124
- Use 0 integrator if the model output is already integrating (else it will be unobservable)
124
125
- Use 1 integrator if the disturbances on the output are typically "step-like"
125
126
- Use 2 integrators if the disturbances on the output are typically "ramp-like"
126
127
127
-
The function [`init_integrators`](@ref) builds the stochastic model from `nint_ym`.
128
+
The function [`init_estimstoch`](@ref) builds the stochastic model for estimation.
128
129
129
130
!!! tip
130
-
Increasing `σQ_int` values increases the integral action "gain".
131
+
Increasing `σQint_u` and `σQint_ym` values increases the integral action "gain".
131
132
132
133
The constructor pre-compute the steady-state Kalman gain `K` with the [`kalman`](https://juliacontrol.github.io/ControlSystems.jl/stable/lib/synthesis/#ControlSystemsBase.kalman-Tuple{Any,%20Any,%20Any,%20Any,%20Any,%20Vararg{Any}})
133
134
function. It can sometimes fail, for example when `model` matrices are ill-conditioned. In
@@ -252,7 +253,7 @@ value with ``\mathbf{P̂}_{-1}(0) =
252
253
```jldoctest
253
254
julia> model = LinModel([tf(3, [30, 1]); tf(-2, [5, 1])], 0.5);
ExtendedKalmanFilter estimator with a sample time Ts = 5.0 s, NonLinModel and:
621
623
1 manipulated inputs u
622
624
2 states x̂
@@ -626,7 +628,6 @@ ExtendedKalmanFilter estimator with a sample time Ts = 5.0 s, NonLinModel and:
626
628
```
627
629
628
630
# Extended Help
629
-
630
631
Automatic differentiation (AD) allows exact Jacobians. The [`NonLinModel`](@ref) `f` and `h`
631
632
functions must be compatible with this feature though. See [Automatic differentiation](https://jump.dev/JuMP.jl/stable/manual/nlp/#Automatic-differentiation)
632
633
for common mistakes when writing these functions.
@@ -652,13 +653,13 @@ function ExtendedKalmanFilter(
0 commit comments