@@ -16,17 +16,19 @@ using Pkg; Pkg.add("ModelPredictiveControl")
1616
1717## Features
1818
19+ ### Legend
20+
1921✅ implemented feature
2022⬜ planned feature
2123
22- ### Model Predictive Control
24+ ### Model Predictive Control Features
2325
24- - ✅ linear and nonlinear plant models using a unified structure
25- - ⬜ model predictive controllers based on a :
26- - ✅ linear plant model
27- - ⬜ nonlinear plant model
28- - ⬜ support for linear model predictions using fast matrix algebra in a nonlinear
29- controller (e.g. economic cost minimization of a linear plant model)
26+ - ✅ linear and nonlinear plant models exploiting multiple dispatch
27+ - ⬜ model predictive controllers based on :
28+ - ✅ linear plant models
29+ - ⬜ linear plant models in a nonlinear controller using fast matrix algebra for the
30+ predictions (e.g. economic optimization of a linear model)
31+ - ⬜ nonlinear plant models
3032- ⬜ supported objective function terms :
3133 - ✅ output setpoint tracking
3234 - ✅ move suppression
@@ -39,23 +41,23 @@ using Pkg; Pkg.add("ModelPredictiveControl")
3941 - ✅ manipulated inputs increments
4042- ⬜ custom manipulated input constraints that are a function of the predictions
4143- ✅ supported feedback strategy :
42- - ✅ internal model structure with custom stochastic model
4344 - ✅ state estimator (see State Estimation features)
45+ - ✅ internal model structure with a custom stochastic model
4446- ✅ offset-free tracking with a single or multiple integrators on measured outputs
4547- ✅ support for unmeasured model outputs
4648- ✅ feedforward action with measured disturbances that supports direct transmission
4749- ✅ custom predictions for :
4850 - ✅ output setpoints
4951 - ✅ measured disturbances
50- - ⬜ get additional information about the optimum to ease troubleshooting :
52+ - ⬜ additional information about the optimum to ease troubleshooting :
5153 - ✅ optimal input increments over control horizon
5254 - ✅ slack variable optimum
5355 - ✅ objective function optimum
5456 - ✅ output predictions at optimum
5557 - ✅ current stochastic output predictions
5658 - ⬜ custom penalty value at optimum
5759
58- ### State Estimation
60+ ### State Estimation Features
5961
6062- ⬜ supported state estimators/observers :
6163 - ✅ steady-state Kalman filter
@@ -64,7 +66,7 @@ using Pkg; Pkg.add("ModelPredictiveControl")
6466 - ✅ internal model structure
6567 - ⬜ unscented Kalman filter
6668 - ⬜ moving horizon estimator
67- - ✅ observers in the predictor form to facilitate predictive control applications.
69+ - ✅ observers in predictor form to ease control applications
6870- ⬜ moving horizon estimator that supports :
6971 - ⬜ inequality state constraints
70- - ⬜ equality constraints at zero on process noise ( to reduce the problem size)
72+ - ⬜ zero process noise equality constraint to reduce the problem size
0 commit comments