@@ -326,7 +326,7 @@ It implements the time-varying Kalman Filter in its predictor (observer) form :
326326\b egin{aligned}
327327 \m athbf{M̂}(k) &= \m athbf{P̂}_{k-1}(k)\m athbf{Ĉ^m}'
328328 [\m athbf{Ĉ^m P̂}_{k-1}(k)\m athbf{Ĉ^m}' + \m athbf{R̂}]^{-1} \\
329- \m athbf{K̂}(k) &= \m athbf{Â M̂(k)} \\
329+ \m athbf{K̂}(k) &= \m athbf{Â M̂} (k) \\
330330 \m athbf{ŷ^m}(k) &= \m athbf{Ĉ^m x̂}_{k-1}(k) + \m athbf{D̂_d^m d}(k) \\
331331 \m athbf{x̂}_{k}(k+1) &= \m athbf{Â x̂}_{k-1}(k) + \m athbf{B̂_u u}(k) + \m athbf{B̂_d d}(k)
332332 + \m athbf{K̂}(k)[\m athbf{y^m}(k) - \m athbf{ŷ^m}(k)] \\
@@ -339,7 +339,7 @@ based on the process model described in [`SteadyKalmanFilter`](@ref). The notati
339339control period ``k-1``. See [^2] for details.
340340
341341[^2]: Boyd S., "Lecture 8 : The Kalman Filter" (Winter 2008-09) [course slides], *EE363:
342- Linear Dynamical Systems*, https://web.stanford.edu/class/ee363/lectures/kf.pdf.
342+ Linear Dynamical Systems*, < https://web.stanford.edu/class/ee363/lectures/kf.pdf> .
343343"""
344344function update_estimate! (estim:: KalmanFilter , u, ym, d)
345345 return update_estimate_kf! (estim, u, ym, d, estim. Â, estim. Ĉm, estim. P̂, estim. x̂)
@@ -559,7 +559,7 @@ to compute ``\sqrt{\mathbf{P̂}_{k-1}(k)}`` and ``\sqrt{\mathbf{P̂}_{k}(k)}``.
559559noise, respectively.
560560
561561[^3]: Simon, D. 2006, "Chapter 14: The unscented Kalman filter" in "Optimal State Estimation:
562- Kalman, H∞, and Nonlinear Approaches", John Wiley & Sons, p. 433–459, https://doi.org/10.1002/0470045345.ch14,
562+ Kalman, H∞, and Nonlinear Approaches", John Wiley & Sons, p. 433–459, < https://doi.org/10.1002/0470045345.ch14> ,
563563 ISBN9780470045343.
564564"""
565565function update_estimate! (estim:: UnscentedKalmanFilter{NT} , u, ym, d) where NT<: Real
0 commit comments