@@ -148,8 +148,8 @@ function SteadyKalmanFilter(
148148 σQint_ym:: Vector = fill (1 , max (sum (nint_ym), 0 ))
149149) where {NT<: Real , SM<: LinModel{NT} }
150150 # estimated covariances matrices (variance = σ²) :
151- Q̂ = Diagonal {NT} ( [σQ; σQint_u; σQint_ym]. ^ 2 )
152- R̂ = Diagonal {NT} (σR .^ 2 )
151+ Q̂ = Hermitian ( diagm (NT [σQ; σQint_u; σQint_ym ]. ^ 2 ), :L )
152+ R̂ = Hermitian ( diagm (NT[σR;] . ^ 2 ), :L )
153153 return SteadyKalmanFilter {NT, SM} (model, i_ym, nint_u, nint_ym, Q̂ , R̂)
154154end
155155
@@ -288,9 +288,9 @@ function KalmanFilter(
288288 σP0int_ym:: Vector = σQint_ym,
289289) where {NT<: Real , SM<: LinModel{NT} }
290290 # estimated covariances matrices (variance = σ²) :
291- P̂0 = Diagonal {NT} ( [σP0; σP0int_u; σP0int_ym]. ^ 2 )
292- Q̂ = Diagonal {NT} ( [σQ; σQint_u; σQint_ym]. ^ 2 )
293- R̂ = Diagonal {NT} (σR .^ 2 )
291+ P̂0 = Hermitian ( diagm (NT [σP0; σP0int_u; σP0int_ym]. ^ 2 ), :L )
292+ Q̂ = Hermitian ( diagm (NT [σQ; σQint_u; σQint_ym ]. ^ 2 ), :L )
293+ R̂ = Hermitian ( diagm (NT[σR;] . ^ 2 ), :L )
294294 return KalmanFilter {NT, SM} (model, i_ym, nint_u, nint_ym, P̂0, Q̂ , R̂)
295295end
296296
@@ -457,9 +457,9 @@ function UnscentedKalmanFilter(
457457 κ:: Real = 0
458458) where {NT<: Real , SM<: SimModel{NT} }
459459 # estimated covariances matrices (variance = σ²) :
460- P̂0 = Diagonal {NT} ( [σP0; σP0int_u; σP0int_ym]. ^ 2 )
461- Q̂ = Diagonal {NT} ( [σQ; σQint_u; σQint_ym]. ^ 2 )
462- R̂ = Diagonal {NT} (σR .^ 2 )
460+ P̂0 = Hermitian ( diagm (NT [σP0; σP0int_u; σP0int_ym]. ^ 2 ), :L )
461+ Q̂ = Hermitian ( diagm (NT [σQ; σQint_u; σQint_ym ]. ^ 2 ), :L )
462+ R̂ = Hermitian ( diagm (NT[σR;] . ^ 2 ), :L )
463463 return UnscentedKalmanFilter {NT, SM} (model, i_ym, nint_u, nint_ym, P̂0, Q̂, R̂, α, β, κ)
464464end
465465
@@ -680,9 +680,9 @@ function ExtendedKalmanFilter(
680680 σP0int_ym:: Vector = σQint_ym,
681681) where {NT<: Real , SM<: SimModel{NT} }
682682 # estimated covariances matrices (variance = σ²) :
683- P̂0 = Diagonal {NT} ( [σP0; σP0int_u; σP0int_ym]. ^ 2 )
684- Q̂ = Diagonal {NT} ( [σQ; σQint_u; σQint_ym]. ^ 2 )
685- R̂ = Diagonal {NT} (σR .^ 2 )
683+ P̂0 = Hermitian ( diagm (NT [σP0; σP0int_u; σP0int_ym]. ^ 2 ), :L )
684+ Q̂ = Hermitian ( diagm (NT [σQ; σQint_u; σQint_ym ]. ^ 2 ), :L )
685+ R̂ = Hermitian ( diagm (NT[σR;] . ^ 2 ), :L )
686686 return ExtendedKalmanFilter {NT, SM} (model, i_ym, nint_u, nint_ym, P̂0, Q̂ , R̂)
687687end
688688
0 commit comments