@@ -413,9 +413,9 @@ The ``\mathbf{F}`` and ``\mathbf{f_x̂}`` vectors are recalculated at each contr
413413
414414# Extended Help
415415!!! details "Extended Help"
416- Using the augmented matrices ``\m athbf{Â, B̂_u, Ĉ, B̂_d, D̂_d}`` in `estim` and the
417- function ``\m athbf{W}(j) = ∑_{i=0}^j \m athbf{Â}^i``, the prediction matrices are
418- computed by :
416+ Using the augmented matrices ``\m athbf{Â, B̂_u, Ĉ, B̂_d, D̂_d}`` in `estim` (see
417+ [`augment_model`](@ref)) and the function ``\m athbf{W}(j) = ∑_{i=0}^j \m athbf{Â}^i``,
418+ the prediction matrices are computed by :
419419 ```math
420420 \b egin{aligned}
421421 \m athbf{E} &= \b egin{bmatrix}
@@ -657,10 +657,12 @@ constraints:
657657 \m athbf{A_{U_{max}}}
658658\e nd{bmatrix} \m athbf{ΔŨ} ≤
659659\b egin{bmatrix}
660- - \m athbf{U_{min} + T} \m athbf{u }(k-1) \\
661- + \m athbf{U_{max} - T} \m athbf{u }(k-1)
660+ - \m athbf{( U_{min} - U_{op}) + T} \m athbf{u_0 }(k-1) \\
661+ + \m athbf{( U_{max} - U_{op}) - T} \m athbf{u_0 }(k-1)
662662\e nd{bmatrix}
663663```
664+ in which ``\m athbf{U_{min}, U_{max}}`` and ``\m athbf{U_{op}}`` vectors respectively contains
665+ ``\m athbf{u_{min}, u_{max}}`` and ``\m athbf{u_{op}}`` repeated ``H_p`` times.
664666"""
665667function relaxU (:: SimModel{NT} , C, C_umin, C_umax, S) where {NT<: Real }
666668 if ! isinf (C) # ΔŨ = [ΔU; ϵ]
@@ -723,17 +725,19 @@ Augment linear output prediction constraints with slack variable ϵ for softenin
723725Denoting the input increments augmented with the slack variable
724726``\m athbf{ΔŨ} = [\b egin{smallmatrix} \m athbf{ΔU} \\ ϵ \e nd{smallmatrix}]``, it returns the
725727``\m athbf{Ẽ}`` matrix that appears in the linear model prediction equation
726- ``\m athbf{Ŷ = Ẽ ΔŨ + F}``, and the ``\m athbf{A}`` matrices for the inequality constraints:
728+ ``\m athbf{Ŷ_0 = Ẽ ΔŨ + F}``, and the ``\m athbf{A}`` matrices for the inequality constraints:
727729```math
728730\b egin{bmatrix}
729731 \m athbf{A_{Y_{min}}} \\
730732 \m athbf{A_{Y_{max}}}
731733\e nd{bmatrix} \m athbf{ΔŨ} ≤
732734\b egin{bmatrix}
733- - \m athbf{Y_{min} + F} \\
734- + \m athbf{Y_{max} - F}
735+ - \m athbf{( Y_{min} - Y_{op}) + F} \\
736+ + \m athbf{( Y_{max} - Y_{op}) - F}
735737\e nd{bmatrix}
736738```
739+ in which ``\m athbf{Y_{min}, Y_{max}}`` and ``\m athbf{Y_{op}}`` vectors respectively contains
740+ ``\m athbf{y_{min}, y_{max}}`` and ``\m athbf{y_{op}}`` repeated ``H_p`` times.
737741"""
738742function relaxŶ (:: LinModel{NT} , C, C_ymin, C_ymax, E) where {NT<: Real }
739743 if ! isinf (C) # ΔŨ = [ΔU; ϵ]
@@ -763,16 +767,16 @@ Augment terminal state constraints with slack variable ϵ for softening.
763767Denoting the input increments augmented with the slack variable
764768``\m athbf{ΔŨ} = [\b egin{smallmatrix} \m athbf{ΔU} \\ ϵ \e nd{smallmatrix}]``, it returns the
765769``\m athbf{ẽ_{x̂}}`` matrix that appears in the terminal state equation
766- ``\m athbf{x̂}_{k-1 }(k + H_p) = \m athbf{ẽ_x̂ ΔŨ + f_x̂}``, and the ``\m athbf{A}`` matrices for
770+ ``\m athbf{x̂_0 }(k + H_p) = \m athbf{ẽ_x̂ ΔŨ + f_x̂}``, and the ``\m athbf{A}`` matrices for
767771the inequality constraints:
768772```math
769773\b egin{bmatrix}
770774 \m athbf{A_{x̂_{min}}} \\
771775 \m athbf{A_{x̂_{max}}}
772776\e nd{bmatrix} \m athbf{ΔŨ} ≤
773777\b egin{bmatrix}
774- - \m athbf{x̂_{min} + f_x̂} \\
775- + \m athbf{x̂_{max} - f_x̂}
778+ - \m athbf{( x̂_{min} - x̂_{op}) + f_x̂} \\
779+ + \m athbf{( x̂_{max} - x̂_{op}) - f_x̂}
776780\e nd{bmatrix}
777781```
778782"""
0 commit comments