@@ -43,7 +43,7 @@ using FastTransforms, Base.Test
4343
4444 N = round .([Int],logspace (1 ,3 ,10 ))
4545
46- for n in N, ϵ in (1e-4 ,1e-8 ,1e-12 ,eps (Float64))
46+ for n in N, ϵ in (1e-4 , 1e-8 , 1e-12 , eps (Float64))
4747 c = complex (rand (n))
4848 err_bnd = 500 * ϵ* n* norm (c)
4949
@@ -69,16 +69,15 @@ using FastTransforms, Base.Test
6969 end
7070
7171 # Check that if points/frequencies are indeed uniform, then it's equal to the fft.
72-
73- n = 1000
74- c = complex (rand (n))
75- ω = collect (0.0 : n- 1 )
76- x = ω/ n
77- fftc = fft (c)
78- @test norm (nufft1 (c, ω, eps ()) - fftc) == 0
79- @test norm (nufft2 (c, x, eps ()) - fftc) == 0
80- @test norm (nufft3 (c, x, ω, eps ()) - fftc) == 0
81-
72+ for n in (1000 ,), ϵ in (eps (Float64), 0.0 )
73+ c = complex (rand (n))
74+ ω = collect (0.0 : n- 1 )
75+ x = ω/ n
76+ fftc = fft (c)
77+ @test norm (nufft1 (c, ω, ϵ) - fftc) == 0
78+ @test norm (nufft2 (c, x, ϵ) - fftc) == 0
79+ @test norm (nufft3 (c, x, ω, ϵ) - fftc) == 0
80+ end
8281
8382 function nudft1 {T<:AbstractFloat} (C:: Matrix{Complex{T}} , ω1:: AbstractVector{T} , ω2:: AbstractVector{T} )
8483 # Nonuniform discrete Fourier transform of type I-I
0 commit comments