@@ -539,10 +539,14 @@ Compute Jacobi expansion coefficients in ``P_n^{(\\alpha+1,\\alpha+1)}(x)`` give
539539function incrementαβ! (c:: AbstractVector ,α,β)
540540 @assert α == β
541541 N = length (c)
542- N > 2 && (c[1 ] -= (α+ 2 )/ (4 α+ 10 )* c[3 ])
543- @inbounds for i= 2 : N- 2 c[i] = (2 α+ i)* (2 α+ i+ 1 )/ (2 α+ 2 i- 1 )/ (2 α+ 2 i)* c[i] - (α+ i+ 1 )/ (4 α+ 4 i+ 6 )* c[i+ 2 ] end
544- N > 1 && (c[N- 1 ] *= (2 α+ N- 1 )* (2 α+ N)/ (2 α+ 2 N- 3 )/ (2 α+ 2 N- 2 ))
545- N > 0 && (c[N] *= (2 α+ N)* (2 α+ N+ 1 )/ (2 α+ 2 N- 1 )/ (2 α+ 2 N))
542+ if N == 2
543+ c[2 ] *= (2 α+ 2 )/ (2 α+ 4 )
544+ elseif N > 2
545+ c[1 ] -= (α+ 2 )/ (4 α+ 10 )* c[3 ]
546+ @inbounds for i= 2 : N- 2 c[i] = (2 α+ i)* (2 α+ i+ 1 )/ (2 α+ 2 i- 1 )/ (2 α+ 2 i)* c[i] - (α+ i+ 1 )/ (4 α+ 4 i+ 6 )* c[i+ 2 ] end
547+ c[N- 1 ] *= (2 α+ N- 1 )* (2 α+ N)/ (2 α+ 2 N- 3 )/ (2 α+ 2 N- 2 )
548+ c[N] *= (2 α+ N)* (2 α+ N+ 1 )/ (2 α+ 2 N- 1 )/ (2 α+ 2 N)
549+ end
546550 c
547551end
548552
@@ -574,10 +578,14 @@ Compute Jacobi expansion coefficients in ``P_n^{(\\alpha-1,\\alpha-1)}(x)`` give
574578function decrementαβ! (c:: AbstractVector ,α,β)
575579 @assert α == β
576580 N = length (c)
577- N > 0 && (c[N] *= (2 α+ 2 N- 3 )* (2 α+ 2 N- 2 )/ (2 α+ N- 2 )/ (2 α+ N- 1 ))
578- N > 1 && (c[N- 1 ] *= (2 α+ 2 N- 5 )* (2 α+ 2 N- 4 )/ (2 α+ N- 3 )/ (2 α+ N- 2 ))
579- @inbounds for i= N- 2 : - 1 : 2 c[i] = (2 α+ 2 i- 3 )* (2 α+ 2 i- 2 )/ (2 α+ i- 2 )/ (2 α+ i- 1 )* (c[i] + (α+ i)/ (4 α+ 4 i+ 2 )* c[i+ 2 ]) end
580- N > 2 && (c[1 ] += (α+ 1 )/ (4 α+ 6 )* c[3 ])
581+ if N == 2
582+ c[2 ] *= (2 α+ 2 )/ (2 α)
583+ elseif N > 2
584+ c[N] *= (2 α+ 2 N- 3 )* (2 α+ 2 N- 2 )/ (2 α+ N- 2 )/ (2 α+ N- 1 )
585+ c[N- 1 ] *= (2 α+ 2 N- 5 )* (2 α+ 2 N- 4 )/ (2 α+ N- 3 )/ (2 α+ N- 2 )
586+ @inbounds for i= N- 2 : - 1 : 2 c[i] = (2 α+ 2 i- 3 )* (2 α+ 2 i- 2 )/ (2 α+ i- 2 )/ (2 α+ i- 1 )* (c[i] + (α+ i)/ (4 α+ 4 i+ 2 )* c[i+ 2 ]) end
587+ c[1 ] += (α+ 1 )/ (4 α+ 6 )* c[3 ]
588+ end
581589 c
582590end
583591
0 commit comments