|
| 1 | +from ctypes import POINTER, Structure, c_int32, c_void_p, c_double |
| 2 | +import ctypes |
| 3 | +import sys |
| 4 | +import os |
| 5 | +import time |
| 6 | + |
| 7 | +sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", ".."))) |
| 8 | +from operatorspy import ( |
| 9 | + open_lib, |
| 10 | + to_tensor, |
| 11 | + DeviceEnum, |
| 12 | + infiniopHandle_t, |
| 13 | + infiniopTensorDescriptor_t, |
| 14 | + create_handle, |
| 15 | + destroy_handle, |
| 16 | + check_error, |
| 17 | +) |
| 18 | + |
| 19 | +from operatorspy.tests.test_utils import get_args |
| 20 | +import torch |
| 21 | +import ctypes |
| 22 | +import torch.nn.functional as F |
| 23 | +import numpy as np |
| 24 | + |
| 25 | +# constant for control whether profile the pytorch and lib functions |
| 26 | +# NOTE: need to manually add synchronization function to the lib function, |
| 27 | +# e.g., cudaDeviceSynchronize() for CUDA |
| 28 | +PROFILE = False |
| 29 | +NUM_PRERUN = 10 |
| 30 | +NUM_ITERATIONS = 1000 |
| 31 | + |
| 32 | + |
| 33 | +class BatchNormDescriptor(Structure): |
| 34 | + _fields_ = [("device", c_int32)] |
| 35 | + |
| 36 | + |
| 37 | +infiniopBatchNormDescriptor_t = POINTER(BatchNormDescriptor) |
| 38 | + |
| 39 | + |
| 40 | +def batch_norm(x, scale, b, mean, var, eps): |
| 41 | + ndim = len(x.shape) |
| 42 | + if ndim <= 1 or ndim > 5: |
| 43 | + print("Error: Pytorch -> Unsupported tensor dimension") |
| 44 | + return None |
| 45 | + if PROFILE: |
| 46 | + ans = F.batch_norm(x, mean, var, scale, b, training=False, eps=eps) |
| 47 | + torch.cuda.synchronize() |
| 48 | + return ans |
| 49 | + return F.batch_norm(x, mean, var, scale, b, training=False, eps=eps) |
| 50 | + |
| 51 | + |
| 52 | +# get the mean and variance of the input tensor across the batch size N and spatial dimensions |
| 53 | +def get_mean_variance(x, dtype): |
| 54 | + dims = tuple(range(x.ndim)) |
| 55 | + reduction_dims = tuple(d for d in dims if d != 1) # Exclude the channel dimension |
| 56 | + return x.mean(dim=reduction_dims, dtype=dtype), x.var( |
| 57 | + dim=reduction_dims, unbiased=False |
| 58 | + ).to(dtype) |
| 59 | + |
| 60 | + |
| 61 | +def find_and_print_differing_indices( |
| 62 | + x, tensor1, tensor2, mean, scale, var, b, atol=0, rtol=1e-2 |
| 63 | +): |
| 64 | + if tensor1.shape != tensor2.shape: |
| 65 | + raise ValueError("Tensors must have the same shape to compare.") |
| 66 | + |
| 67 | + # Calculate the difference mask based on atol and rtol |
| 68 | + diff_mask = torch.abs(tensor1 - tensor2) > (atol + rtol * torch.abs(tensor2)) |
| 69 | + diff_indices = torch.nonzero(diff_mask, as_tuple=False) |
| 70 | + |
| 71 | + # Print the indices and the differing elements |
| 72 | + for idx in diff_indices: |
| 73 | + index_tuple = tuple(idx.tolist()) |
| 74 | + print( |
| 75 | + f"Index: {index_tuple}, x: {x[index_tuple]}, mean: {mean[index_tuple[1]]}, scale: {scale[index_tuple[1]]}, var: {var[index_tuple[1]]}, b: {b[index_tuple[1]]}, y element: {tensor1[index_tuple]}, ans element: {tensor2[index_tuple]}" |
| 76 | + ) |
| 77 | + |
| 78 | + return diff_indices |
| 79 | + |
| 80 | + |
| 81 | +def test( |
| 82 | + lib, |
| 83 | + handle, |
| 84 | + torch_device, |
| 85 | + x_shape, |
| 86 | + eps=1e-5, |
| 87 | + tensor_dtype=torch.float16, |
| 88 | +): |
| 89 | + print( |
| 90 | + f"Testing BatchNorm on {torch_device} with x_shape: {x_shape}, scale_shape: {x_shape[1]}, b_shape: {x_shape[1]}, mean_shape: {x_shape[1]}, var_shape: {x_shape[1]}, eps: {eps} dtype:{tensor_dtype}" |
| 91 | + ) |
| 92 | + num_channel = x_shape[1] |
| 93 | + bn_dtype = tensor_dtype if tensor_dtype != torch.float16 else torch.float32 |
| 94 | + x = torch.rand(x_shape, dtype=tensor_dtype).to(torch_device) * 10 - 2 |
| 95 | + scale = torch.rand(num_channel, dtype=bn_dtype).to(torch_device) |
| 96 | + b = torch.rand(num_channel, dtype=bn_dtype).to(torch_device) |
| 97 | + mean, var = get_mean_variance(x, bn_dtype) |
| 98 | + y = torch.zeros(x_shape, dtype=tensor_dtype).to(torch_device) |
| 99 | + |
| 100 | + # get the pytorch answer |
| 101 | + for i in range(NUM_PRERUN if PROFILE else 1): |
| 102 | + ans = batch_norm(x, scale, b, mean, var, eps) |
| 103 | + if PROFILE: |
| 104 | + start_time = time.time() |
| 105 | + for i in range(NUM_ITERATIONS): |
| 106 | + _ = batch_norm(x, scale, b, mean, var, eps) |
| 107 | + elapsed = (time.time() - start_time) / NUM_ITERATIONS |
| 108 | + print(f"pytorch time: {elapsed :6f}") |
| 109 | + |
| 110 | + # get the operators' answer |
| 111 | + x_tensor = to_tensor(x, lib) |
| 112 | + scale_tensor = to_tensor(scale, lib) |
| 113 | + b_tensor = to_tensor(b, lib) |
| 114 | + mean_tensor = to_tensor(mean, lib) |
| 115 | + var_tensor = to_tensor(var, lib) |
| 116 | + y_tensor = to_tensor(y, lib) |
| 117 | + descriptor = infiniopBatchNormDescriptor_t() |
| 118 | + |
| 119 | + check_error( |
| 120 | + lib.infiniopCreateBatchNormDescriptor( |
| 121 | + handle, |
| 122 | + ctypes.byref(descriptor), |
| 123 | + y_tensor.descriptor, |
| 124 | + x_tensor.descriptor, |
| 125 | + scale_tensor.descriptor, |
| 126 | + b_tensor.descriptor, |
| 127 | + mean_tensor.descriptor, |
| 128 | + var_tensor.descriptor, |
| 129 | + eps, |
| 130 | + ) |
| 131 | + ) |
| 132 | + |
| 133 | + for i in range(NUM_PRERUN if PROFILE else 1): |
| 134 | + check_error( |
| 135 | + lib.infiniopBatchNorm( |
| 136 | + descriptor, |
| 137 | + y_tensor.data, |
| 138 | + x_tensor.data, |
| 139 | + scale_tensor.data, |
| 140 | + b_tensor.data, |
| 141 | + mean_tensor.data, |
| 142 | + var_tensor.data, |
| 143 | + None, |
| 144 | + ) |
| 145 | + ) |
| 146 | + if PROFILE: |
| 147 | + start_time = time.time() |
| 148 | + for i in range(NUM_ITERATIONS): |
| 149 | + lib.infiniopBatchNorm( |
| 150 | + descriptor, |
| 151 | + y_tensor.data, |
| 152 | + x_tensor.data, |
| 153 | + scale_tensor.data, |
| 154 | + b_tensor.data, |
| 155 | + mean_tensor.data, |
| 156 | + var_tensor.data, |
| 157 | + None, |
| 158 | + ) |
| 159 | + elapsed = (time.time() - start_time) / NUM_ITERATIONS |
| 160 | + print(f" lib time: {elapsed :6f}") |
| 161 | + |
| 162 | + # print(" - x: \n", x, "\n - y:\n", y, "\n - ans:\n", ans) |
| 163 | + # print(" - y:\n", y, "\n - ans:\n", ans) |
| 164 | + |
| 165 | + # find_and_print_differing_indices(x, y, ans, mean, scale, mean, b, atol=1e-7, rtol=1e-3) |
| 166 | + # np.testing.assert_allclose(y.numpy(), ans.numpy(), atol=1e-7, rtol=1e-3) |
| 167 | + assert torch.allclose(y, ans, atol=1e-7, rtol=1e-3) |
| 168 | + check_error(lib.infiniopDestroyBatchNormDescriptor(descriptor)) |
| 169 | + |
| 170 | + |
| 171 | +def test_cpu(lib, test_cases): |
| 172 | + device = DeviceEnum.DEVICE_CPU |
| 173 | + handle = create_handle(lib, device) |
| 174 | + for x_shape, eps in test_cases: |
| 175 | + test(lib, handle, "cpu", x_shape, eps, tensor_dtype=torch.float16) |
| 176 | + test(lib, handle, "cpu", x_shape, eps, tensor_dtype=torch.float32) |
| 177 | + destroy_handle(lib, handle) |
| 178 | + |
| 179 | + |
| 180 | +def test_cuda(lib, test_cases): |
| 181 | + device = DeviceEnum.DEVICE_CUDA |
| 182 | + handle = create_handle(lib, device) |
| 183 | + for x_shape, eps in test_cases: |
| 184 | + test(lib, handle, "cuda", x_shape, eps, tensor_dtype=torch.float16) |
| 185 | + test(lib, handle, "cuda", x_shape, eps, tensor_dtype=torch.float32) |
| 186 | + destroy_handle(lib, handle) |
| 187 | + |
| 188 | + |
| 189 | +def test_bang(lib, test_cases): |
| 190 | + import torch_mlu |
| 191 | + |
| 192 | + device = DeviceEnum.DEVICE_BANG |
| 193 | + handle = create_handle(lib, device) |
| 194 | + for x_shape, eps in test_cases: |
| 195 | + test(lib, handle, "mlu", x_shape, eps, tensor_dtype=torch.float16) |
| 196 | + test(lib, handle, "mlu", x_shape, eps, tensor_dtype=torch.float32) |
| 197 | + destroy_handle(lib, handle) |
| 198 | + |
| 199 | + |
| 200 | +if __name__ == "__main__": |
| 201 | + test_cases = [ |
| 202 | + # x_shape, eps |
| 203 | + ((2, 3, 4), 1e-5), |
| 204 | + ((32, 3, 1024), 1e-5), |
| 205 | + ((1, 3, 4, 4), 1e-5), |
| 206 | + ((32, 3, 128, 128), 1e-5), |
| 207 | + ((1, 6, 5, 5, 5), 1e-5), |
| 208 | + ((32, 3, 64, 64, 64), 1e-5), |
| 209 | + ] |
| 210 | + args = get_args() |
| 211 | + lib = open_lib() |
| 212 | + lib.infiniopCreateBatchNormDescriptor.restype = c_int32 |
| 213 | + lib.infiniopCreateBatchNormDescriptor.argtypes = [ |
| 214 | + infiniopHandle_t, |
| 215 | + POINTER(infiniopBatchNormDescriptor_t), |
| 216 | + infiniopTensorDescriptor_t, |
| 217 | + infiniopTensorDescriptor_t, |
| 218 | + infiniopTensorDescriptor_t, |
| 219 | + infiniopTensorDescriptor_t, |
| 220 | + infiniopTensorDescriptor_t, |
| 221 | + infiniopTensorDescriptor_t, |
| 222 | + c_double, |
| 223 | + ] |
| 224 | + lib.infiniopBatchNorm.restype = c_int32 |
| 225 | + lib.infiniopBatchNorm.argtypes = [ |
| 226 | + infiniopBatchNormDescriptor_t, |
| 227 | + c_void_p, |
| 228 | + c_void_p, |
| 229 | + c_void_p, |
| 230 | + c_void_p, |
| 231 | + c_void_p, |
| 232 | + c_void_p, |
| 233 | + c_void_p, |
| 234 | + ] |
| 235 | + lib.infiniopDestroyBatchNormDescriptor.restype = c_int32 |
| 236 | + lib.infiniopDestroyBatchNormDescriptor.argtypes = [ |
| 237 | + infiniopBatchNormDescriptor_t, |
| 238 | + ] |
| 239 | + |
| 240 | + if args.cpu: |
| 241 | + test_cpu(lib, test_cases) |
| 242 | + if args.cuda: |
| 243 | + test_cuda(lib, test_cases) |
| 244 | + if args.bang: |
| 245 | + test_bang(lib, test_cases) |
| 246 | + if not (args.cpu or args.cuda or args.bang): |
| 247 | + test_cpu(lib, test_cases) |
| 248 | + print("\033[92mTest passed!\033[0m") |
0 commit comments