@@ -20,7 +20,7 @@ See the docstring for `conv_direct!()` for more on the optional parameters.
2020"""
2121function depthwiseconv_direct! (y:: AbstractArray{yT,5} , x:: AbstractArray{xT,5} ,
2222 w:: AbstractArray{wT,5} , cdims:: DepthwiseConvDims ;
23- alpha:: yT = yT (1 ), beta = false ) where {yT, xT, wT}
23+ alpha:: yT = yT (1 ), beta= false ) where {yT, xT, wT}
2424 check_dims (size (x), size (w), size (y), cdims)
2525
2626 width, height, depth = input_size (cdims)
@@ -135,7 +135,7 @@ for each batch and channel independently.
135135function ∇depthwiseconv_data_direct! (
136136 dx:: AbstractArray{xT,5} , dy:: AbstractArray{yT,5} ,
137137 w:: AbstractArray{wT,5} , cdims:: DepthwiseConvDims ;
138- alpha:: xT = xT (1 ), beta:: xT = xT ( 0 ) ) where {xT, yT, wT}
138+ alpha:: xT = xT (1 ), beta= false ) where {xT, yT, wT}
139139 # We do a separate convolution for each channel in x
140140 @inbounds for cidx in 1 : channels_in (cdims)
141141 # For this batch and in-channel, we have a normal transposed convolution
@@ -168,7 +168,7 @@ Calculate the gradient imposed upon `w` in the depthwise convolution `y = x * w`
168168function ∇depthwiseconv_filter_direct! (
169169 dw:: AbstractArray{wT,5} , x:: AbstractArray{xT,5} ,
170170 dy:: AbstractArray{yT,5} , cdims:: DepthwiseConvDims ;
171- alpha:: wT = wT (1 ),beta:: wT = wT ( 0 ) ) where {xT, yT, wT}
171+ alpha:: wT = wT (1 ),beta= false ) where {xT, yT, wT}
172172 # We do a separate convolution for each channel in x
173173 @inbounds for cidx in 1 : channels_in (cdims)
174174 # For this batch and in-channel, we have a normal transposed convolution
0 commit comments