Skip to content

Commit e6ead75

Browse files
Doc consistency fixes
1 parent 3e6ba2a commit e6ead75

File tree

25 files changed

+133
-224
lines changed

25 files changed

+133
-224
lines changed

docs/conf.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -26,6 +26,7 @@
2626
primary_domain = 'mat'
2727
matlab_src_dir = '../toolbox'
2828
matlab_keep_package_prefix = False
29+
matlab_auto_link = 'basic'
2930

3031
autodoc_default_options = {
3132
'member-order': 'bysource',

docs/references.bib

Lines changed: 4 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -55,17 +55,16 @@ @Article{PR74
5555
}
5656

5757

58-
@Article{Rob67,
58+
@Article{Rob66,
5959
title={The Solution of a Set of Reaction Rate Equations},
6060
author={Robertson, H.H.},
6161
journal={Walsh, J., Ed., Numerical Analysis, An introduction},
62-
year={1967},
62+
year={1966},
6363
pages= {178--182},
64-
publisher = "Academic Press",
65-
address = "Cambridge, Massachusetts",
64+
volume={178182},
65+
publisher = {Academic Press}
6666
}
6767

68-
6968
@article{SLH70,
7069
author = {Seinfeld, J. H. and Lapidus, Leon and Hwang, Myungkyu},
7170
title = {Review of Numerical Integration Techniques for Stiff Ordinary Differential Equations},

toolbox/+otp/+ascherlineardae/+presets/Canonical.m

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,10 @@
11
classdef Canonical < otp.ascherlineardae.AscherLinearDAEProblem
2-
% The problem defined by Uri Ascher in :cite:p:`Asc89` (sec. 2) which uses time span $t \in [0, 1]$ and intial
2+
% The problem defined by Uri Ascher in :cite:p:`Asc89` (sec. 2) which uses time span $t [0, 1]$ and intial
33
% condition $[y_0, z_0]^T = [1, β]^T$.
4-
%
4+
55
methods
66
function obj = Canonical(varargin)
7-
% Create the Canonical CUSP problem object.
7+
% Create the Canonical Ascher Linear DAE problem object.
88
%
99
% Parameters
1010
% ----------
@@ -16,7 +16,6 @@
1616
params = otp.ascherlineardae.AscherLinearDAEParameters('Beta', 1, varargin{:});
1717
y0 = [1; params.Beta];
1818
tspan = [0.0; 1.0];
19-
2019
obj = obj@otp.ascherlineardae.AscherLinearDAEProblem(tspan, y0, params);
2120
end
2221
end

toolbox/+otp/+ascherlineardae/+presets/Petzold.m

Lines changed: 4 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,15 +1,14 @@
11
classdef Petzold < otp.ascherlineardae.AscherLinearDAEProblem
22
% The Petzold DAE example :cite:p:`Pet86` as a special case of the Ascher linear DAE problem. This preset uses time
3-
% span $t \in [0, 1]$ and $β = 0 $ with the initial condition $[y_0, z_0]^T = [1, 0]^T $.
4-
%
3+
% span $t [0, 1]$ and $β = 0 $ with the initial condition $[y_0, z_0]^T = [1, 0]^T$.
4+
55
methods
6-
function obj = Petzold
7-
% Create the Petzold example of the Ascher linear DAE problem object.
6+
function obj = Petzold()
7+
% Create the Petzold Ascher Linear DAE problem object.
88

99
params = otp.ascherlineardae.AscherLinearDAEParameters('Beta', 0);
1010
y0 = [1; params.Beta];
1111
tspan = [0.0; 1.0];
12-
1312
obj = obj@otp.ascherlineardae.AscherLinearDAEProblem(tspan, y0, params);
1413
end
1514
end

toolbox/+otp/+ascherlineardae/+presets/Stiff.m

Lines changed: 4 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,15 +1,14 @@
11
classdef Stiff < otp.ascherlineardae.AscherLinearDAEProblem
22
% The Stiff example from :cite:p:`Asc89`. A variant of the Ascher linear DAE problem which uses time span
3-
% $t \in [0, 1]$ and $β = 100$ with the initial condition $[y_0, z_0]^T = [1, 100]^T$.
4-
%
3+
% $t [0, 1]$ and $β = 100$ with the initial condition $[y_0, z_0]^T = [1, 100]^T$.
4+
55
methods
6-
function obj = Stiff
7-
% Create the stiff example of the Ascher linear DAE problem object.
6+
function obj = Stiff()
7+
% Create the stiff Ascher Linear DAE problem object.
88

99
params = otp.ascherlineardae.AscherLinearDAEParameters('Beta', 100);
1010
y0 = [1; params.Beta];
1111
tspan = [0.0; 1.0];
12-
1312
obj = obj@otp.ascherlineardae.AscherLinearDAEProblem(tspan, y0, params);
1413
end
1514
end

toolbox/+otp/+ascherlineardae/AscherLinearDAEProblem.m

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,16 @@
11
classdef AscherLinearDAEProblem < otp.Problem
2-
% A linear differential-algebraic problem with time-dependant mass matrix.
2+
% A linear differential-algebraic problem with a time-dependant mass matrix.
33
%
44
% The Ascher linear DAE Problem :cite:p:`Asc89` is an index-1 differential-agebraic equation given by
55
%
66
% $$
77
% \begin{bmatrix}
88
% 1 & -t \\
99
% 0 & 0
10-
% \end{bmatrix} \begin{bmatrix} y'(t) \\ z'(t) \end{bmatrix} = \left[ \begin{array}{cc}
10+
% \end{bmatrix} \begin{bmatrix} y'(t) \\ z'(t) \end{bmatrix} = \begin{bmatrix}
1111
% -1 & 1+t \\
1212
% β & -1-β t
13-
% \end{array}\right] \begin{bmatrix} y(t) \\ z(t) \end{bmatrix} + \begin{bmatrix}
13+
% \end{bmatrix} \begin{bmatrix} y(t) \\ z(t) \end{bmatrix} + \begin{bmatrix}
1414
% 0 \\
1515
% \sin(t)
1616
% \end{bmatrix}.
@@ -20,10 +20,11 @@
2020
%
2121
% $$
2222
% \begin{bmatrix} y(t)\\ z(t) \end{bmatrix} = \begin{bmatrix}
23-
% t \sin(t) + (1 + β t) e^{-t}\\
24-
% β e^{-t} + \sin(t)
23+
% t \sin(t) + (1 + β t) e^{-t}\\
24+
% β e^{-t} + \sin(t)
2525
% \end{bmatrix}.
2626
% $$
27+
%
2728
% This DAE problem can be used to investigate the convergence of implcit time-stepping methods due to its stiffness
2829
% and time-dependant mass matrix.
2930
%

toolbox/+otp/+cusp/+presets/Canonical.m

Lines changed: 5 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -1,14 +1,14 @@
11
classdef Canonical < otp.cusp.CUSPProblem
2-
% The CUSP configuration from :cite:p:`HW96` (pp. 147-148) which uses time span $t \in [0, 1.1]$, $N = 32$ grid
3-
% cells, and initial conditions
2+
% The CUSP configuration from :cite:p:`HW96` (pp. 147-148) which uses time span $t [0, 1.1]$, $N = 32$ grid cells,
3+
% and initial conditions
44
%
55
% $$
66
% y_i(0) &= 0 ,\\
7-
% a_i(0) &= -2 \cos\left( \frac{2 i \pi}{N} \right), \\
8-
% b_i(0) &= 2 \sin\left( \frac{2 i \pi}{N} \right), \\
7+
% a_i(0) &= -2 \cos\left( \frac{2 i π}{N} \right), \\
8+
% b_i(0) &= 2 \sin\left( \frac{2 i π}{N} \right), \\
99
% $$
1010
%
11-
% for $i = 1, \dots, N$. The parameters are $ε = 10^{-4}$ and $σ = \frac{1}{144}$.
11+
% for $i = 1, , N$. The parameters are $ε = 10^{-4}$ and $σ = \frac{1}{144}$.
1212

1313
methods
1414
function obj = Canonical(varargin)
@@ -22,11 +22,6 @@
2222
% - ``N`` – The number of cells in the spatial discretization.
2323
% - ``epsilon`` – Value of $ε$.
2424
% - ``sigma`` – Value of $σ$.
25-
%
26-
% Returns
27-
% -------
28-
% obj : CUSPProblem
29-
% The constructed problem.
3025

3126
p = inputParser;
3227
p.addParameter('N', 32);

toolbox/+otp/+cusp/CUSPProblem.m

Lines changed: 3 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010
% $$
1111
%
1212
%
13-
% where $v = u / (u + 0.1)$ and $u = (y - 0.7)(y - 1.3)$. The spatial domain $x \in [0, 1]$ has period boundary
13+
% where $v = u / (u + 0.1)$ and $u = (y - 0.7)(y - 1.3)$. The spatial domain $x [0, 1]$ has period boundary
1414
% conditions. Discretization with second order finite difference on a grid with $N$ cells gives
1515
%
1616
% $$
@@ -19,7 +19,7 @@
1919
% b'_i &= (1 - a_i^2) b_i - a_i - 0.4 y_i + 0.035 v_i + σ N^2 (b_{i-1} - 2 b_i + b_{i+1}),
2020
% $$
2121
%
22-
% where $i = 1, \dots, N$. Values at cell indices $i=0, N+1$ are specificied by the periodic boundary conditions.
22+
% where $i = 1, , N$. Values at cell indices $i=0, N+1$ are specificied by the periodic boundary conditions.
2323
%
2424
% Notes
2525
% -----
@@ -88,11 +88,7 @@
8888
% The initial conditions.
8989
% parameters : CUSPParameters
9090
% The parameters.
91-
%
92-
% Returns
93-
% -------
94-
% obj : CUSPProblem
95-
% The constructed problem.
91+
9692
obj@otp.Problem('CUSP', [], timeSpan, y0, parameters);
9793
end
9894
end

toolbox/+otp/+lorenz63/+presets/Canonical.m

Lines changed: 4 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,5 @@
11
classdef Canonical < otp.lorenz63.Lorenz63Problem
2-
% Original Lorenz '63 preset presented in :cite:p:`Lor63`
3-
% which uses time span $t \in [0, 60]$, $σ = 10$, $ρ = 28$,
2+
% Original Lorenz '63 preset presented in :cite:p:`Lor63` which uses time span $t ∈ [0, 60]$, $σ = 10$, $ρ = 28$,
43
% $β = 8/3$, and intial conditions $y_0 = [0, 1, 0]^T$.
54

65
methods
@@ -12,14 +11,13 @@
1211
% varargin
1312
% A variable number of name-value pairs. The accepted names are
1413
%
15-
% - ``sigma`` – Value of $σ$.
16-
% - ``rho`` – Value of $ρ$.
17-
% - ``beta`` – Value of $β$.
14+
% - ``Sigma`` – Value of $σ$.
15+
% - ``Rho`` – Value of $ρ$.
16+
% - ``Beta`` – Value of $β$.
1817

1918
y0 = [0; 1; 0];
2019
tspan = [0 60];
2120
params = otp.lorenz63.Lorenz63Parameters('Sigma', 10, 'Rho', 28, 'Beta', 8/3, varargin{:});
22-
2321
obj = obj@otp.lorenz63.Lorenz63Problem(tspan, y0, params);
2422
end
2523
end

toolbox/+otp/+lorenz63/+presets/LimitCycle.m

Lines changed: 2 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,19 +1,16 @@
11
classdef LimitCycle < otp.lorenz63.Lorenz63Problem
2-
% Lorenz '63 preset limit cycle, a non-chaotic preset, from :cite:p:`Str18`
3-
% which uses time span $t \in [0, 60]$, $σ = 10$, $ρ = 350$,
4-
% $β = 8/3$, and intial conditions $y_0 = [0, 1, 0]^T$.
2+
% Lorenz '63 preset limit cycle, a non-chaotic preset, from :cite:p:`Str18` which uses time span $t ∈ [0, 60]$,
3+
% $σ = 10$, $ρ = 350$, $β = 8/3$, and intial conditions $y_0 = [0, 1, 0]^T$.
54

65
methods
76
function obj = LimitCycle
87
% Create the LimitCycle Lorenz '63 problem object.
98

109
% We use Lorenz's initial conditions and timespan as Strogatz
1110
% does not specify those in his book.
12-
1311
y0 = [0; 1; 0];
1412
tspan = [0 60];
1513
params = otp.lorenz63.Lorenz63Parameters('Sigma', 10, 'Rho', 350, 'Beta', 8/3);
16-
1714
obj = obj@otp.lorenz63.Lorenz63Problem(tspan, y0, params);
1815
end
1916
end

0 commit comments

Comments
 (0)