@@ -83,28 +83,24 @@ paths:
8383- Mathematics of convolutional neural networks
8484- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week4/ipynb/week4.ipynb
8585- Recommended reading Goodfellow et al chapter 9. Raschka et al chapter 13
86- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary6.pdf
8786
8887
8988## February 17-21
9089- Mathematics of CNNs and discussion of codes
9190- Recurrent neural networks (RNNs)
92- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary13.pdf
9391- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week5/ipynb/week5.ipynb
9492- Recommended reading Goodfellow et al chapter 9. Raschka et al chapter 13
9593
9694## February 24-28
9795- Mathematics of recurrent neural networks
9896- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week6/ipynb/week6.ipynb
9997- Recommended reading Goodfellow et al chapters 9 and 10 and Raschka et al chapters 14 and 15
100- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary20.pdf
10198
10299## March 3-7
103100- Recurrent neural networks and codes
104101- Long-Short-Term memory and applications to differential equations
105102- Graph neural network (GNN)s
106103- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week7/ipynb/week7.ipynb
107- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary27.pdf
108104- Recommended reading Goodfellow et al chapters 10 and Raschka et al chapter 15 and 18
109105
110106
@@ -113,13 +109,11 @@ paths:
113109- Autoencoders and PCA
114110- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week8/ipynb/week8.ipynb
115111- Recommended reading Goodfellow et al chapter 14 for Autoenconders and Rashcka et al chapter 18
116- - Whiteboard notes https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMarch5.pdf
117112
118113## March 17-21: Autoencoders
119114- Autoencoders and links with Principal Component Analysis. Discussion of AE implementations
120115- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week9/ipynb/week9.ipynb
121116- Reading recommendation: Goodfellow et al chapter 14
122- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMarch12.pdf
123117
124118
125119## March 24-28: Generative models
@@ -128,15 +122,13 @@ paths:
128122- Boltzmann machines
129123- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week10/ipynb/week10.ipynb
130124- Reading recommendation: Goodfellow et al chapters 16-18
131- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMarch19.pdf
132125
133126## March 31-April 4: Deep generative models, Boltzmann machines
134127- Restricted Boltzmann machines
135128- Reminder on Markov Chain Monte Carlo and Gibbs sampling
136129- Discussions of various Boltzmann machines
137130- Reading recommendation: Goodfellow et al chapters 16, 17 and 18
138131- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week11/ipynb/week11.ipynb
139- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril2.pdf
140132
141133
142134## April 7-11: Deep generative models
@@ -145,8 +137,8 @@ paths:
145137- Generative Adversarial Networks (GANs)
146138- Reading recommendation: Goodfellow et al chapters 18.1-18.2, 20.1-20-7; To create Boltzmann machine using Keras, see Babcock and Bali chapter 4
147139- See also Foster, chapter 7 on energy-based models
148- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril10.pdf
149140
141+ ## April 14-18: Public holiday, no lectures
150142
151143## April 21-25: Deep generative models
152144
@@ -155,23 +147,23 @@ paths:
155147- Reading recommendation: Goodfellow et al chapter 20.10-20.14
156148- See also Foster, chapter 7 on energy-based models
157149- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week13/ipynb/week13.ipynb
158- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril24.pdf
150+
151+ ## April 28 - May 2: May 1 is a public holiday, no lectures:
152+
159153
160154## May 5-9: Deep generative models
161155- Variational Autoencoders
162156- Diffusion models
163157- Reading recommendation: An Introduction to Variational Autoencoders, by Kingma and Welling, see https://arxiv.org/abs/1906.02691
164158- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week14/ipynb/week14.ipynb
165- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMay8.pdf
166159
167160## May 12-16: Deep generative models
168161- Summarizing discussion of VAEs
169162- Diffusion models
170163- Summary of course and discussion of projects
171164- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week15.ipynb
172- - Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMay15.pdf
173165
174- ## May 19-23: Kab only and discussion of projects
166+ ## May 19-23: Only and discussion of projects
175167
176168## Recommended textbooks:
177169
0 commit comments