Skip to content

Commit 2773163

Browse files
committed
edit skeletondiffusion
1 parent 38bf248 commit 2773163

File tree

1 file changed

+1
-56
lines changed

1 file changed

+1
-56
lines changed

_publications/skeletondiffusion/content.html

Lines changed: 1 addition & 56 deletions
Original file line numberDiff line numberDiff line change
@@ -52,67 +52,12 @@ <h2 class="title is-3">Abstract</h2>
5252
</div>
5353
</section>
5454

55-
56-
<section class="section hero is-light">
57-
<div class="container is-max-desktop">
58-
<div class="columns is-centered has-text-centered">
59-
<div class="column is-four-fifths">
60-
<h2 class="title is-3">The Task</h2>
61-
<div class="content has-text-justified">
62-
<p>
63-
In this work, we address the problem of predicting human motion based on observed past movements, known as Human Motion Prediction (HMP). Specifically, from a temporal sequence of human joint positions, we aim to forecast their evolution in subsequent frames.
64-
</p>
65-
</div>
66-
</div>
67-
</div>
68-
</div>
69-
</section>
70-
<img src="assets/method.png">
71-
<section class="section hero is-light">
72-
<div class="container is-max-desktop">
73-
<div class="columns is-centered has-text-centered">
74-
<div class="column is-four-fifths">
75-
<h2 class="title is-3">Method Overview</h2>
76-
<div class="content has-text-justified">
77-
<p>
78-
We present SkeletonDiffusion, a latent diffusion model encoding this bias explicitly on both architecture and training.
79-
First, we consider the skeleton structure and joint categories throughout the entire network, and build our architecture end-to-end on top of Graph Convolutional Networks
80-
(GCNs). In contrast, existing SHMP approaches either ignore the skeleton’s graph structure or only
81-
leverage it at intermediate stage.
82-
<img src="assets/nonisodiff.png">
83-
84-
<br>
85-
Second, we replace the conventional isotropic
86-
Gaussian diffusion training with a novel nonisotropicformulation that accounts for joint relations directly in the
87-
generation process: the HMP problem is defined by the skeleton kinematic graph, and we exploit this knowledge to define a fixed non-diagonal noise covariance for the diffusion process
88-
89-
</p>
90-
</div>
91-
</div>
92-
</div>
93-
</div>
94-
</section>
95-
96-
<h2 class="title is-3">Results</h2>
9755
<section class="hero is-small">
9856
<div class="hero-body">
9957
<div class="container">
10058
<div class="columns is-centered has-text-centered">
10159
<div class="column is-four-fifths">
102-
<div style="display: inline-block;text-align: center; margin:20px;">
103-
<figure style="display: inline-block">
104-
<img src="https://neural-icp.github.io/images/sample_2_input.gif" style="vertical-align: top;height:360;margin-bottom: -30px;">
105-
<figcaption><b>Input</b></figcaption>
106-
</figure>
107-
<figure style="display: inline-block">
108-
<img src="https://neural-icp.github.io/images/sample_2_smpl.gif" style="vertical-align:top;height:360;margin-bottom: -30px;">
109-
<figcaption><b>Registration</b></figcaption>
110-
</figure>
111-
<figure style="display: inline-block">
112-
<img src="https://neural-icp.github.io/images/sample_2_colors.gif" style="vertical-align:top;height:360;margin-bottom: -30px;">
113-
<figcaption><b>Correspondences</b></figcaption>
114-
</figure>
115-
</div>
60+
<h2 class="title is-3">Coming Soon</h2>
11661
<p class="content has-text-justified">
11762
</p>
11863
</div>

0 commit comments

Comments
 (0)