-
Notifications
You must be signed in to change notification settings - Fork 31
Performance on ImageNet validation set
Luigi edited this page Oct 1, 2018
·
16 revisions
Results were obtained using (center cropped) images of the same size.
| Model | Version | Acc@1 | Acc@5 |
|---|---|---|---|
| NASNet-A-Large | Tensorflow | 82.693 | 96.163 |
| NASNet-A-Large | Our porting | 82.566 | 96.086 |
| SENet154 | Caffe | 81.32 | 95.53 |
| SENet154 | Our porting | 81.304 | 95.498 |
| InceptionResNetV2 | Tensorflow | 80.4 | 95.3 |
| InceptionV4 | Tensorflow | 80.2 | 95.3 |
| SE-ResNeXt101_32x4d | Our porting | 80.236 | 95.028 |
| SE-ResNeXt101_32x4d | Caffe | 80.19 | 95.04 |
| InceptionResNetV2 | Our porting | 80.170 | 95.234 |
| InceptionV4 | Our porting | 80.062 | 94.926 |
| DualPathNet107_5k | Our porting | 79.746 | 94.684 |
| ResNeXt101_64x4d | Torch7 | 79.6 | 94.7 |
| DualPathNet131 | Our porting | 79.432 | 94.574 |
| DualPathNet92_5k | Our porting | 79.400 | 94.620 |
| DualPathNet98 | Our porting | 79.224 | 94.488 |
| SE-ResNeXt50_32x4d | Our porting | 79.076 | 94.434 |
| SE-ResNeXt50_32x4d | Caffe | 79.03 | 94.46 |
| Xception | Keras | 79.000 | 94.500 |
| ResNeXt101_64x4d | Our porting | 78.956 | 94.252 |
| Xception | Our porting | 78.888 | 94.292 |
| ResNeXt101_32x4d | Torch7 | 78.8 | 94.4 |
| SE-ResNet152 | Caffe | 78.66 | 94.46 |
| SE-ResNet152 | Our porting | 78.658 | 94.374 |
| ResNet152 | Pytorch | 78.428 | 94.110 |
| SE-ResNet101 | Our porting | 78.396 | 94.258 |
| SE-ResNet101 | Caffe | 78.25 | 94.28 |
| ResNeXt101_32x4d | Our porting | 78.188 | 93.886 |
| FBResNet152 | Torch7 | 77.84 | 93.84 |
| SE-ResNet50 | Caffe | 77.63 | 93.64 |
| SE-ResNet50 | Our porting | 77.636 | 93.752 |
| DenseNet161 | Pytorch | 77.560 | 93.798 |
| ResNet101 | Pytorch | 77.438 | 93.672 |
| FBResNet152 | Our porting | 77.386 | 93.594 |
| InceptionV3 | Pytorch | 77.294 | 93.454 |
| DenseNet201 | Pytorch | 77.152 | 93.548 |
| DualPathNet68b_5k | Our porting | 77.034 | 93.590 |
| CaffeResnet101 | Caffe | 76.400 | 92.900 |
| CaffeResnet101 | Our porting | 76.200 | 92.766 |
| DenseNet169 | Pytorch | 76.026 | 92.992 |
| ResNet50 | Pytorch | 76.002 | 92.980 |
| DualPathNet68 | Our porting | 75.868 | 92.774 |
| DenseNet121 | Pytorch | 74.646 | 92.136 |
| VGG19_BN | Pytorch | 74.266 | 92.066 |
| NASNet-A-Mobile | Tensorflow | 74.0 | 91.6 |
| NASNet-A-Mobile | Our porting | 74.080 | 91.740 |
| ResNet34 | Pytorch | 73.554 | 91.456 |
| BNInception | Our porting | 73.522 | 91.560 |
| VGG16_BN | Pytorch | 73.518 | 91.608 |
| VGG19 | Pytorch | 72.080 | 90.822 |
| VGG16 | Pytorch | 71.636 | 90.354 |
| VGG13_BN | Pytorch | 71.508 | 90.494 |
| VGG11_BN | Pytorch | 70.452 | 89.818 |
| ResNet18 | Pytorch | 70.142 | 89.274 |
| VGG13 | Pytorch | 69.662 | 89.264 |
| VGG11 | Pytorch | 68.970 | 88.746 |
| GoogLeNet | Our porting | 66.454 | 87.522 |
| SqueezeNet1_1 | Pytorch | 58.250 | 80.800 |
| SqueezeNet1_0 | Pytorch | 58.108 | 80.428 |
| Alexnet | Pytorch | 56.432 | 79.194 |