@@ -271,118 +271,109 @@ def interpret_composite_score(score: float) -> str:
271271 return "Excellent - high-performing, growth active"
272272 else :
273273 return "Elite - exceptional, Love multiplier engaged"
274-
274+
275275 @staticmethod
276276 def validate_coupling_structure () -> Dict [str , bool ]:
277277 """
278278 Validate that the coupling matrix exhibits expected relationship patterns.
279-
279+
280280 This validates the "grammar of semantic interaction":
281281 - Love amplifies (κ_L→* > 1)
282282 - Power constrains (κ_P→* < 1)
283283 - Justice supports Wisdom (κ_JW > κ_JP)
284284 - Asymmetry is present (κ_ij ≠ κ_ji)
285-
285+
286286 Returns:
287287 Dict with validation results for each pattern
288288 """
289289 cm = LJPWBaselines .COUPLING_MATRIX
290-
290+
291291 # Check Love amplifies
292- love_amplifies = (
293- cm ['LJ' ] > 1.0 and
294- cm ['LP' ] > 1.0 and
295- cm ['LW' ] > 1.0
296- )
297-
292+ love_amplifies = cm ["LJ" ] > 1.0 and cm ["LP" ] > 1.0 and cm ["LW" ] > 1.0
293+
298294 # Check Power constrains
299- power_constrains = (
300- cm ['PL' ] < 1.0 and
301- cm ['PJ' ] < 1.0 and
302- cm ['PW' ] < 1.0
303- )
304-
295+ power_constrains = cm ["PL" ] < 1.0 and cm ["PJ" ] < 1.0 and cm ["PW" ] < 1.0
296+
305297 # Check Justice supports Wisdom more than Power
306- justice_wisdom = cm ['JW' ] > cm ['JP' ]
307-
298+ justice_wisdom = cm ["JW" ] > cm ["JP" ]
299+
308300 # Check asymmetry (giving ≠ receiving)
309301 asymmetry = (
310- abs (cm ['LJ' ] - cm ['JL' ]) > 0.1 and
311- abs (cm ['LP' ] - cm ['PL' ]) > 0.1 and
312- abs (cm ['PJ' ] - cm ['JP' ]) > 0.1
302+ abs (cm ["LJ" ] - cm ["JL" ]) > 0.1
303+ and abs (cm ["LP" ] - cm ["PL" ]) > 0.1
304+ and abs (cm ["PJ" ] - cm ["JP" ]) > 0.1
313305 )
314-
306+
315307 return {
316- 'love_amplifies' : love_amplifies ,
317- 'power_constrains' : power_constrains ,
318- 'justice_supports_wisdom' : justice_wisdom ,
319- 'asymmetry_present' : asymmetry ,
320- 'all_patterns_valid' : all ([
321- love_amplifies ,
322- power_constrains ,
323- justice_wisdom ,
324- asymmetry
325- ])
308+ "love_amplifies" : love_amplifies ,
309+ "power_constrains" : power_constrains ,
310+ "justice_supports_wisdom" : justice_wisdom ,
311+ "asymmetry_present" : asymmetry ,
312+ "all_patterns_valid" : all (
313+ [love_amplifies , power_constrains , justice_wisdom , asymmetry ]
314+ ),
326315 }
327-
316+
328317 @staticmethod
329- def check_proportions (L : float , J : float , P : float , W : float , tolerance : float = 0.3 ) -> Dict [str , any ]:
318+ def check_proportions (
319+ L : float , J : float , P : float , W : float , tolerance : float = 0.3
320+ ) -> Dict [str , any ]:
330321 """
331322 Check if L:J:P:W proportions match Natural Equilibrium (scale-invariant check).
332-
323+
333324 This validates the core insight: "relationships between constants matter more
334325 than the constants themselves." The same proportions define harmony at any scale.
335-
326+
336327 Args:
337328 L, J, P, W: Current dimension values (any scale)
338329 tolerance: Allowed deviation from ideal ratios (default 0.3 = 30%)
339-
330+
340331 Returns:
341332 Dict with proportion analysis
342333 """
343334 NE = ReferencePoints .NATURAL_EQUILIBRIUM
344-
335+
345336 # Calculate current ratios (scale-invariant)
346337 if J <= 0 :
347- return {
348- 'proportions_healthy' : False ,
349- 'error' : 'Justice dimension cannot be zero'
350- }
351-
338+ return {"proportions_healthy" : False , "error" : "Justice dimension cannot be zero" }
339+
352340 current_ratios = {
353- ' L/J' : L / J ,
354- ' P/J' : P / J ,
355- ' W/J' : W / J ,
341+ " L/J" : L / J ,
342+ " P/J" : P / J ,
343+ " W/J" : W / J ,
356344 }
357-
345+
358346 # Expected ratios from Natural Equilibrium
359347 expected_ratios = {
360- ' L/J' : NE [0 ] / NE [1 ], # 1.492
361- ' P/J' : NE [2 ] / NE [1 ], # 1.734
362- ' W/J' : NE [3 ] / NE [1 ], # 1.673
348+ " L/J" : NE [0 ] / NE [1 ], # 1.492
349+ " P/J" : NE [2 ] / NE [1 ], # 1.734
350+ " W/J" : NE [3 ] / NE [1 ], # 1.673
363351 }
364-
352+
365353 # Check deviations
366354 deviations = {}
367355 checks = {}
368-
356+
369357 for key in expected_ratios :
370358 expected = expected_ratios [key ]
371359 actual = current_ratios [key ]
372360 deviation = abs (actual - expected ) / expected
373361 deviations [key ] = deviation
374362 checks [key ] = deviation < tolerance
375-
363+
376364 all_pass = all (checks .values ())
377-
365+
378366 return {
379- 'proportions_healthy' : all_pass ,
380- 'current_ratios' : current_ratios ,
381- 'expected_ratios' : expected_ratios ,
382- 'deviations' : deviations ,
383- 'checks' : checks ,
384- 'summary' : 'Proportions match Natural Equilibrium (scale-invariant)' if all_pass
385- else f'Proportions deviate from Natural Equilibrium'
367+ "proportions_healthy" : all_pass ,
368+ "current_ratios" : current_ratios ,
369+ "expected_ratios" : expected_ratios ,
370+ "deviations" : deviations ,
371+ "checks" : checks ,
372+ "summary" : (
373+ "Proportions match Natural Equilibrium (scale-invariant)"
374+ if all_pass
375+ else f"Proportions deviate from Natural Equilibrium"
376+ ),
386377 }
387378
388379
0 commit comments