|
| 1 | +import copy |
| 2 | +import unittest |
| 3 | + |
| 4 | +import torch |
| 5 | +import torch.nn as nn |
| 6 | + |
| 7 | +from bnn import BConfig, prepare_binary_model |
| 8 | +from bnn.ops import ( |
| 9 | + BasicInputBinarizer, |
| 10 | + BasicScaleBinarizer, |
| 11 | + XNORWeightBinarizer |
| 12 | +) |
| 13 | + |
| 14 | +class BinaryLayersTestCase(unittest.TestCase): |
| 15 | + def setUp(self) -> None: |
| 16 | + self.test_bconfig = BConfig( |
| 17 | + activation_pre_process=BasicInputBinarizer, |
| 18 | + activation_post_process=BasicScaleBinarizer, |
| 19 | + weight_pre_process=XNORWeightBinarizer |
| 20 | + ) |
| 21 | + self.data = torch.tensor([-0.05263, -0.05068, -0.03849, 0.03104, 0.0772, 0.03038, -0.06640, 0.05894, |
| 22 | + 0.13059, 0.03433, -0.25811, 0.13785]).view(1, 3, 2, 2) |
| 23 | + self.weights = torch.tensor([-0.0252, 0.0084, -0.0676, 0.0891, -0.0010, 0.0518, 0.0380, 0.2866, |
| 24 | + -0.0050]) |
| 25 | + |
| 26 | + def tearDown(self) -> None: |
| 27 | + pass |
| 28 | + |
| 29 | + def test_linear_layer(self): |
| 30 | + layer = nn.Linear(3, 3, bias=False) |
| 31 | + layer.weight.data.copy_(self.weights.view(3, 3)) |
| 32 | + x = self.data[:, :, 0, 0].view(1, 3) |
| 33 | + layer = prepare_binary_model(layer, bconfig=self.test_bconfig) |
| 34 | + |
| 35 | + output = layer(x) |
| 36 | + expected = torch.tensor([[0.0337, -0.0473, -0.1099]]) |
| 37 | + self.assertTrue(torch.allclose(expected, output, atol=1e-4)) |
| 38 | + |
| 39 | + def test_conv1d_layer(self): |
| 40 | + layer = nn.Conv1d(3, 3, 1, bias=False) |
| 41 | + layer.weight.data.copy_(self.weights.view(3, 3, 1)) |
| 42 | + x = self.data[:,:,:,0].view(1, 3, 2) |
| 43 | + layer = prepare_binary_model(layer, bconfig=self.test_bconfig) |
| 44 | + |
| 45 | + output = layer(x) |
| 46 | + expected = torch.tensor([[[ 0.0337, 0.0337], |
| 47 | + [-0.0473, -0.0473], |
| 48 | + [-0.1099, -0.1099]]]) |
| 49 | + self.assertTrue(torch.allclose(expected, output, atol=1e-4)) |
| 50 | + |
| 51 | + def test_conv2d_layer(self): |
| 52 | + layer = nn.Conv2d(3, 3, 1, bias=False) |
| 53 | + layer.weight.data.copy_(self.weights.view(3, 3, 1, 1)) |
| 54 | + x = self.data |
| 55 | + layer = prepare_binary_model(layer, bconfig=self.test_bconfig) |
| 56 | + |
| 57 | + output = layer(x) |
| 58 | + expected = torch.tensor([[[[ 0.0337, 0.0337], |
| 59 | + [ 0.0337, -0.0337]], |
| 60 | + |
| 61 | + [[-0.0473, -0.0473], |
| 62 | + [-0.0473, 0.0473]], |
| 63 | + |
| 64 | + [[-0.1099, -0.1099], |
| 65 | + [-0.1099, 0.1099]]]]) |
| 66 | + self.assertTrue(torch.allclose(expected, output, atol=1e-4)) |
| 67 | + |
| 68 | + |
| 69 | +if __name__ == '__main__': |
| 70 | + unittest.main() |
0 commit comments